Lärarhandledning GDM 10 Version 1.0

Storlek: px
Starta visningen från sidan:

Download "Lärarhandledning GDM 10 Version 1.0"

Transkript

1 Lärarhandledning GDM 10 Version 1.0 P.O. Box 15120, SE UPPSALA, SWEDEN Phone: , Fax: Internet:

2 Innehåll GDM 10 Lärarhandledning Version 1.1 Första utgåvan Januari 1998 Copyright Alla rättigheter förbehållna. Instrument AB. Denna handbok och det program som beskrivs i den är skyddade enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, s k copyright. Alla rättigheter för handboken förbehålls GAMMADATA. Alla rättigheter för programvaran förbehålls NRTS AB. Det innebär att varken handboken eller programmet helt eller delvis får kopieras utan skriftligt medgivande. Kopiering av handboken är förbjuden utöver vad som anges i avtalet om kopiering i skolor (UFB 1a). Programmet får användas enligt de regler som gäller i programvarulicensavtalet som följer med respektive program. Programvarulicens Ditt licensavtal med GAMMADATA, som medföljer produkten, specificerar användandet av produkten. All kopiering eller användning av WinDAS i sin helhet eller delar av, eller utskrift är förbjuden. GAMMADATA INSTRUMENT AB Box UPPSALA Telefon Fax E-post Hemsida Service och support För service och support, var god kontakta GAMMADATA. E-post: Författare och layout Dag Sedin Varumärken GAMMADATA, GAMMADATA:s logotyp, och GDM (GammaData Measurement systems) är varumärken tillhörande GAMMADATA. Varumärket WinDAS (Windows Data Acquisition System) tillhör NRTS AB. Microsoft och MS-DOS är registrerade varumärken tillhörande Microsoft Corporation. Windows är ett varumärke tillhörande Microsoft Corporation. 1.1 Manuaversion II

3 Version Manualversion III

4 Innehåll Sida 1 Introduktion Allmänna synpunkter Lärarhandledningens syfte och disposition Metodiska och praktiska råd Teorigenomgång Allmänna praktiska råd NT-elever Naturkunskapselever 3 2 Mätning av gammaspektra Laborationens syfte Behövliga teoretiska kunskaper Kärnfysik Detektorsystemets funktionssätt Materiel Utförande Frågor och svar mätning av gammaspektrum 7 3 Gammastrålningens absorption i olika material Laborationens syfte Behövliga teoretiska kunskaper Utförande Frågor och svar gammastrålningens absorption 9 4 NaI-detektorns effektivitet (Bestämning av aktiviteten i en 40 K-lösning) Laborationens syfte Behövliga teoretiska kunskaper Utförande 10 5 Halveringstiden för 214 Pb Laborationens syfte Behövliga teoretiska kunskaper Utförande Frågor och svar halveringstiden för 214 Pb 12 IV

5 Innehåll Sida 6 Bestämning av cesiumaktivitet (Med hjälp av effektivitetskurva för NaI-detektor) Laborationens syfte Behövliga teoretiska kunskaper Utförande 14 7 Bestämning av cesiumaktivitet (Enklare metod) Laborationens syfte Behövliga teoretiska kunskaper Utförande 15 8 Comptonspridning Laborationens syfte Behövliga teoretiska kunskaper Utförande 16 9 Röntgenfluorescens Laborationens syfte Behövliga teoretiska kunskaper Utförande Förslag till projekt- och specialarbeten 20 V

6 1 Introduktion 1.1 Allmänna synpunkter GDM 10 är ett nytt skolanpassat detektorsystem för att studera gammastrålningen från radioaktiva preparat. GDM 10 öppnar helt nya möjligheter att experimentellt åskådliggöra viktiga avsnitt inom gymnasiets kurser natur-vetenskapliga ämnen, främst fysik. Tack vare detektorns, jämfört med GMröret, betydligt högre känslighet kan man använda sig av mycket svagare preparat än vad som tidigare varit vanligt, vilket t ex gör det möjligt att mäta radioaktivitet hos prover som hämtats från vår omgivning. Lärarhandledningen riktar sig i första hand till gymnasielärare i fysik och naturkunskap, men ger även förslag till experiment med anknytning till biologi och kemi. Lärarhandledningen innehåller förslag till laborationer, demonstrationer, projektarbeten och specialarbeten. Varje laborationsförslag åtföljs av tips för planeringen, förberedelsen och genomförandet av laborationen. Alla elevinstruktioner är samman-förda i ett eget kompendium, som tillsammans med bild- och textmaterialet i handledningen och bruks-anvisningen får användas fritt för kopiering. Även spektrumsammanställningen i slutet av Användarhandboken WinDAS är lämplig att kopiera i tillämpliga delar. 1.2 Lärarhandledningens syfte och disposition Tillsammans med bruksanvisningen för GDM 10 skall lärarhandledningen försöka överbrygga de svårigheter av teknisk och metodisk art som man kan möta inför användningen av den för skolan nya mättekniken. Eftersom elevernas förkunskaper kan variera mycket är det viktigt hur laborationerna eller demonstrationerna presenteras. Elevinstruktionerna riktar sig huvudsakligen till NT-elevernas fysikkurs vilket medför att man för naturkunskapens del måste anpassa genomgången och laborationsuppläggningen till elevernas kunskapsnivå. Avsnittet 1.3 Metodiska och praktiska råd ger bland annat förslag och synpunkter på hur denna anpassning kan göras. Lärarhandledningens beskrivning av laborationerna läses med fördel parallellt med elevinstruktionerna. För varje laboration anges tidsåtgången och syftet med laborationen. Sedan följer en kort beskrivning av de behövliga teoretiska kunskaperna för laborationens genomförande. Praktiska råd för utförandet av laborationen tas upp som nästa punkt. Allra sist ges svaren till arbetsuppgifterna. Laborationsförslagen och elevinstruktionerna kan också användas som ett underlag till lärarledda kateder demonstrationer. 1

7 1.3 Metodiska och praktiska råd Teorigenomgången En viktig del av förberedelserna inför laborationen eller demonstrationen är den teoretiska genomgången. Bruksanvisningen till detektorsystemet innehåller material för en genomgång av detektorns funktionssätt, datainsamlingen, gammaspektrets karakteristiska utseende, dess koppling till sönderfallsschemat och analysen av spektret. Lämpligen har man en genomgång av den för laborationen behövliga teoretiska bakgrunden innan själva laborationstillfället. Elevernas förkunskaper bestämmer hur omfattande och noggrann teorigenomgången blir. För elever i naturkunskap gäller det mera att åskådliggöra principen för mätsystemets funktionssätt än att försöka ge en detaljerad redogörelse. Det är viktigt att eleverna betraktar detektorn som ett redskap för att detektera och analysera gammastrålning utan att de för den skull måste förstå i detalj hur detektorn fungerar. I vissa av laborationerna ingår också arbetsuppgifter som kan ges i läxa till laborationen. Inför den första laborationen bör man lära ut ett handhavande av radioaktiva preparat och prover som är baserat på kunskap och insikt och följer gällande bestämmelser. Bruksanvisningen innehåller en strålskyddsinformation som godkänts av statens strålskyddsinstitutet. Vad gäller strålningens biologiska verkningar hänvisas till läroboken eller annan speciallitteratur. 1.4 Allmänna praktiska råd Om man har tillgång till en datorsal med flera datorer finns möjligheten att utföra laborationerna i helklass. För klasser med elever utan större datorvana rekommenderas dock mindre grupper eftersom undervisningssituationen annars kan bli alltför stressande för läraren. En av datorerna utses till att sköta datainsamlingen medan de återstående datorerna används till den individuella analysen. Det är viktigt att läraren i god tid satt sig in i hur detektorn kopplas till den datainsamlande datorn och hur upptagna spektra lagras samt överförs till de andra datorerna. Är man tveksam vid kopplingen av detektorn till datorn kan säkert institutionsteknikern eller annan tekniskt kunnig personal kontrollera att anslutningarna gjorts enligt anvisningarna. Säkerligen kan även skolans system- och datoransvarige vara till hjälp. Laborationsinstruktionerna är skrivna som om eleverna själva utför samtliga moment. Detta för att ge en kronologisk känsla av händelseförloppet. Arbetar man med en laborationsgrupp av elever måste man klargöra för eleverna att de endast läser in uppmätta spektra i sin dator och sedan arbetar med dessa spektra. Efter det att datainsamlingen kommit igång kan det uppstå pauser, som kan användas till en genomgång av läxan eller en fördjupning av teorin. Så fort man lagrat ett spektrum kan det göras tillgängligt för alla datorer genom kopiering via nätet eller disketter. Kopieringen kan utföras medan en ny datainsamling pågår. Tanken är att den efterföljande analysen sker individuellt vid varje dator. Vid laborationens slut kan man sedan jämföra sina resultat som är baserade på samma utgångsdata. Resultatens variation kan ge intressanta diskussioner om felkällor i laborationen. 2

8 Vid laborationens början delar man ut en kopia av kommandona, kap 4 i användarhandboken för WinDAS, så att eleverna själva kan hitta behövliga kommandon. Det kan också vara praktiskt att dela ut sammanställningen av spektra och sönderfallsscheman. Kopieringsunderlaget återfinns i slutet av användarhandboken för WinDAS. I de fall då den anslagna laborationstiden inte är helt tillräcklig för det mätprogram man tänkt sig kan man spara tid genom att i förväg mäta upp t ex ett bakgrundsspektrum. Detta kan också göras med andra spektra om man önskar högre statisktisk noggrannhet än vad som kan uppnås vid laborationstillfället. Vår erfarenhet har visat att det lönar sig att testa hela uppställningen några dagar innan själva laborationstillfället. På så sätt kan man övertyga sig om att förstärkningen (= högspänningen) och diskriminatortröskeln är inställda efter önskemål. Detta spar också tid under själva laborationen NT-elever Även om elevinstruktionerna riktar sig mest till NT-elever kan det finnas moment eller frågor under laborationens gång som läroboken tar upp ofullständigt eller inte förmår att besvara. För dessa fall innehåller elevinstruktionen vissa teoriavsnitt som närmast får anses som överkurs. Eftersom det vanligen inte finns tid att utföra alla laborationer som beskrivs i lärarhandledningen tvingas man ofta göra ett urval. Laborationen Mätning av gammaspektra är grundläggande för de andra laborationerna. Vill man spara tid kan man ta upp denna laboration i form av en lärarledd demonstration som visar eleverna de nödvändiga leden i upptagningen och lagringen av gammaspektra. Likaså kan man förkorta experimenttiden för aktivitetsbestämningarna genom att ge eleverna detektorns effektivitetskurva som man bestämt innan laborationen. Däremot är det viktigt att eleverna förstår hur denna tagits fram. För aktivitetsbestämningar av prover som innehåller båda isotoperna 134 Cs och 137 Cs finns en enklare version som bygger på jämförelsen med en kalibreringsaktivitet. Den förenklade versionen är speciellt lämplig när aktivitetsbestämningen är det väsentliga Naturkunskapselever Som tidigare nämnts krävs det att man anpassar materialet till elevernas kunskapsnivå. När det gäller gammaspektrets utseende kan det räcka med att förenklat ta upp de processer som förklarar dess utseende (t ex fototoppen och comptonfördelningen). Man kan med fördel tona ner ordet compton och istället tala om kollisioner mellan gammakvanta och elektroner. Det räcker med att eleverna inser fototoppens betydelse i bestämningen av strålningsintensiteten och identifieringen av den radioaktiva isotopen som gav upphov till fototoppen. 3

9 Eftersom det vanligen inte finns tid att utföra alla laborationer som beskrivs tvingas man göra ett urval. Laborationen Mätning av gammaspektra är grundläggande för de andra laborationerna. Vill man spara tid eller åskådliggöra mätmetodiken kan man ta upp denna laboration i form av en lärarledd demonstration så att eleverna förstår metodiken innan de tar sig an någon av laborationerna. Laborationerna Gammastrålningens absorption... och Halveringstiden... kan behandlas mera kvalitativt genom att slopa den teoretiska delen av laborationen. Istället kan man t ex utföra den experimentella delen och nöja sig med att grafiskt (på millimeter-papper eller eventuellt lin-log-papper) återge variationen av intensiteten. Beroende på elevernas kunskaper kan man sedan ta upp exponentiellt avtagande och ett direkt avläsande av halvvärdesstorleken ur lin-log-diagrammet. Genom att ge eleverna effektivitetskurvan för detektorn kan man förenklat lära eleverna hur det går till att bestämma aktiviteten för ett radioaktivt sönderfall. För aktivitetsbestämningar av prover som innehåller båda isotoperna 134 Cs och 137 Cs rekommenderas den enklare versionen som bygger på jämförelsen med en kalibreringsaktivitet. Den förenklade versionen är speciellt lämplig när aktivitetsbestämningen är det väsentliga. 4

10 2 Mätning av gammaspektrum 2.1 Laborationens syfte Laborationen avser att visa hur man detekterar och bestämmer energin för gammastrålningen från ett radioaktivt sönderfall. Kunskaperna tillämpas sedan genom att energibestämma gammastrålningen från ett okänt sönderfall. Med hjälp av dessa strålningsenergier kan man sedan identifiera den radioaktiva isotopen man mätt på. I laborationen ingår även att mäta rumsbakgrunden, som subtraheras från alla spektra. Utifrån den mätta rumsbakgrunden kan man sedan diskutera den naturliga strålningen i vår omgivning. Tidsåtgång: cirka 2 undervisningstimmar 2.2 Behövliga teoretiska kunskaper Kärnfysik Eleverna bör känna till vad som menas med radioaktivt sönderfall, moderkärna, dotterkärna och vilken typ av strålning som kan utsändas. Beroende på elevernas förkunskaper kan man förklara energienheten MeV. Elever utan större fysikbakgrund kan nöja sig med att lära sig hur stor energimängd 1 MeV motsvarar i joule (1 MeV = 1, joule). Det kan vara bra att åskådliggöra energienheten joule genom att påminna eleverna om den potentiella energin för en vikt på 1 kg som lyfts 1 m. På så sätt ges leverna en uppfattning om de atomära storheternas storleksordningar. För NT-elever bör man förenklat kunna ta upp de olika processerna med vilka gammastrålningen växelverkar med materia. För naturkunskapselever kan man däremot begränsa sig till att förklara ett gammaspektrums karakteristiska utseende genom att kvalitativt beskriva kollisionen mellan gammakvanta och elektroner. Bildmaterial och teori kan hämtas från den kärnfysikaliska ordlistan som finns i användarhandboken för WinDAS Detektorsystemets funktionssätt Bruksanvisningen för GDM 10 innehåller en beskrivning av hur detektorn fungerar. I de flesta fall räcker det nog att schematiskt förklara hur den analoga informationen omvandlas till digital information som kan behandlas av datorn. Det är viktigt att eleverna förstår att ett spektrum är ett frekvensdiagram över energierna hos de detekterade gammakvantumen. Varje kanal motsvarar en viss klassbredd i energiindelningen. Med NT-elever finns här möjligheten att låta dem studera den statistiska spridningen och standardavvikelsen genom att avläsa ett fåtal kanalers (ca 10) innehåll vid olika mättider. 5

11 Ett gammaspektrums karakteristiska utseende bör förklaras så att eleverna förstår laborations instruktionens begrepp såsom fototopp, comptonfördelning och diskriminatortröskel. Även här kan man hitta bildmaterial i bruksanvisningen för GDM 10. För analysen nödvändiga kommandon presenteras för eleverna, som dessutom får en kopia av de kommandon som återfinns i användarhandboken för WinDAS. Det kan gälla hämtning av spektra från sekundärt minne (diskett eller hårddisk), bestämning av en fototopps kanalläge och area samt energikalibreringen av ett spektrum. Alla dessa moment förklaras närmare i användarhandboken för WinDAS. 2.3 Materiel För den manuella energikalibreringen används ett 137 Cs-preparat och rent KCL-salt. Eventuellt kan man också använda sig av mineralsalt, men p g a den lägre kaliumkoncentrationen blir mättiden i så fall längre. De slutna 137 Cs-preparat som vanligen finns på skolorna är oftast så starka att man får placera dem minst 5 cm från detektorn för att inte få störande effekter på grund av för höga räknehastigheter. För datorns energikalibreringsrutin används ett spektrum från en lösning innehållande 152 Eu. Som okända isotoper kan man använda sig av andra än de i laborationen föreslagna. Det är oftast mera instruktivt att använda sig av aktiviteter som finns mer eller mindre naturligt omkring oss som t ex gamla armbandsur, glödstrumpa, radioaktiva stenprover, insamlade radondöttrar (beskrivs i laborationen: Halveringstiden för 214 Pb) eller i områden, som fått nedfall efter olyckan i Tjernobyl, jord- eller växtprover. 2.4 Utförande Datorn, på vilken datainsamlingen sker, placeras väl synligt för hela laborationsgruppen. 137 Cs-preparatet placeras ovanför detektorn och mätningen påbörjas. Medan mätningen pågår kan man snabbt repetera de kommandon som behövs för analysen. Eleverna måste kunna kopiera över ett spektrum till sin dator och känna till vilka moment som ingår i analysen. Så fort 40 K-spektret är mätt och spektret från bakgrunden håller på att tas upp kan eleverna påbörja sin egen analys enligt laborationsinstruktionen. Eleverna får nu visa att de förstått att överföra spektrumen till sina datorer vilket enklast görs genom att kopiera spektrumen till den egna disketten. Genom att jämföra bakgrundsspektret och 40 K-spektret kan man förklara bakgrundsspektrets 40 K-fototopp. Önskar man endast visa hur man utför en energikalibrering med hjälp av datorns kalibreringsrutin kan man utelämna den manuella delen. Den inledande manuella delen har fördelen att eleverna först bekantar sig med spektra från monoenergetisk strålning innan de tittar på mera komplicerade spektra. Laborationen avslutas genom att man gemensamt går igenom svaren på frågorna samt resultatet av energi- och isotopbestämningarna. 6

12 2.5 Frågor och svar mätning av gammaspektrum Fråga 1. Vilket/vilka sönderfall kommer från den uppmätta strålningen? Svaret beror av den isotop man har valt att undersöka. Ett urval sönderfallsscheman med tillhörande spektra lämpliga att kopieras till eleverna återges i lärarhandledningen. Fråga 2. Vilka är dotterkärnorna till de sönderfall Du har studerat i denna laboration? Beror på den isotop man valt att undersöka. Fråga 3. Från de sönderfallande kärnorna utsänds, förutom gammastrålning, även β-strålning. Varför kan den inte detekteras i NaI-detektorn? Detektorns aluminiumhölje släpper inte igenom β-strålningen. Dessutom skulle detektionseffektiviteten i en NaI-kristall bli för låg. Fråga 4. Varifrån kommer bakgrundsstrålningen? Finns det någon radioaktiv isotop som lätt kan identifieras? Bakgrundsstrålningen kommer huvudsakligen från kosmisk strålning, 40 K och radon döttrar. 40 K-toppen vid 1,46 MeV är lätt att identifiera. Extrauppgift: Jämförelse av detektionseffektiviteten för ett GM-rör och en NaI-detektor. Sätt 137 Cspreparatet på samma avstånd från GM-rörets räknare. Använd lika lång mättid som vid upptagningen av 137 Cs-spektrat. Förhållandet mellan effektiviteterna för GM-röret och NaI-detektorn (räknat på fototoppen) är av storleksordningen procent. 7

13 3 Gammastrålningens absorption i olika material 3.1 Laborationens syfte Genom att studera hur intensiteten för gammastrålningen avtar med tjockleken av ett material kan man experimentellt bestämma halvvärdesstjockleken och absorptionskoefficienten för olika material. Laborationen kan ses som ett alternativ till varianten med GM-rör. Med NT-elever kan man som en extrauppgift kvalitativt studera absorptionens beroende av gammaenergin. Tidsåtgången: cirka 2 undervisningstimmar. 3.2 Behövliga teoretiska kunskaper Med NT-elever kan man förenklat ta upp de olika absorptionsprocesserna med hjälp av diagrammet i den kärnfysikaliska ordlistan i användarhanboken för WinDAS. För naturkunskapseleverna är kanske detta avsnitt för svårt. Elevinstruktionens teoriavsnitt genomgås med NT-eleverna. För naturkunskapseleverna bör man förklara lin-log-pappret om man har tänkt bestämma halvvärdestjockleken. Med några exempel kan eleverna öva sig att göra lämpliga axelindelningar och avläsningar i lin-log-grafer. Förslagsvis räknar NT-eleverna några uppgifter i anslutning till teorigenomgången. 3.3 Utförande Beroende på tillgången på stativmateriel kan man välja en vertikal eller horisontell experimentuppställning. Detektorn är avsedd att även kunna läggas i horisontellt läge. Antalet absorbatorbleck och deras tjocklekar beror på valet av material. Sammanlagd absorbatortjocklek bör för varje val av material vara minst två gånger större än absorbatorns halvvärdestjocklek. Man kan välja att studera enbart ett absorbatormaterial eller flera. Vid val av flera ges efteråt tillfälle till en diskussion av absorbatorval och tjocklekar vad gäller skyddsfrågor. Energikalibrering behöver ej utföras. Om en tillräckligt kraftig strålkälla väljs är det inte nödvändigt att korrigera för bakgrundsstrålningen. Bakgrundspektrum behöver i så fall ej tas. 8

14 3.4 Frågor och svar gammastrålningens absorption Fråga 1. Försök att härleda ekvationen (5) ur ekvationen (4) ln (I 0 /2) = ln I 0 -μx 1/2 (4) m = (ln2)x 1/2 (5) Fråga 2a. Beräkna hur tjock blyvägg som krävs för att nedbringa intensiteten till en tusendel av det ursprungliga värdet. μ Pb = 1,22 cm -1 för gammaenergi 0,66 MeV. x Pb = 5,66 cm Fråga 2b. Beräkna hur tjock aluminiumvägg som krävs för att nedbringa intensiteten till en tusendel av det ursprungliga värdet. μ A1 = 0,208 cm -1 för gammaenergi 0,66 MeV. x A1 = 33 cm Fråga 2c. Beräkna hur många meter luft som krävs för att nedbringa intensiteten till en tusendel av det ursprungliga värdet. μ luft = 0, cm -1 för gammaenergi 0,66 MeV. x luft = 617 m Fråga 3a. Hur stor del av gammastrålningens intensitet återstår efter passagen genom 20 cm luft? I/I 0 = 0,9978 Fråga 3b. Hur stor del av gammastrålningens intensitet återstår efter passagen genom 20 cm bly? I/I 0 = 2, Fråga 4. I laborationen mäts gammastrålningens intensitet genom att summera antalet pulser i strålningns fototopp. Varför sätter man inte ett fönster över hela spektret och räknar alla pulser i spektret? Genom att titta enbart på fototoppen undviker man att räkna in andra pulser som kan härröra från annan strålning. Extrauppgift: Med NT-elever kan man studera hur fotoeffekten varierar med energin. Man tar upp ett spektrum från 152 Eu-lösningen. Därefter jämför man fototopparnas relativa intensiteter med gammaövergångarnas relativa intensiteter som härletts ur den sammanställning som finns i samband med bestämningen av detektorns effektivitets kurva. Intensiteterna beräknas ämpligen relativt 0,122 MeV övergången. 9

15 4 NaI-detektorns effektivitet (Bestämning av aktiviteten i en 40 K-lösning) 4.1 Laborationens syfte Laborationen visar hur man bestämmer effektiviteten för en NaI-detektor. Eleven lär sig att bestämma aktiviteten i en 40 K-lösning. Tillfälle ges också att beräkna det teoretiskt förväntade värdet på aktiviteten. Laborationen kan användas som introduktion inför mer avancerade aktivitetsbestämningar av livsmedelsprov eller liknande se kapitel 6. Tidsåtgång: Laborationen tar cirka 2 undervisningstimmar. 4.2 Behövliga teoretiska kunskaper Den teoretiska beräkningen av aktiviteten är troligen i svåraste laget för naturkunskapselever. Det är viktigt att man klargör för eleverna skillnaden mellan isotopaktiviteten och gammaaktiviteten för en viss övergång. Om man t ex har ett 40 K-preparat med aktiviteten Bq så sönderfaller endast 11 % via elektroninfångning till 40 Ar (se figur 7 i elevinstruktionen). För varje sådant sönderfall fås ett 1,46 MeV gammakvantum, dvs gammaaktiviteten från preparatet är 110 Bq. 4.3 Utförande Allmänt gäller att man inte får förändra mätgeometrin mellan upptagningen av ett effektivitetskalibreringsspektrum och ett provspektrum. Ändrad geometri innebär att detektorn kan komma att se aktiviteterna under olika rymdvinklar, dvs detektorns mäteffektivitet ändras. Även provens utformning påverkar mätgeometrin! Skillnader i provens konsistens är inte lika avgörande bidrag till felkällorna, men påverkar resultatet genom att självabsorptionen av gamma-strålningen varierar med densiteten på proven. För att minska mättiden är det bättre att använda rent KCl-salt än mineralsalt. Mineralsaltet kan man ha i reserv för att visa att man mäter på samma isotop i båda fallen. 152 Eu-lösningen innehåller en aktivitet på cirka 2 kbq. För att förhindra att burken öppnas har dess lock limmats fast med epoxylim. Om man vill spara tid kan mätningen av bakgrundsspektret påbörjas innan laborationen tar sin början. Mättiden är cirka 30 minuter. 152 Eu-spektret mäts under cirka 10 minuter. Sist mäts ett spektrum från 40 K-lösningen. Eftersom dess aktivitet är relativt låg kan det krävas en mättid på mer än 30 minuter. Eventuellt kan ett 40 K-spektrum mätas i förväg under längre tid. Medan bakgrundsmätningen pågår kan eleverna utföra effektivitetskalibreringen. Eventuella väntetider kan också användas till att repetera den teoretiska beräkningen som bör ha behandlats innan själva laborationstillfället. 10

16 5 Halveringstiden för 214 Pb 5.1 Laborationens syfte Laborationen ger eleverna tillfälle att experimentellt studera avklingningen för en naturlig radioaktivitet. Begrepp som halveringstid och sönderfallskonstant kommer naturligt in vid analysen av de experimentella data. Tidsåtgång: Om aktivitetsinsamlingen påbörjats i god tid före laborationens början tar laborationen cirka 2 undervisningstimmar. 5.2 Behövliga teoretiska kunskaper Det är viktigt att NT-eleverna kan tolka 238 U-sönderfallskedjan, dvs att de förstår vilken aktivitet de mäter på. Med naturkunskapseleverna kan man begränsa sig till att orientera om det sönderfall som studeras och helt kort nämna att det är en länk i en naturligt förekommande sönderfallskedja. Eventuellt kan man även här beröra de hälsoproblem radondöttrarna orsakar. Elevinstruktionens teoriavsnitt genomgås med NT-eleverna, medan det för naturkunskapseleverna är tillräckligt att förklara hur lin-log-pappret används om man har tänkt bestämma halveringstiden för sönderfallet. Med några exempel kan eleverna öva sig att göra lämpliga axelindelningar och avläsningar i lin-log-grafer. Förslagsvis räknar NT-eleverna några uppgifter i anslutning till teorigenomgången. Innan själva laborationstillfället kan man även redogöra för hur aktiviteten samlas på den spänningsförande tråden. 5.3 Utförande För att spara tid startas insamlingen av aktiviteten innan eleverna kommer till laborationen. En enkel och effektiv insamlingsmetod är att använda en spänningsförande tråd med en diameter på cirka 0,2 mm. Efter den avslutade insamlingen rullar man ihop tråden på en tunn pappersbit eller träbit och stoppar alltihopa i en liten plastpåse. Det är viktigt att den uppsamlade aktiviteten så snabbt som möjligt förflyttas till detektorn och placeras tätt intill detektorn. Detektionseffektiviteten är då som störst. Medan trådinsamlingen fortfarande pågår tas ett kalibreringsspektrum. Energikalibreringen behövs för att kunna identifiera 0,352 och 0,295 MeV övergångarna i 214 Bi. För att spara tid kan man även ta upp ett kalibreringsspektrum innan eleverna kommer. 11

17 Så fort man tagit ett kalibreringsspektrum påbörjas mätserien av spektra från den insamlade aktiviteten. Medan mätserien pågår kan eleverna utföra sin energikalibrering så att de direkt efter mätseriens slut kan överta dessa spektra för analys. Eventuella väntetider kan användas till att besvara arbetsuppgifterna. 0,242 MeV övergången i 214 Bi tas ej med i analysen då motsvarande fototopp är en dublett dvs den består av två fototoppar varav den andra härrör från 0,238 MeV övergången i 212 Bi som är en länk i 232 Th-kedjan vars dotter-produkter också insamlas. 5.4 Frågor och svar halveringstiden för 214 Pb Fråga 1. Försök att härleda ekvationen (5) ur ekvationen (4) ln (N 0 /2) = ln N 0 -lt 1/2 (4) l = (ln2)t 1/2 (5) Fråga 2. Vilka felkällor finns i detta experiment? Försök att rangordna felkällorna. Felet i resultatet (felberäkning kräva ej) kan uppskattas genom att välja två alternativa lutningar på linjen i lin-log-diagrammet samt bestämma motsvarande halveringstider. Följande felkällor kan omnämnas: Areabestämningen av fototopparna (man kan få en uppfattning om felets storlek genom att upprepa areabestämningen och se hur de olika bakgrundsdragningarna påverkar värdet på arean). Dragningen av den räta linjen i lin-log-grafen (man kan få en uppfattning om felets storlek genom att välja alternativa dragningar av linjen och se hur det påverkar värdet på halveringstiden). Fråga 3. Enligt noggrannare mätningar har 214 Pb halveringstiden 26,8 min. Hur lång tid tar det tills bara en promille av den ursprungliga aktiviteten återstår? t = 267 minuter Fråga Cs har halveringstiden 30 år. Ett preparat innehåller aktiviteten 37 kbq. Hur stor är aktiviteten efter 100 år och hur många 137 Cs-kärnor innehåller preparatet då? I = 3,7 kbq N = 5,0 109 kärnor 12

18 6 Bestämning av cesiumaktivitet (Med hjälp av effektivitetskurva för NaI-detektor) 6.1 Laborationens syfte Laborationen ger eleverna tillfälle att studera detektorns effektivitet vid olika gammaenergier. Den upprättade effektivitetskurvan kan sedan användas vid aktivitetsbestämningar på prover som innehåller cesiumaktiviteter från nedfallet efter olyckan i Tjernobyl. I de delar av Sverige där man undsluppit radioaktivt nedfall kan man använda sig av prover som tagits på drabbade orter. I stora delar av Sverige är dock lavar och mossor så aktiva att de kan mätas med GDM 10. Tidsåtgång: cirka 2 undervisningstimmar. 6.2 Behövlig teoretisk kunskap Effektivitetskalibreringens olika moment genomgås med eleverna. Med naturkunskapseleverna kan det vara lämpligt att hoppa över effektivitetskalibreringen som kan upplevas som svårt att förstå. Istället kan man för dessa elever använda en kalibrering som gjorts innan och endast schematiskt redogöra för hur en detektor effektivitetskalibreras. Kapitel 7 visar en alternativ metod för att bestämma cesiumaktivitet, som är mycket snabbare och enklare, och därför lämpar sig väl för naturkunskapseleverna. Teorigenomgången i övrigt innehåller en titt på sönderfallsschematan för de båda cesiumisotoperna. Det är viktigt att eleverna förstår skillnaden mellan antalet sönderfall per sekund för de aktuella isotoperna och respektive gammaaktiviteter som studeras. Om man väljer att utföra effektivitetskalibreringen används en 152 Eu-lösning som kalibreringspreparat. I effektivitetskalibreringen använder man sig av 0,122, 0,245, 0,344, 0,779, och 1,408 MeV övergångarna. Elev-instruktionen ger övergångarnas relativa intensiteter, som tillsammans med den kända aktiviteten för lösningen används för att beräkna de förväntade gammaaktiviteterna. Dessa kan gås igenom tillsammans med klassen innan själva laborationen börjar. Denna genomgång kan sedan följas av en genomgång av teorin för analysen. 13

19 6.3 Utförande Proverna till laborationen tas i god tid före laborationen och placeras i de för detektorn avsedda plastburkarna. Vid handhavandet av högaktiva prover bör man vara aktsam vid förslutningen av burkarna samt tvätta händerna efteråt. Det är dessutom viktigt att ingen aktivitet hamnar på detektorns olika delar. Sådan kontaminering kan vara svår att få bort och kan ge en störande bakgrund vid alla kommande mätningar. Kalibreringsspektret samlas under cirka 10 minuter. Bestämningen av detektorns effektivitetskurva kan påbörjas så fort det okända provet placerats på detektorn och datainsamlingen kommit igång. Vill man hoppa över kalibreringen för att spara tid kan man använda grafen från en tidigare gjord effektivitetskalibrering under förutsättning att mätgeometrin hålls oförändrat. Exempel på en kalibreringskurva baserad på 60 ml provburken finns i användarhandboken för WinDAS. Mättiderna kan variera mycket beroende på hur aktivt provet är. Ett prov med specifika aktiviteten 1000 Bq per kg kräver cirka 3 minuter för att ge ett resultat med en statistisk onoggrannhet på cirka 10 %. Om man har ett lågaktivt prov kan man påbörja datainsamlingen före laborationen. Det gäller även upptagningen av bakgrundsspektrum. Vill man öka noggrannheten vid mätningar av lågaktiva prov kan man förstärka blyavskärmningen. Man kan också använda sig av så kallad Marinelligeometri för att öka den effektiva provvolymen. Alla dessa extra tillbehör, som kan rekvireras från beskrivs i bruksanvisningen. Genom dessa tillbehör kan känsligheten för detektorn höjas upp till 40 gånger. Vill man jämföra sina mätningar med mätningar som gjorts med professionell noggrannhet kan man rekvirera prover som mätts vid s anvisningslaboratorium. 14

20 7 Bestämning av cesiumaktivitet (Enklare metod) 7.1 Laborationens syfte Laborationen ger eleverna tillfälle att bestämma Cesiumaktiviteten i prover tagna i vår omgivning. I de delar av Sverige där man undsluppit radioaktivt nedfall efter olyckan i Tjernobyl kan man använda sig av prover som tagits på drabbade orter. I stora delar av Sverige är dock lavar och mossor så aktiva att de kan mätas med GDM 10. Tidsåtgång: 1-2 undervisningstimmar beroende på hur många prover man väljer att mäta. Laborationstiden kan minskas genom att i förväg mäta ett bakgrundsspektrum. 7.2 Behövlig teoretisk kunskap Teorigenomgången innehåller en titt på sönderfallsschematan för de båda cesiumisotoperna. Det är viktigt att eleverna förstår att mätmetoden bygger på en jämförelse mellan fototopparna från proven med de kända respektive okända aktiviteterna. Kalibreringsprovets aktivitet anges på dess lock. 7.3 Utförande Proverna till laborationen tas i god tid före laborationen och placeras i de för detektorn avsedda plastburkarna. Vid handhavandet av högaktiva prover bör man vara aktsam vid förslutningen av burkarna samt tvätta händerna efteråt. Det är dessutom viktigt att ingen aktivitet hamnar på detektorns olika delar. Sådan kontaminering kan vara svår att få bort och kan ge en störande bakgrund vid alla kommande mätningar. Bakgrundsspektret mäts under cirka 30 minuter. Därefter tas ett spektrum från kalibreringsprovet. Lämplig mättid är ca 15 minuter. Sist tas ett spektrum för varje prov som insamlats. Här kan mättiderna variera mycket beroende på hur aktivt provet är. Ett prov med specifika aktiviteten 1000 Bq per kg kräver cirka 3 minuter för att ge ett resultat med en statistisk onoggrannhet på ca 20 %. Om man har ett lågaktivt prov kan man påbörja datainsamlingen före laborationen. Det gäller även upptagningen av bakgrundsspektrum. Vill man öka noggrannheten vid mätningar av lågaktiva prov kan man följa samma tips som ges i föregående kapitel. Vill man jämföra sina mätningar med mätningar som gjorts med professionell noggrannhet kan man rekvirera prover som mätts vid s anvisningslaboratorium. 15

21 8 Comptonspridning 8.1 Laborationens syfte Att undersöka hur gammastrålningen sprids i och utanför NaI-detektorn. Laborationen utföres i två moment: 1). Eleverna mäter den maximala energin för den genom spridning avgivna energin i NaI-detektorn (den s k Comptonkanten) för gammastrålningen från 137 Cs. Värdet jämförs med det teoretiskt förväntade, som lätt kan beräknas. 2). Eleverna mäter energin hos den strålning som sprids från ett föremål (t ex ett metallbleck) utanför etektorn. Försöksuppställningen ordnas så att spridningsvinkeln kan mätas grovt och energin hos den spridda strålningen studeras som funktion av spridningsvinkeln. De erhållna värdena jämförs med de teoretiskt förväntade. Tidsåtgång: cirka 2 undervisningstimmar. 8.2 Behövliga teoretiska kunskaper Kollisionen mellan ett gammakvantum och en elektron kallas comptonspridning. Spridningen kan liknas vid kollisionen mellan två kroppar, t ex biljardbollar, vilket utnyttjas för att härleda sambandet mellan energi och spridningsvinkel. Detta samband med förklarande figur ges i elevinstruktionen. Härledningen får anses vara i svåraste laget eftersom den kräver en relativistisk behandling av energins bevarande i stötprocessen. Intresserade elever kan hänvisas till universitetslitteratur i ämnet. Det räcker med att man presenterar spridningsformeln och tillssaammans med eleverna diskuterar vid vilken spridningsvinkel (= 180 ) ett gammakvantum förlorar maximal energi till NaI-kristallen. Den maximaltavgivna energin svarar mot comptonkanten i gammaspektret. Resten av comptonfördelningen härrör från spridning i mindre vinklar än 180. I laborationens andra del används spridningsformeln för att beräkna energin på de gammakvanta som spritts in i detektorn. 8.3 Utförande Beroende på tillgången på stativmaterial kan man välja en vertikal eller horisontell experimentuppställning. Detektorn är avsedd att även kunna läggas i horisontellt läge. För det inledande försöket som går ut på att bestämma energin för comptonkanten behöver man endast tänka på att inte hålla preparathållaren för nära detektorn eftersom skolornas 137 Cs-preparat ofta är mycket aktiva i förhållande till detektorns känslighet. 16

22 I laborationens andra del mäts energin hos gammakvanta som sprids in i detektorn. Dessa spridda gammakvanta har en relativt bred energifördelning eftersom avsaknaden av god kollimering av strålgången ger en mindre väl definierad spridningsvinkel. Har man tillgång till extra bly kan man förbättra den i laborationen föreslagna kollimeringen, vilket ger en skarpare fototopp i spektret från den spridda strålningen. Samtidigt kan man dock bli tvungen att förlänga mättiderna för att få tillräckligt bra statistik. Laborationens förslag att använda tunna blystenar eller skivor för att bygga en cirka 2 cm bred spalt ger tillfredsställande resultat. Eftersom gammastrålningen från cesium även sprids mot föremål runt omkring detektoröppningen, och det skulle vara mycket svårt att skydda sig mot denna oönskade comtonspridning, tar man ett spektrum utan spridare. Genom att subtrahera det oönskade bidraget syns den önskade effekten tydligare. Som spridarmaterial föreslås aluminium, koppar eller stål. Generellt gäller att spridningsutbytet ökar med materialets densitet. Spridarens tjocklek väljs lämpligen till cirka 5 mm. Tunnare spridare ger färre spridda gamma och därmed längre mättider. 17

23 9 Röntgenfluorescens 9.1 Laborationens syfte Att undersöka röntgenfluorescens i olika material samt att använda röngenfluorescens för att bestämma grundämnen i okända material. Laborationen ger eleverna tillfälle att använda kunskaper i atomfysik, speciellt Bohrs atommodell, för att tolka spektra från röntgenstrålning. Laborationen ger även tillfälle att bekanta sig med en analysmetod som vanligen används med röntgenspektrometrar. Tidsåtgång: cirka två undervisningstimmar. 9.2 Behövliga teoretiska kunskaper Tolkningen av spektrumen kräver att man förstår processen som ger upphov till röntgenstrålningen. Laborationen ger ett bra tillfälle att använda Bohrs atommodell för att beräkna Kα-energin för olika ämnen och att tillämpa Moseleys lag. Förutom röntgenfluorescens förekommer naturligtvis även comptonspridning. För att kunna tolka spektrumens hela struktur och utesluta comptonspridning som förklaring till alla toppar beräknar eleverna energin för den spridda strålningen. Spridningslagen med förklarande figur finns i elevdelen. Härledningen får anses vara i svåraste laget eftersom den kräver en relativistisk behandling av energins bevarande i stötprocessen. Intresserade elever hänvisas till universitetslitteratur i ämnet. 9.3 Utförande Beroende på tillgången på stativmaterial kan man välja en vertikal eller horisontell experimentuppställning. Detektorn är avsedd att även kunna läggas i horisontellt läge. Eftersom detektorn vid leverans är inställd på en förstärkning som är lämplig när man vill undersöka gammastrålning med betydligt högre energier måste förstärkningen höjas. Detta görs genom att höja högspänningen med ratten på detektorlådan. Man håller lämpligen ett 241 Am-preparat framför detektoröppningen och skruvar upp högspänningen. Man kan då följa hur fototoppens läge ändras. När dess läge är ungefär vid kanal 220 är förstärkningen lagom. Nu kan energikalibreringsspektret tas upp. Detta görs genom att först ta upp ett spektrum (under cirka 1 min) från 241 Am-preparatet. Använd toppen vid 0,05954 MeV som första kalibreringstoppen. Starta datainsamlingen igen med 137 Cs, insamlingstid ungefär en minut. Där finns en röntgentopp vid 0,03219 MeV (härrörande från 137 Cs:s dotter-kärna 137 Ba). Använd den som andra kalibreringstopp. Lagra kalibreringsspektret. Därefter tar man upp en rad spektra med olika spridare. 18

24 Lämpligen bör de väljas bland grundämnen vars atomnummer ligger mellan 35 och 69. Lämpliga spridare kan vara plåtar av molybden, silver, cadmium, tenn. Figur 1 visar ett röntgenfluorescensspektrum från cadmium. För att få en spridare med högre atomnummer kan man använda CeO 2 (pulver) förpackat i ett brev av tunn aluminiumfolie. Den undre gränsen för atomnumret sätts av att Kα-energin blir för liten för att strålningen skall tränga igenom detektorinneslutningen. Den övre gränsen sätts av att för högre atomnummer blir jonisationsenergin för K-skalet större än tillgänglig fotonenergi. Önskar man visat att Kα-energin blir för liten om man använder sig av ämnen med för lågt atomnummer kan man t ex använda en spridare av aluminium. Antal pulser Röntgenfluorescensspektrum med en cadmiumplåt som spridare K α för Cd Comptonspridda 59,5 kev fotoner kev Antal pulser Kα för Cd Spektrumet ovan med bakgrunden subtraherad kev Figur 1. 19

25 10 Förslag till projekt- och specialarbeten Följande förslag tar ungefär lite mer än 2 undervisningstimmar. 1. Undersökning av NaI-detektorns egenskaper a Hur beror fototoppens bredd av gammastrålningens energi (jämför med teorin för fotomultiplikatorn)? b) Hur beror fototoppens kanalläge av den pålagda spänningen i fotomultiplikatorn. c) Undersökning av detektorns energilinjaritet i energiområdet 0,1-2,0 MeV. d) Undersökning av detektorns effektivitetslinjaritet i energiområdet 0,1-2,0 MeV. 2. Studium av gammastrålningens absorption i olika material och dess energiberoende Bestämning av halveringstjocklek och linjär absorptionskoefficient för ett urval olika material. För att studera storheternas energiberoende väljs ett antal olika gammaenergier. 3. Studium av comptoneffekten a) Teorin för comptonspridning, energins och intensitetens beroende av spridningsvinkeln. b) Experimentell studie av energin som funktion av spridningsvinkeln. c) Experimentell studie av intensiteten som funktion av spridningsvinkeln. 4. Radioaktivt seriesönderfall a) Matematisk härledning av ett seriesönderfall. Åtminstone 2 steg medtages i härledningen. Härledda formler åskådliggörs med grafer. b) Experimentell studie av seriesönderfallet 214 Pb 214 Bi 214 Po. Aktivitet samlas på spännings förande tråd och studeras sedan med jämna tidsintervall. Halveringstiden bestäms för 214 Pb och 214 Bi. I experimentet ingår även att optimera experimentförhållanden så att den senare halveringstiden kan mätas med största utbytet. 20

26 5. Försök till bestämning av radonhalten i luft a) Utveckla standardmetod att samla radondöttrar med hjälp av dammsugare eller spänningsförande tråd. b) Kalibrering av NaI-detektorns och mätmetodens effektivitet med en kommersiell radonmätare. c) Den kalibrerade detektorn används till en kartläggning av radonhalten i olika utrymmen. Påverkande faktorer som byggnadsmaterial och jordbeskaffenhet kan tuderas. 6. Kartläggning av cesiumhalten Genom att ta prover över ett område och mäta 137 Cs-aktiviteten i proven kan man göra ett försök till kartläggning. Kartläggningen kan sedan jämföras med eventuella mätningar eller antaganden som gjorts av SSI (Statens strålskyddsinstitut). Som provmaterial kan man använda renlav, vitmossa, björnmossa, blåbärsris, lingonris etc. 7. Variationer i cesiumaktiviteten med avseende på växtart och växtplats a) Undersökning av olikheter mellan växter tagna från kaliumrika jordar och sådana som tagits från kaliumfattiga, sura jordar. b) Undersökning av mossor, lavar och svampar med avseende på olika arter och växtplatser. 8. Studium av cesiumaktiviteten i olika led i en näringskedja Kartläggning av cesiumaktiviteten i en näringskedja. Prover tas från de olika leden i kedjan i t ex en sjö. 9. Förändring av cesiumhalten i ett prov p g a kokning i salthaltigt vatten Mätningen sker med växt- eller köttprover med relativt höga cesiumhalter. Genom kokning i vatten med olika salthalt kan man studera hur koktid och salthalt påverkar minskningen av cesiumhalten i provet. 10. Undersökning av stenar Ett urval stenar studeras för att kartlägga vilka sönderfallskedjor som finns representerade i de olika stenarna. Studien går ut på att identifiera de förekommande radioaktiva isotoperna samt bestämma deras relativa förekomst. 21

4 Halveringstiden för 214 Pb

4 Halveringstiden för 214 Pb 4 Halveringstiden för Pb 4.1 Laborationens syfte Att bestämma halveringstiden för det radioaktiva sönderfallet av Pb. 4.2 Materiel NaI-detektor med tillbehör, dator, högspänningsaggregat (cirka 5 kv),

Läs mer

1. Mätning av gammaspektra

1. Mätning av gammaspektra 1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.

Läs mer

3 NaI-detektorns effektivitet

3 NaI-detektorns effektivitet 3 NaI-detektorns effektivitet (Bestämning av aktiviteten i en K-lösning) 3.1 Laborationens syfte Att bestämma NaI-detektorns effektivitet vid olika gammaenergier. Att bestämma aktiviteten i en K-lösning.

Läs mer

7 Comptonspridning. 7.1 Laborationens syfte. 7.2 Materiel. 7.3 Teori. Att undersöka comptonspridning i och utanför detektorkristallen.

7 Comptonspridning. 7.1 Laborationens syfte. 7.2 Materiel. 7.3 Teori. Att undersöka comptonspridning i och utanför detektorkristallen. 7 Comptonspridning 7.1 Laborationens syfte Att undersöka comptonspridning i och utanför detektorkristallen. 7.2 Materiel NaI-detektor med tillbehör, dator, spridare av aluminium, koppar eller stål, blybleck

Läs mer

Laborationer i miljöfysik Gammaspektrometri

Laborationer i miljöfysik Gammaspektrometri Laborationer i miljöfysik Gammaspektrometri 1 Inledning Med gammaspektrometern kan man mäta på gammastrålning. Precis som ett GM-rör räknar gammaspektrometern de enskilda fotonerna i gammastrålningen.

Läs mer

GAMMASPEKTRUM 2008-12-07. 1. Inledning

GAMMASPEKTRUM 2008-12-07. 1. Inledning GAMMASPEKTRUM 2008-12-07 1. Inledning I den här laborationen ska du göra mätningar på gammastrålning från ämnen som betasönderfaller. Du kommer under laborationens gång att lära dig hur ett gammaspektrum

Läs mer

8 Röntgenfluorescens. 8.1 Laborationens syfte. 8.2 Materiel. 8.3 Teori. 8.3.1 Comptonspridning

8 Röntgenfluorescens. 8.1 Laborationens syfte. 8.2 Materiel. 8.3 Teori. 8.3.1 Comptonspridning 8 Röntgenfluorescens 8.1 Laborationens syfte Att undersöka röntgenfluorescens i olika material samt använda röntgenfluorescens för att identifiera grundämnen som ingår i okända material. 8. Materiel NaI-detektor

Läs mer

ABSORPTION AV GAMMASTRÅLNING

ABSORPTION AV GAMMASTRÅLNING ABSORPTION AV GAMMASTRÅLNING Uppgift: Materiel: Teori: Att bestämma ett samband för den intensitet av gammastrålning som passerar en absorbator, som funktion av absorbatorns tjocklek. Att bestämma halveringstjockleken

Läs mer

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige Laboration 36: Kärnfysik Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se 8 Maj, 2001 Stockholm, Sverige Assistent: Roberto Liotta Modern fysik (kurskod

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

REDOGÖRELSE 7-29/71. 6. Blyanalys genom röntgenfluorescens med en 88 kev 109 Cd strålkälla och Ge(Li)-detektor

REDOGÖRELSE 7-29/71. 6. Blyanalys genom röntgenfluorescens med en 88 kev 109 Cd strålkälla och Ge(Li)-detektor 35 (6o) 6. Blyanalys genom röntgenfluorescens med en 88 kev 109 Cd strålkälla och Ge(Li)-detektor Röntgenfluorescens är en analysmetod som vid lämpliga prov är helt ickeförstörande och utan inverkan på

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 3

TILLÄMPAD ATOMFYSIK Övningstenta 3 TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Sammanställning av uppgifter från lärarenkät vid kursprov i svenska 1 och svenska som andraspråk 1, VT 2014

Sammanställning av uppgifter från lärarenkät vid kursprov i svenska 1 och svenska som andraspråk 1, VT 2014 Sammanställning av uppgifter från lärarenkät vid kursprov i svenska 1 och svenska som andraspråk 1, VT 2014 I anslutning till vårterminens kursprov i svenska 1 och svenska som andraspråk 1 har en lärarenkät

Läs mer

Komvux/gymnasieprogram:

Komvux/gymnasieprogram: Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del

Läs mer

ALGEN OCH DESS FODERVÄXTER.

ALGEN OCH DESS FODERVÄXTER. ALGEN OCH DESS FODERVÄXTER. Karl J.Johanson och Roger Bergström Institutionen för radioekologi, SLU Box 7031, 750 07 Uppsala och Avdelningen för viltekologi Svenska Jägareförbundets forskningsenhet Box

Läs mer

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Ger oss elektrisk ström. Ger oss ljus. Ger oss röntgen och medicinsk strålning. Ger oss radioaktivitet. av: Sofie Nilsson 2 Strålning

Läs mer

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt?

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt? 2 Materia 2.1 OH1 Atomer och molekyler 1 Vid vilken temperatur kokar vatten? 2 Att rita diagram 3 Vid vilken temperatur kokar T-sprit? 4 Varför fryser man ofta efter ett bad? 5 Olika ämnen har olika smält-

Läs mer

PRODUKTION OCH SÖNDERFALL

PRODUKTION OCH SÖNDERFALL PRODUKTION OCH SÖNDERFALL Inom arkeologin kan man bestämma fördelningen av grundämnen, t.ex. i ett mynt, genom att bestråla myntet med neutroner. Man skapar då radioisotoper som sönderfaller till andra

Läs mer

Gränsvärdet 1 500 Bq/kg gäller för. Gränsvärdet 300 Bq/kg gäller för. Rapport om cesiummätning i sundsvall

Gränsvärdet 1 500 Bq/kg gäller för. Gränsvärdet 300 Bq/kg gäller för. Rapport om cesiummätning i sundsvall Rapport om cesiummätning i sundsvall Miljönämnden anger i mål och resursplanen (MN MRP 2013 2012-11-07 81) att konkurrensstörande verksamhet ska avvecklas. Utredningar ska göras under 2013 för att identifiera

Läs mer

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen. Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas

Läs mer

Historia Årskurs 9 Vårterminen 2015

Historia Årskurs 9 Vårterminen 2015 Historia Årskurs 9 Vårterminen 2015 1 Inledning Utgångspunkten för de nationella proven i historia är kursplanen i historia. Denna har det övergripande målet att utveckla elevers historiemedvetande genom

Läs mer

Handbok för provledare

Handbok för provledare Handbok för provledare TIMSS Advanced 2008 handbok för provledare Innehållsförteckning Inledning...1 1 Din roll som provledare...3 1.1 Förhållningsregler för provtillfällena... 3 1.2 Förberedelser före

Läs mer

Polarisation laboration Vågor och optik

Polarisation laboration Vågor och optik Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen

Läs mer

Uppvärmning, avsvalning och fasövergångar

Uppvärmning, avsvalning och fasövergångar Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit

Läs mer

1. Resultat i delprov och sammanvägt provbetyg, svenska

1. Resultat i delprov och sammanvägt provbetyg, svenska Resultat från kursprov 1 våren 2014 Tobias Dalberg, Kristina Eriksson Institutionen för nordiska språk/fums Uppsala universitet Kursprov 1 vårterminen 2014 hade temat Olika världar. Provet är det sjätte

Läs mer

Utvärdering av OSL-system - nanodot

Utvärdering av OSL-system - nanodot 2013-12-04 Medicinskt servicecentrum Medicinsk fysik och teknik MFTr 2013/6 Medicinsk fysik Utvärdering av OSL-system - nanodot Sofia Åkerberg Henrik Bertilsson MFTr 2013/3 Sida 1 Innehållsförteckning

Läs mer

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 OSCILLOSKOPET Syftet med laborationen Syftet med denna laboration är att du ska få lära dig principerna för hur ett oscilloskop fungerar,

Läs mer

Kursprov i svenska 1 och svenska som andraspråk 1 Lärarenkät

Kursprov i svenska 1 och svenska som andraspråk 1 Lärarenkät Kursprov i svenska 1 och svenska som andraspråk 1 Lärarenkät Det nationella provet i svenska 1 och svenska som andraspråk 1, hädanefter KP 1, genomfördes för första gången år 2011. Eftersom mycket få elever

Läs mer

Laborationer i kursmomentet Datoranvändning E1. Laboration nr 5: Mer om FrameMaker

Laborationer i kursmomentet Datoranvändning E1. Laboration nr 5: Mer om FrameMaker Sid 1 Laborationer i kursmomentet Datoranvändning E1 http://www.etek.chalmers.se/~hallgren/eda/ : Mer om FrameMaker 1996, 1997 Magnus Bondesson 1998 och 99-09-22 Thomas Hallgren 1 Introduktion I Laboration

Läs mer

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 digitala övningar med TI 82 Stat, TI 84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996 Tidsbunden del Anvisningar Provperiod 10 maj - 1 juni 1996. Provtid Hjälpmedel Provmaterialet 120 minuter utan rast. Miniräknare och formelsamling. Formelblad

Läs mer

Anders Logg. Människor och matematik läsebok för nyfikna 95

Anders Logg. Människor och matematik läsebok för nyfikna 95 Anders Logg Slutsatsen är att vi visserligen inte kan beräkna lösningen till en differentialekvation exakt, men att detta inte spelar någon roll eftersom vi kan beräkna lösningen med precis den noggrannhet

Läs mer

KVANTFYSIK för F3 2009 Inlämningsuppgifter I5

KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 ALMERS TEKNISKA ÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 2009-11-12 KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 Bedömning: Bedömningen av de inlämnade lösningarna

Läs mer

Foto och Bild - Lab B

Foto och Bild - Lab B Biomedicinsk fysik & röntgenfysik Kjell Carlsson Foto och Bild - Lab B Svartvitt kopieringsarbete, tonreproduktion Kurs: 2D1574, Medieteknik grundkurs, moment: Foto och bild Kjell Carlsson & Hans Järling

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod F0006T Kursnamn Fysik 3 Datum LP4 10-11 Material Laborationsrapport radioaktivitet Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning

Läs mer

Övning 2 - Frågesport

Övning 2 - Frågesport Övning 2 - Frågesport Denna övning är en frågesport som kan utföras på många olika sätt, individuellt eller i lag. Några förslag ges nedan. Övningen passar grupper på 1-20 elever. Syfte: Frågesporten syftar

Läs mer

Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18. Konjugerade molekyler

Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18. Konjugerade molekyler Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18 Konjugerade molekyler Introduktion Syftet med den här laborationen är att studera hur ljus och materia

Läs mer

4:7 Dioden och likriktning.

4:7 Dioden och likriktning. 4:7 Dioden och likriktning. Inledning Nu skall vi se vad vi har för användning av våra kunskaper från det tidigare avsnittet om halvledare. Det är ju inget självändamål att tillverka halvledare, utan de

Läs mer

Solfångaren LESOL 5 AR Monteringsanvisning

Solfångaren LESOL 5 AR Monteringsanvisning 1 (20) Solfångaren LESOL 5 R Monteringsanvisning Lyft upp solfångarna för hand eller med kran båda sätten går bra! Tänk på arbetarskyddet! 2 (20) Något om väderstreck och lutning ästa solvärmeutbytet ger

Läs mer

Instuderingsfrågor för godkänt i fysik år 9

Instuderingsfrågor för godkänt i fysik år 9 Instuderingsfrågor för godkänt i fysik år 9 Materia 1. Rita en atom och sätt ut atomkärna, proton, neutron, elektron samt laddningar. 2. Vad är det för skillnad på ett grundämne och en kemisk förening?

Läs mer

Bedömningsuppgifter: Skriftligt prov Vatten och Luft Vattentornet (modell och ritning) Scratch (program)

Bedömningsuppgifter: Skriftligt prov Vatten och Luft Vattentornet (modell och ritning) Scratch (program) Planering Tema Vatten Vatten och luft är en självklarhet för oss i Sverige. När vi vrider på kranen kommer det rent vatten och vi andas relativt ren luft. Men vad är vatten egentligen och vilka former

Läs mer

4:4 Mätinstrument. Inledning

4:4 Mätinstrument. Inledning 4:4 Mätinstrument. Inledning För att studera elektriska signaler, strömmar och spänningar måste man ha lämpliga instrument. I detta avsnitt kommer vi att gå igenom de viktigaste, och som vi kommer att

Läs mer

Komvux/gymnasieprogram:

Komvux/gymnasieprogram: Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del

Läs mer

Copyright 2008 Pausit AB medföljer programvaran pausit. Pausit version 1.2 Användarmanual

Copyright 2008 Pausit AB medföljer programvaran pausit. Pausit version 1.2 Användarmanual Copyright 2008 Pausit AB medföljer programvaran pausit Pausit version 1.2 Användarmanual Välkommen! Med en liten insats kan du nå en stor effekt! Dagens samhälle och arbetsliv kännetecknas av krav på ett

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Kärnkraftverkens höga skorstenar

Kärnkraftverkens höga skorstenar Kärnkraftverkens höga skorstenar Om jag frågar våra tekniskt mest kunniga studenter och lärare på en teknisk högskola varför kärnkraftverken har så höga skorstenar, får jag olika trevande gissningar som

Läs mer

Att tala så att de lyssnar om effektiv muntlig presentation

Att tala så att de lyssnar om effektiv muntlig presentation Att tala så att de lyssnar om effektiv muntlig presentation Inledning Muntlig presentation har blivit allt viktigare i utbildning och yrkesliv. Allt oftare hamnar vi i situationer där vi måste redovisa

Läs mer

Sex goda skäl att styra trycket med gråbalansfält

Sex goda skäl att styra trycket med gråbalansfält Sex goda skäl att styra trycket med gråbalansfält Tryckarna behöver ett neutralt hjälpmedel för att styra trycket rätt. Provtryck som förlagor är ofta bristfälliga och kommer troligen att försvinna på

Läs mer

WALLENBERGS FYSIKPRIS 2016

WALLENBERGS FYSIKPRIS 2016 WALLENBERGS FYSIKPRIS 2016 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

1. Eleverna hämtar på skolans hemsida formuläret som ska fyllas i.

1. Eleverna hämtar på skolans hemsida formuläret som ska fyllas i. IUP år 7 1. Eleverna hämtar på skolans hemsida formuläret som ska fyllas i. 2. Elever besvarar frågeställningar kring sin utveckling inom ämnet. Ett formulär gemensamt för alla ämnen används av eleven.

Läs mer

1.1 Mätning av permittiviteten i vakuum med en skivkondensator

1.1 Mätning av permittiviteten i vakuum med en skivkondensator PERMITTIVITET Inledning Låt oss betrakta en skivkondensator som består av två parallella metalskivor. Då en laddad partikel förflyttas från den ena till den andra skivan får skivorna laddningen +Q och

Läs mer

Historia Årskurs 9 Vårterminen 2014

Historia Årskurs 9 Vårterminen 2014 Historia Årskurs 9 Vårterminen 2014 1 Inledning Utgångspunkten för de nationella proven i historia är kursplanen i historia. Denna har det övergripande målet att utveckla elevers historiemedvetande genom

Läs mer

Undersökning av skolor: IKT och utbildning MANUAL FÖR SKOLSAMORDNARE

Undersökning av skolor: IKT och utbildning MANUAL FÖR SKOLSAMORDNARE Undersökning av skolor: IKT och utbildning MANUAL FÖR SKOLSAMORDNARE Europeiska skoldatanätet Service d Approches Quantitatives des faits éducatifs Innehåll Introduktion... 2 1. ÖVERSIKT AV STUDIENS ORGANISATION...

Läs mer

Eleven skall kunna framställa bilder och former med hjälp av olika redskap och tekniker,

Eleven skall kunna framställa bilder och former med hjälp av olika redskap och tekniker, BILD kunna framställa bilder och former med hjälp av olika redskap och tekniker, kunna använda egna och andras bilder för att berätta, beskriva eller förklara, ha grundläggande förmåga att granska och

Läs mer

Kurskalender Carlforsska Gymnasiet årskurs 2. 2011-2012

Kurskalender Carlforsska Gymnasiet årskurs 2. 2011-2012 Innehåll val till årskurs 2. Läsåret 2011-12 Anvisningar... 1 Kurskalender... 2 Bild och form, grundkurs: 50 poäng... 3 Engelska B: 100 poäng... 3 Etik och livsfrågor: 100 poäng... 3 Fackteckning och design

Läs mer

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar BASFYSIK BFN 120 Galileo Galilei, italiensk naturforskare (1564 1642) Laborationsuppgifter med läge, hastighet och acceleration Namn Epost Lärares kommentar Institutionen för teknik och naturvetenskap

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

9-1 Koordinatsystem och funktioner. Namn:

9-1 Koordinatsystem och funktioner. Namn: 9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner

Läs mer

Rapport från Läkemedelsverket

Rapport från Läkemedelsverket Utveckla märkning av läkemedelsförpackningar för att minska risken för förväxlingar Rapport från Läkemedelsverket Juni 2012 Postadress/Postal address: P.O. Box 26, SE-751 03 Uppsala, SWEDEN Besöksadress/Visiting

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Grunderna i stegkodsprogrammering

Grunderna i stegkodsprogrammering Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer

Läs mer

NATURVETENSKAP FÖR LIVET?

NATURVETENSKAP FÖR LIVET? NATURVETENSKAP FÖR LIVET? Under terminen kommer din klass att medverka i ett forskningsprojekt. Ni kommer att arbeta med uppgifter som handlar om i samhället. Enkäten innehåller frågor om dig och dina

Läs mer

Bilaga 4.1 Uppskattning av antalet erforderliga provpunkter och analyser vid detaljundersökningen. Bakgrund. Metod. Konfidensintervallens utveckling

Bilaga 4.1 Uppskattning av antalet erforderliga provpunkter och analyser vid detaljundersökningen. Bakgrund. Metod. Konfidensintervallens utveckling 1 (17) Bilaga 4.1 Uppskattning av antalet erforderliga provpunkter och analyser vid detaljundersökningen Nedanstående material utgick från resultatet av förundersökningen och har legat till grund för dimensioneringen

Läs mer

Tillväxt och klimatmål - ett räkneexempel

Tillväxt och klimatmål - ett räkneexempel Tillväxt och klimatmål - ett räkneexempel 2012-02-07 Detta dokument är ett räkneexempel som har tagits fram som stöd i argumentationen för en motion till Naturskyddsföreningens riksstämma år 2012. Motionen

Läs mer

Säkerhet Användarhandbok

Säkerhet Användarhandbok Säkerhet Användarhandbok Copyright 2008 Hewlett-Packard Development Company, L.P. Microsoft och Windows är USA-registrerade varumärken som tillhör Microsoft Corporation. Informationen i detta dokument

Läs mer

PLANCKS KONSTANT. www.zenitlaromedel.se

PLANCKS KONSTANT. www.zenitlaromedel.se PLANCKS KONSTANT Uppgift: Materiel: Att undersöka hur fotoelektronernas maximala kinetiska energi beror av frekvensen hos det ljus som träffar fotocellen. Att bestämma ett värde på Plancks konstant genom

Läs mer

Lathund för webbredaktörer. Så skriver du på webben

Lathund för webbredaktörer. Så skriver du på webben Lathund för webbredaktörer Så skriver du på webben 1 Disposition En bra struktur kännetecknas av att det är enkelt för besökaren att förstå var den hittar det den letar efter. Oavsett om det handlar om

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

7 steg från lagom till världsklass - 7 tips som berikar Ditt liv

7 steg från lagom till världsklass - 7 tips som berikar Ditt liv 7 steg från lagom till världsklass - 7 tips som berikar Ditt liv Lagom är bäst, eller? Om vi säger något tillräckligt ofta tenderar det ju att bli sant, eller hur? Jag gissar att Du, mer eller mindre medvetet,

Läs mer

DOPmatematik. Ett dataprogram för lärare. som undervisar i matematik. (Lågstadiet) Mellanstadiet. Högstadiet. Gymnasiet. Vuxenutbildning.

DOPmatematik. Ett dataprogram för lärare. som undervisar i matematik. (Lågstadiet) Mellanstadiet. Högstadiet. Gymnasiet. Vuxenutbildning. DOPmatematik Ett dataprogram för lärare som undervisar i matematik (Lågstadiet) Mellanstadiet Högstadiet Gymnasiet Vuxenutbildning Folkhögskola m.fl. 1 Koefficienterna beräknade av DOP-programmet Graferna

Läs mer

Pauli gymnasium Komvux Malmö Pauli

Pauli gymnasium Komvux Malmö Pauli PRÖVNINGSANVISNINGAR Prövning i Kurskod Kemi grundkurs GRNKEM2 Verksamhetspoäng 150 Läromedel Prövning Skriftlig del Muntlig del Vi använder för närvarande Spektrum kemi, Folke A Nettelblad, Christer Ekdahl,

Läs mer

Bruksanvisning. Bestic software version 1.0-2.0. Äthjälpmedel. Internet: www.bestic.se

Bruksanvisning. Bestic software version 1.0-2.0. Äthjälpmedel. Internet: www.bestic.se Bruksanvisning Bestic software version 1.0-2.0 Äthjälpmedel Sida 1 (20) Innehållsförteckning 1. Introduktion 2. Säkerhet 3. Produktöversikt 4. Handhavande 5. Äta med Bestic 6. Skötselråd 7. Transport och

Läs mer

Hur länge är kärnavfallet

Hur länge är kärnavfallet Hur länge är kärnavfallet farligt? - Mats Törnqvist - Sifferuppgifterna som cirkulerar i detta sammanhang varierar starkt. Man kan få höra allt ifrån 100-tals år till miljontals år. Vi har en spännvidd

Läs mer

Hur kommer man igång?

Hur kommer man igång? Hur kommer man igång? Alla har någon gång varit nybörjare. Här ger Per Alexanderson, lovsångsledare från Örebro, många enkla och praktiska råd för dig som vill komma igång som lovsångsledare och som mer

Läs mer

Bruksanvisning. Blue Wave

Bruksanvisning. Blue Wave Bruksanvisning Blue Wave Denna bruksanvisning ger information om montering, inställningsmöjligheter, säkerhetsföreskrifter och skötselråd för badstolen Blue Wave. Genom att läsa igenom och följa anvisningarna

Läs mer

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Vätespektrum Förberedelser Läs i Tillämpad atomfysik om atomspektroskopi (sid 147-149), empiriska samband (sid 151-154), och Bohrs atommodell (sid 154-165). Läs genom hela laborationsinstruktionen. Gör

Läs mer

Monteringsanvisning. trätrappor. Tel. 0382-133 10 www.snickarlaget.se

Monteringsanvisning. trätrappor. Tel. 0382-133 10 www.snickarlaget.se Monteringsanvisning trätrappor Denna monteringsanvisning är en generell anvisning för hur en trappa i olika utföranden skall monteras. Läs igenom hela monteringsanvisningen innan montaget börjar för att

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

Förord. ra och Ackordspel (Reuter&Reuter), men andra böcker kan naturligtvis också användas (se

Förord. ra och Ackordspel (Reuter&Reuter), men andra böcker kan naturligtvis också användas (se Förord Lär av Mästarna har vuxit fram under min tid som lärare i ämnet satslära med arrangering vid Musikhögskolan i Malmö. Materialet har under ett decennium provats både i grupp- och individuell undervisning

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tillåtna hjälpmedel: Två st A4-sidor med eget material, på tentamen utdelat datablad, på tentamen utdelade sammanfattningar

Läs mer

ARBETSUPPGIFTER INOM SJÖLYFTET

ARBETSUPPGIFTER INOM SJÖLYFTET 2011-05-02 ARBETSUPPGIFTER INOM SJÖLYFTET Detta är inte ett heltäckande dokument som svarar på alla frågor. Ambitionen är att försöka beskriva upplägget, speciellt avseende fältarbetet. Vad vill SMHI?

Läs mer

Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o

Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o Isotop Kemisk symbol Halveringstid Huvudsaklig strålning Uran-238 238 U 4,5 109 år α Torium-234 234 Th 24,1 d β- Protaktinium-234m 234m Pa 1,2 m β- Uran-234 234 U 2,5 105 år α Torium-230 230 Th 8,0 105

Läs mer

Brukarundersökning 2010 Särvux

Brukarundersökning 2010 Särvux TNS SIFO 114 78 Stockholm Sweden Visiting address Vasagatan 11 tel +46 (0)8 507 420 00 fax +46 (0)8 507 420 01 www.tns-sifo.se Brukarundersökning 2010 Särvux En undersökning genomförd av TNS SIFO på uppdrag

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

Du, jag och klimatfrågan

Du, jag och klimatfrågan Du, jag och klimatfrågan Introduktion Spelet går ut på att eleverna skall rangordna ett antal Simuleringen handlar om de olika nivåer politiska beslut fattas på. Deltagarna får diskutera ett antal politiska

Läs mer

Antagning till högre utbildning höstterminen 2015

Antagning till högre utbildning höstterminen 2015 Avdelningen för analys, främjande och tillträdesfrågor Föredragande Torbjörn Lindquist Utredare 010-4700390 torbjorn.lindquist@uhr.se RAPPORT Datum 2015-07-14 Diarienummer Dnr 1.1.1-134-2015 Antagning

Läs mer

4. Gör lämpliga avläsningar i diagrammet och bestäm linjens ekvation.

4. Gör lämpliga avläsningar i diagrammet och bestäm linjens ekvation. Repetitionsuppgifter inför prov 2 Ma2 NASA15 vt16 E-uppgifter 1. Beräkna sträckan i triangeln nedan. 3,8 m 37 o 2. En seglare ser en fyr på ett berg. Hon mäter höjdvinkeln till fyrljuset till 7,3 o. På

Läs mer