8-4 Ekvationer. Namn:..
|
|
- Susanne Karlsson
- för 9 år sedan
- Visningar:
Transkript
1 8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar lösning av komplexa problem i en ekvation. I det här kapitlet skall du lära dig att lösa sådana ekvationer. Du kommer att förstå att det centrala i en ekvation är ett likhetstecken, och att du kan göra vad du vill för att manipulera så du får den okända, ofta kallad x, till vänster och sifferuttryck till höger om likhetstecknet. När du är färdig har du bestämt ett värde på den okända variabeln, och detta värde kunde du ofta inte ana när du satte igång. Tidigare har du ofta hittat problemlösningar ganska lätt, men när det gäller att lösa ekvationer så måste man hålla på i fler steg innan man är färdig. Då gäller det att ha sin metodik klar, alltså veta vad man vill göra, och vara uthållig. Men ingenting är omöjligt! Ett inledande exempel Summan av ett tal och 2 blir 5. Vilket är talet? Lätt huvudräkning säger du. Svaret är 3. Visst är det så. Man nu skall vi göra en enkel sak lite mer komplicerad för att illustrera en metod. Du kommer ihåg att du har arbetat med variabler. Det var bokstäver vars siffervärde du inte visste. Du antar att det sökta talet betecknas med x. Du vet inte vilket siffervärde x har ännu. Summan av x och 2 skall bli 5. Då skriver du upp det: x + 2 = 5 Du har fått någonting som kallas för en ekvation. Du har någonting som är obekant, du har ett likhetstecken och någonting som står till vänster om likhetstecknet och någonting som står till höger om likhetstecknet. Det till vänster kallar vi helt logiskt vänstra ledet, förkortat VL och det till höger för högra ledet förkortat HL. I en ekvation gäller alltså: vänstra ledet, VL, = högra ledet, HL 1
2 Det här kan tyckas löjligt självklart, men det är grundläggande för all ekvationslösning. Det centrala är alltså likhetstecknet, och du kan även se det som en våg som är i balans. Lägger du till 10 kg i vänster vågskål, hur mycket måste du lägga till i höger vågskål för att det skall vara balans? Svar:. Visst. Någonting annat än 10 kg duger inte. Då blir det obalans. Vi landar på följande metod för att lösa ekvationer: Metod för ekvationslösning: Du får göra vad du vill för att utveckla eller förenkla bara du gör exakt samma sak i vänstra ledet som i högra ledet. Annars gäller inte likhetstecknet! Hur gör vi för att lösa ekvationen x + 12 = 15? Har du något förslag? Svar:. Visst. Om du subtraherar 12 från båda leden så får du x kvar ensamt i vänstra ledet. x = i VL:12-12 = 0, och i HL:15-12 = 3, så du får: x + 0 = 3 x = 3 Några ekvationer att lösa: Nu får du tillämpa ovanstående princip för att lösa några enklare ekvationer. Kom ihåg strategin: gör samma sak i VL som i HL, eller hur? Eftersom du kommer att skriva ett antal led ovanför varandra, så är det lämpligt att du använder räknehäftet eller separata A4 blad som du sätter in i din pärm x-22=13 Svar: x+12=15 Svar: x=3 Svar: x-3=5+8 Svar: x+3=7 Svar: Den sista var lite knepigare än de andra. Vad var det som ställde till lite förtret? Svar: Just det. Här fick du avsluta med att dela båda leden med 2 för att få x ensamt i VL. 2
3 Hur kontrollerar du att du löst ekvationen rätt? Det kan ju vara svårt att veta att du fått rätt svar efter alla olika operationer du gjort för att få fram ett värde på x. Har du något förslag på hur du skall kontrollera att du räknat rätt? Svar: Visst! Sätt in ditt svar i stället för x, och se om VL är lika stort som HL. Då har du räknat rätt. Kontrollera dina lösningar i exempel och Stämmer det? Vad händer med den term som elimineras? Frågan i rubriken kan du säkert besvara. Vad hände med femman i VL i uppgift ? Svar:.. Enkelt. Den dyker upp på andra sidan likhetstecknet men med motsatt tecken. En positiv term tas ju bort genom att motsvarande subtraheras från båda leden. Alltså blir det kvar en term i andra ledet med ombytt tecken. Samma sak gäller givetvis om man skall bli kvitt en negativ term. Då adderar man ju lika mycket till båda leden, och resultatet blir en positiv term i det andra ledet. Ekvationer med fler x-termer i vänstra ledet Hur löser du följande ekvation; x x=14. Har du något förslag? Svar: Du resonerade säkert någonting i den här stilen: Jag samlar ihop alla x-termer för sig, så får jag se hur många jag har. Siffertermerna kan jag få bort från vänstra ledet genom att addera eller subtrahera motsvarande tal till båda leden. När jag bara har en x-term kvar i VL delar jag båda leden med faktorn framför x, och så får jag bara x kvar. Lösningen ser då ut så här: x + 2x = x = 9 3x 9 = 3 3 x = 3 Lös nu följande ekvationer. Observera att x inte alltid är ett heltal det kan vara ett bråk. Det kommer att vara trångt att redovisa lösningen på denna sida, så be din lärare om några lösa A4-papper för dina lösningar x = 23 Svar: x + 7 x=14 Svar: x x = 12 3 Svar: x x = 24 Svar: x x + 3x = 32 Svar: x + 3 = 4 Svar: 3
4 Ekvationer med x-termer i båda leden Ibland händer det att det blir x-termer i båda leden. Men det ställer väl inte till några problem. Hur gör du då? Svar: Visst. Tänk på vågen! Lägg till eller dra ifrån lika mycket från båda leden. Då ändras inte jämvikten. Och det gör ju ingen skillnad om det råkar vara x-termer, eller hur? Vi tar ett exempel: lös ekvationen 5x + 3 = x Hur gör du? Skriv din lösning på raderna till vänster Visst. Subtrahera 2x från båda leden (då blev du av med 2x-termen i HL) och subtrahera 3 från båda leden (då blev du av med 3-an i VL) Kvar får du: 3x = 9 x = 3 Vi tar några övningsexempel på det här också. Skriv dina fullständiga lösningar på ett separat A4-papper x + 5 = 4x + 20 Svar: x x = 25 6x Svar: x 3 = 3x 9 Svar: x + 12 x = 8x 24 Svar: Andersson har en tomt i form av en rektangel. Den ena sidan är 5 m längre än den andra. Omkretsen är 120 m. Vilka mått har tomten? Gör ett antagande, sätt upp en ekvation och lös den. Svara med rätt sort. Svar: Kalles mamma är 5 gånger så gammal som Kalle. Tillsammans är de 36 år. Hur gammal är Kalles mamma? Svar: 4
5 Sammanfattning: Ekvation betyder likhet. Det som står i vänstra ledet, VL, är lika med det som står i högra ledet, HL. Strategi för att lösa en ekvation: samla x-termer på ett ställe, till exempel i VL och siffertermer i HL Metod: gör samma sak i VL som i HL. Då gäller likhetstecknet. Du kan addera, subtrahera, multiplicera eller dividera VL och HL med ett och samma tal. Observera att det kan bli många steg av förenklingar innan du löst ekvationen. För att få lite ordning på saker och ting: skriv varje nytt led under det föregående. Då ser du hela tiden vad som hänt med VL och HL. Veckans gåta: En bagare gick in i sitt bageri. I två av hörnen stod en stor mjölpåse, och på varje påse satt två katter. Hur många fötter fanns det i bageriet? Be din lärare titta på dina lösningar och diskutera dessa med henne/honom. Sedan har du fler övningsuppgifter på kommande sidor. Kämpa på, ekvationslösning är viktigt! 5
6 8-4 Ekvationer. Träningsuppgifter Nivå 1: Lös ekvationen: x + 3 = Lös ekvationen: x 12 = Lös ekvationen: 2x + 5 = Lös ekvationen: 5x x = Lös ekvationen: 4y y = Lös ekvationen: x x = Elsas storasyster är 3 år äldre än Elsa. Tillsammans är de 27 år gamla. Hur gammal är Elsa? Gör ett antagande, ställ upp en ekvation och lös den. 6
7 Svens kompis Erik har 220 kr mer än Sven på sitt bankkonto. Tillsammans har de 1200 kr. Hur mycket pengar har Sven? Gör ett antagande, ställ upp en ekvation och lös den Vilken metod (eller strategi) använder du för att lösa ekvationer? Lös ekvationen: 2x + 3 = x Lös ekvationen: 5x 8 = 2x En kvadrat har omkretsen 22 cm. Hur stor är sidan? Lös problemet genom att göra lämpliga antaganden, sätt upp en ekvation och lös den. Tänk på att svara med rätt sort En liksidig triangel har omkretsen 27 dm. Hur långa är sidorna? Gör lämpliga antaganden, sätt upp en ekvation och lös den. Glöm ej sort när du svarar. 7
8 Spänningen över ett motstånd på 10 ohm är 2 V. Hur stor är strömmen genom motståndet? Använd Ohms lag: U = R*I, och bestäm strömmen. Glöm ej sort när du svarar En bil kör 2 mil på 20 minuter. Vilken är bilens medelhastighet? Svara med sort. Nivå 2: En rektangel har en sida som är 3 m längre än den andra. Omkretsen är 46 m. Hur långa är sidorna? Gör lämpliga antaganden, rita gärna en figur, och glöm ej sort när du svarar I en likbent triangel är var och en av de lika långa sidorna 3 dm längre än den tredje sidan. Omkretsen är 39 dm. Hur långa är triangelns sidor? Glöm ej sort när du svarar I en triangel är en sida 5 cm längre än den första, och den tredje sidan är 7 cm längre än den första sidan. Hur långa är sidorna i triangeln om omkretsen är 42 cm? Glöm ej sort när du svarar. 8
9 En bil kör med medelhastigheten 60 km/h. Hur lång tid tar det att köra en sträcka på 2 mil? Gör lämpliga antaganden, och glöm ej sort när du svarar En lampas effektförbrukning beräknas genom att man multiplicerar spänningen över lampan med strömmen genom lampan. En glödlampa för 240V är stämplad 60W. Hur mycket ström går genom lampan? Glöm ej sort när du svarar. Nivå 3: Temperaturen i grader Celsius, C, kan räknas om till grader Fahrenheit, F, enligt följande formel: F = ,8*C Hur många grader Celsius motsvarar 55 grader Fahrenheit? Omsättningen för ett företag ökade med 10% från föregående år, och blev 12,1 Mkr (M=Mega, det vill säga ). Gör ett antagande, sätt upp en ekvation och beräkna hur stor omsättningen var föregående år. 9
8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss.
8-2 Förenkling av uttryck. Namn: eller Konsten att räkna algebra och göra livet lite enklare för sig. Inledning I föregående kapitel lärde du dig vad ett matematiskt uttryck är för någonting och hur man
8-6 Andragradsekvationer. Namn:..
8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,
Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)
1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera
a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.
PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än
8-5 Ekvationer, fördjupning. Namn:.
8-5 Ekvationer, fördjupning. Namn:. Inledning Du har nu lärt dig en hel del om vad en ekvation är och hur man löser ekvationer som innehåller en eller fler x-termer (om vi betecknar den okända med x).
Ekvationssystem - Övningar
Ekvationssystem - Övningar Uppgift nr 1 y = 5x x + y = 54 Uppgift nr 2 y = 2x x + y = 12 Uppgift nr 3 y = 3x + 7 4x + y = 35 Uppgift nr 4 y = 4x - 18 3x + y = 38 Uppgift nr 5 2x - 2y = -4 x - 3y = 4 Uppgift
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor
Matte Direkt Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer Safari 1A Lärarhandledning MS Enhetsdel Sist i varje kapitel finns ett avsnitt som i första hand tar upp enheter. Här i årskurs 1 handlar
1. 4 + 6 3 = Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0)
1. 4 + 6 3 = Svar: (1/0) 2. Vad är hälften av 1 1 2? Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0) 8 4. Andreas har 4 km till skolan. Hur många minuter
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. Anvisningar
Sammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
en femma eller en sexa?
REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.
9-1 Koordinatsystem och funktioner. Namn:
9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner
7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.
Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex
DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.
A B C D E. 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. A B C D E
N G A RA Kängurutävlingen 2015 Benjamin Trepoängsuppgifter 1 Vilken figur är skuggad till hälften? Slovakien 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder är inte
Algebra - uttryck och ekvationer
Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer
Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Problem 1 2 3 4 5 6 7 Svar
Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på
1Mer om tal. Mål. Grundkursen K 1
Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform
Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN. Bilagor
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN Bilagor Gemensamma matematikprov, analysinstrument och bedömningsmatriser för kvalitetshöjningar Författare: Per Ericson, Max Ljungberg
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift
Högskoleverket NOG 2006-10-21
Högskoleverket NOG 2006-10-21 1. Rekommenderat dagligt intag (RDI) av kalcium är 0,8 g per person. 1 dl mellanmjölk väger 100 g. Hur mycket mellanmjölk ska man dricka för att få i sig rekommenderat dagligt
Komvux/gymnasieprogram:
Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del
Spinning. (cm) a) Ange ett uttryck för fyrhörningens omkrets i enklast möjliga form. (2/0)
NP MaA vt02 Sidan 6 av 10 Del 2 1. Spinning Engångspris 5-kort Månadskort 40 kr 175 kr 300 kr Anna och Maria gick tillsammans på spinning i april. Maria köpte ett månadskort. Anna köpte ett 5-kort och
Lathund algebra och funktioner åk 9
Lathund algebra och funktioner åk 9 För att bli en rackare på att lösa ekvationer är det viktigt att man kan sina förutsättningar, dvs vilka matematiska regler som gäller. Prioriteringsreglerna (vilken
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6
Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva
Laboration: Att inhägna ett rektangulärt område
Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.
Block 4 2007-03-31 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGd Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss
1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.
Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det
lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4
LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200
och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod
Längd, Kapitlets innehåll Kapitlet börjar med att eleverna får träna på längd i decimalform. De olika längdenheterna tränas och eleverna får själva mäta längd. Nästa avsnitt handlar om olika trianglar
varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
(1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror.
1. En skolklass har gjort en tidning. Hur många sidor har tidningen? (1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror. (2) Tryckkostnaden är 25 öre per sida och klassen
NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 010. NATIONELLT KURSPROV I
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
4-8 Cirklar. Inledning
Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för
L ÄR ARHANDLEDNING. Gunilla Viklund Birgit Gustafsson Anna Norberg
L ÄR ARHANDLEDNING Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11
Övningar - Andragradsekvationer
Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.
Explorativ övning 11 GEOMETRI
Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del
NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996 Tidsbunden del Anvisningar Provperiod 10 maj - 1 juni 1996. Provtid Hjälpmedel Provmaterialet 120 minuter utan rast. Miniräknare och formelsamling. Formelblad
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många.
Multilink-kuber Varför kuber i matematikundervisningen? Multilink-kuber eller motsvarande material kan utnyttjas till snart sagt alla områden inom matematikundervisningen, i hela grundskolan och även upp
5-1 Avbildningar, kartor, skalor, orientering och navigation
Namn:. 5-1 Avbildningar, kartor, skalor, orientering och navigation Inledning Nu skall du studera hur man avbildar verkligheten. Vad skall man göra det för? undrar du eftersom du skall ifrågasätta allt.
Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK
Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Multiplika tion Multiplikation, 5-tabellen Att multiplicera är detsamma som att addera samma tal flera gånger. Det kallar vi upprepad addition. 3 5 kan
MATEMATIK KURS A Våren 2005
MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?
Antal svarande i kommunen 32 Andel svarande i kommunen, procent 43 Kategorier ångest? Mycket dåligt Totalt Nej. Någorlunda. Mycket gott.
Resultat för särskilt boende 203, per kön, åldersgrupp, hälsotillstånd, 863 Hällefors F Hur bedömer du ditt allmänna hälsotillstånd? F2 Har du besvär av ängslan, oro eller ångest? gott gott Någorlunda
Barnsäkerhet 2015 Volvia 7 maj 2015 BARN SÄKERHETENS DAG
Barnsäkerhet Volvia 7 maj BARN SÄKERHETENS DAG Bakgrund & metod 1000 intervjuer genomfördes. Riksrepresentativt urval bland de med minst ett barn 0-7 år. Personer i åldern 20-65 år som har bil i hushållet
RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar
Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens
Några övningar att göra
Några övningar att göra Dagens kort Du ber om ett kort som kan vägleda och hjälpa dig genom dagen. Kortet beskriver hur du kan förhålla dig till dagen eller om du ska tänka på något speciellt idag. Drar
ELEVHJÄLP. Diskussion s. 2 Åsikter s. 3. Källkritik s. 11. Fördelar och nackdelar s. 4. Samarbete s. 10. Slutsatser s. 9. Konsekvenser s.
Källkritik s. 11 Diskussion s. 2 Åsikter s. 3 Samarbete s. 10 Slutsatser s. 9 ELEVHJÄLP Fördelar och nackdelar s. 4 Konsekvenser s. 5 Lösningar s. 8 Perspektiv s. 7 Likheter och skillnader s. 6 1 Resonera/diskutera/samtala
Övning: Dilemmafrågor
Övning: Dilemmafrågor Placera föräldrarna i grupper med ca 6-7 st/grupp. Läs upp ett dilemma i taget och låt föräldrarna resonera kring tänkbara lösningar. Varje fråga kan även visas på OH/ppt samtidigt,
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
Diagnostiskt test 1 tid: 2 timmar
Diagnostist test tid: timmar Detta är ditt första diagnostisa test i matemati å den är reetitionsursen. Ge dig själv oäng för varje rätt svar. (ge inga ½ oäng). edömning: - oäng Du ar tillräcliga förunsaer
Catherine Bergman Maria Österlund
Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv
Öppna dokumentet. Det heter ecdlfil.doc (Du får instruktioner om var)
ECDL - En uppgift på formatmallar och förteckningar Vad du skall ha gjort när du är klar: Du skall ha skapat några nya egna formatmallar Du skall använda dina formatmallarna på rubrikerna. Du skall infoga
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
NÄR MAN TALAR OM TROLLEN och några andra talesätt
6. NÄR MAN TALAR OM TROLLEN och några andra talesätt När man talar om trollen så står de i farstun är ett gammalt talesätt. Men finns det något vetenskapligt som ligger bakom det, och andra liknande talesätt
Lär dig sökmöjligheterna i Disgen 8
Det har blivit dags att titta på sökmöjligheterna i Disgen. Det finns egentligen två olika sökfunktioner i Disgen, Välj person och Sök personer. Här behandlas dessa båda funktioner. Välj person och Sök
matematik Lektion Kapitel Uppgift Lösningg T.ex. print(9-2 * 2) a) b) c) d)
1 Print 2.6 Prioriteringsregler 1 Beräkna a) 9 2 2 b) 10 + 5 6 c) 5 6 10 d) 16 + 4 5 6 2.6 Prioriteringsregler 7 Stina köper 3 chokladbollar för 10 kr styck och 1 kopp te för 14 kr. a) Skriv ett uttryck
Facit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan
Våga Visa kultur- och musikskolor
Våga Visa kultur- och musikskolor Kundundersökning 04 Värmdö kommun Genomförd av CMA Research AB April 04 Kön Är du 37 6 34 65 39 60 3 69 0% 0% 40% 60% 0% 0% Kille Tjej Ej svar Våga Visa kultur- och musikskolor,
75059 Stort sorteringsset
75059 Stort sorteringsset Aktivitetsguide Detta set innehåller: 632 st sorteringsföremål 3 st snurror 6 st sorteringsskålar 1 st sorteringsbricka i plast 1 st siffertärning Detta sorteringsset har tagits
Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, funktion, lista, diagram, storhet, enhet, tabell.
Aktivitetsbeskrivning Denna aktivitet samlar ett antal olika sätt att hantera rymdgeometriska beräkningar med formler på en grafräknare. Dessa metoder finns som uppgifter eller som en samling tips i en
LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120
acit till läorna LÄXA LÄXA a),75 0 b), 0 a) 7, b) 0, a) 0 b) 7 c) 00 00 km/s a), b) a) 900 b) 5, cm a) 50 cm b) 0 cm c) 0,5 cm a),5 b) 0,0 5,05,7,9,5, a) 00 b) 0 c) 79 7 a) b) 55 9,5 TIAN centi = hundradel,
Föreläsning 3.1: Datastrukturer, en översikt
Föreläsning.: Datastrukturer, en översikt Hittills har vi i kursen lagt mycket fokus på algoritmiskt tänkande. Vi har inte egentligen ägna så mycket uppmärksamhet åt det andra som datorprogram också består,
Jag ritar upp en modell på whiteboard-tavlan i terapirummet.
VAD ÄR PROBLEMET? Anna, 18 år, sitter i fåtöljen i mitt mottagningsrum. Hon har sparkat av sig skorna och dragit upp benen under sig. Okej, Anna jag har fått en remiss från doktor Johansson. När jag får
Vad tycker du om sfi?
Oktober 2012 Vad tycker du om sfi? Skolverket gör under hösten en stor undersökning om vad elever tycker om sin utbildning. Det är första gången undersökningen görs och resultatet kommer att användas till
Gemensam presentation av matematiskt område: Geometri Åldersgrupp: år 5
Gemensam presentation av matematiskt område: Geometri Åldersgrupp: år 5 Mål för lektionen: Eleverna skall kunna skilja på begreppen area och omkrets. Koppling till strävansmål: - Att eleven utvecklar intresse
Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre).
Räkna till 10 Mål: Eleverna skall kunna räkna till 10, i stigande och sjunkande ordningsföljd. Antal elever: minst 10 elever. Koner med talen 1 till 10.( använd konöverdrag och skriv 10 på en lapp på 0-käglan)
Arbetsprover till Bild och Formgivning, Wendela Hebbegymnasiet. Anvisningar och uppgifter.
Arbetsprover till Bild och Formgivning, Wendela Hebbegymnasiet. Anvisningar och uppgifter. Anvisningar Anvisningar och uppgifter skickas per post, under början av mars, till alla som sökt inriktningen.
4-5 Kvadrater och rotuttryck Namn:...
4-5 Kvadrater och rotuttryck Namn:... Inledning Du har nu lärt dig en hel del om kvadrater i kapitlet om ytorparallellogrammer. Du lärde dig bland annat att om kvadratens sida var given, säg 5 cm så kan
1. TAL P PENGAR TILLBAKA. Du handlar tre liter mjölk för 9,35 kr per liter, en påse bananer för 14,95 kr och en tidning för 29 kr.
1. TAL P PENGAR TILLBAKA Du handlar tre liter mjölk för 9,35 kr per liter, en påse bananer för 14,95 kr och en tidning för 29 kr. K Vad får du tillbaka på en hundralapp? Avrunda svaret till närmsta heltal.
En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.
F5 LE1460 Analog elektronik 2005-11-23 kl 08.15 12.00 Alfa En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. ( Impedans är inte samma sak som resistans. Impedans
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2001. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid
Bygga hus med LECA-stenar
Bygga hus med LECA-stenar När man bygger hus med LECA-stenar finns det en del att tänka på. Till att börja med finns det LECA-stenar i olika dimensioner (t.ex. 59x19x19 och 59x19x39). Dessa dimensioner
PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov
PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Utvärdering av 5B1117 Matematik 3
5B1117 Matematik 3 KTH Sidan 1 av 11 Utvärdering av 5B1117 Matematik 3 Saad Hashim Me hashim@it.kth.se George Hannouch Me hannouch@it.kth.se 5B1117 Matematik 3 KTH Sidan av 11 Svar till frågorna: 1 1.
Semester och arbetstidsförkortning
Hantverksdata Bilanco 2011-04-01 Semester och arbetstidsförkortning Innehåll SEMESTERUPPDATERING... - 2 - ARBETSTIDSFÖRKORTNING... - 5 - www.hantverksdata.se - 1 - Semesteruppdatering Uppdateringen ska
Nationell patientenkät Primärvård Vald enhet Vårdcentralen Kyrkbacken. Undersökningsperiod Höst 2010
ationell patientenkät Primärvård Vald enhet Vårdcentralen Kyrkbacken Undersökningsperiod Höst Om ationell Patientenkät ationell Patientenkät genomförs inom flera områden, bl.a. primärvården, somatisk öppen
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Distriktsfinal. Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift)
Distriktsfinal Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare! OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.
FÖRBEREDANDE KURS I MATEMATIK 1
FÖRBEREDANDE KURS I MATEMATIK 1 Till detta kursmaterial finns prov och lärare på Internet Ger studiepoäng Kostnadsfritt Fortlöpande anmälan på wwwmathse Eftertryck förbjudet utan tillåtelse 2007 MATHSE
http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts.
Dokumentet är från sajtsidan Matematik: som ingår i min sajt: http://www.leidenhed.se/matte.html http://www.leidenhed.se Minst och störst Senaste revideringen av kapitlet gjordes 2014-05-08, efter att
4-4 Parallellogrammer Namn:..
4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas
Separata blad för varje problem.
Institutionen för Fysik och Materialvetenskap Tentamen i FYSIK A 2008-12-12 för Tekniskt/Naturvetenskapligt Basår lärare : Johan Larsson, Lennart Selander, Sveinn Bjarman, Kjell Pernestål (nätbasår) Skrivtid
FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.
FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205