Senaste revideringen av kapitlet gjordes , efter att ett fel upptäckts.

Storlek: px
Starta visningen från sidan:

Download "http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts."

Transkript

1 Dokumentet är från sajtsidan Matematik: som ingår i min sajt: Minst och störst Senaste revideringen av kapitlet gjordes , efter att ett fel upptäckts. Kapitlets syfte Kapitlet presenterar den ryska nollan och den ryska oändligheten, som är väsentliga i min tankevärld. När tal representeras som punkter på tallinjen, visar sig den klassiska synen på tallinjen inte hålla. Vi får små pusselbitar om i första hand det oerhört lilla, bitar som är viktiga i senare kapitel. Inledning 1 kilometer är större än 1 meter som i sin tur är större än 1 millimeter. Betrakta följande uppställning. 1 km > 1 m > 1 mm 0,01 km > 0,01 m > 0,01 mm 0, km > 0, m > 0, mm... Hela tiden är kilometervärdet 1000 gånger större än metervärdet som i sin tur hela tiden är 1000 gånger större än millimetervärdet. Men 0 km = 0 m = 0 mm Vid exakt 0 är de plötsligt lika stora. Det beror på, att 0 inte är ett värde utan en markör för, när värde saknas. Tallinjen visar de reella talen i en sorteringsordning. När det gäller de positiva talen råkar talens sorteringsordning sammanfalla med deras storleksordning. Uttrycket a < b bör generellt uttalas a ligger före b och för de positiva talen dessutom varianten a är mindre än b. När jag i texten nämner små tal, avser jag små, positiva talvärden. Nollan saknar tecken. Den ingår varken i de positiva eller negativa reella talen utan markerar bara positionen, där dessa möts. De naturliga talen inleds i min värld med 1, alltså 1, 2, 3,, vilket överensstämmer med originalversionen av Peanos axiom. De positiva, reella talen bildar ett öppet intervall, vars gränser 0 och inte ingår. Talen inom intervallet saknar därför både minsta och största värde. Minst och störst Jan Leidenhed 1 / 6

2 Den ryska nollan Det startade för länge sedan i Norge. På en konferens i Kongsberg bollade jag en idé med ett par ryska matematiker. Din tankegång håller inte, fick jag veta. Du har satt ett variabelvärde till noll, men hur litet det än är, är det ändå alltid skilt från noll! Denna oändligt lilla flisa punkterade mitt, som jag trodde, vattentäta bevis. Nollan som ändå inte är noll, kallar jag den ryska nollan. Den blev ett tankefrö, som under de fortsatta åren gav fäste åt flera spännande idéer. Det är tack vare den, som de här texterna har blivit formulerade. Jag har givit den ryska nollan beteckningen 0±, där avslutande ± ska påminna om, att 0± är ett teckenförsett tal (till skillnad från den exakta nollan). 0± är inte ett på förhand bestämt tal utan representerar i varje enskilt fall ett nollliknande värde som är så litet, att vi i den aktuella situationen anser oss kunna bortse från det. Här kommer ett exempel på den ryska nollan. 1 = 0,9 + 0,1. 1 = 0,99 + 0,01. 1 = 0, , = 0, , Ettan till vänster om likhetstecknet är hela tiden summan av två tal. Det ena närmar sig värdet 1 och det andra 0. Det obetydliga talet 0, blir allt mindre, ju fler nollor jag fyller på med. Där ser du 0± tona fram. Den lilla ettan finns alltid i slutet efter alla nollorna, men när vi kommer upp i det, vi kallar ändlöst många nollor, bryter vår hjärna ihop och uppfattar den avlägsna decimalettan som försvunnen, så att 1 = 0, exakt. Alltså: 1 = 0, ± 0, Men den ensamma ettan finns kvar! Den knuffas allt längre från decimalkommat, men ingenstans ändras förflyttningen av ettan till att den plötsligt blir en nolla. När vi tar bort 0±, skapar vi samtidigt ett slut på kedjan av nior som därmed inte kan vara gränslöst lång, bara väldigt lång. Matematiklitteraturen är genomsyrad av 1 = 0,999 i olika varianter. Kommentar: I kapitlet Min oändlighet tar jag upp begreppen uppnåeliga respektive ouppnåeliga tal. Resonemanget ovan gäller för uppnåeligt antal decimaler. Om antalet däremot är ouppnåeligt, kan vi utnyttja, att decimalerna är Minst och störst Jan Leidenhed 2 / 6

3 cykliska. Då får vi, att x = 0, ger 10x - x = 9x = 9, , = 9, det vill säga 9x = 9, alltså x = 1. Den ryska nollan (och längre ner den ryska oändligheten) har sin existens ihop med uppnåeliga tal, vilket sammanfaller med rationella tal. Se mer om detta i Min oändlighet! Punkten Tal betraktas visuellt som punkter på tallinjen. Den (geometriska) punkten är ett nolldimensionellt objekt. Avsaknaden av dimensioner innebär, att den saknar utbredning. Vi kan sammanfatta med, att alla eventuella mått på punktens utbredning är exakt 0. Två punkter som placeras helt intill varandra resulterar inte i en två punkter lång linje utan i en enda punkt, eftersom deras utbredning = = 0, det vill säga 1 punkt. Hundra punkter som ligger i rad och i kontakt med varandra har utbredningen 100 x 0 = 0, alltså fortfarande en enda punkt. Enda möjligheten att skapa utbredning med hjälp av punkter är att exempelvis placera ut två distinkta punkter A och B samt binda samman dem med ett endimensionellt tomrum i form av en kurva. Eftersom punkten saknar utbredning, kan vi rada upp hur många distinkta sådana som helst mellan A och B, till och med oändligt många, utan att de fyller ut någon som helst del av kurvan mellan ändpunkterna. Detta ganska enkla konstaterande kan ställa till det i huvudet. En och annan tycks tro, att punkten trots allt har en utbredning, om än obeskrivligt liten, till exempel oändligt liten. Hur kan man annars bygga sammanhängande kurvor av punkter? Svaret är, att det kan man inte! Eftersom en distinkt punktmängd aldrig kan täcka något avstånd alls, spelar det ingen roll hur lång eller kort den kurva är (så länge kurvan ej har degenererat till en punkt), som punkterna ligger på. De distinkta punkterna är alla åtskilda från varandra. De är fullständigt osammanhängande. Vi synliggör en kurva genom att pricka ut den med färgade punkter, som vi kan se, alltså små objekt med utsträckning i 2 dimensioner. Det är förmodligen detta, som får oss att tro, att tillräckligt många punkter bygger upp en sammanhängande kurva. En äkta, geometrisk punkt är omöjlig att upptäcka visuellt. Ofta betraktas en yta som ett oändligt antal tätt bredvid varandra packade kurvor. Invändningen mot detta synsätt är motsvarande det för kurva uppbyggd av punkter. Eftersom kurvor saknar bredd, kan de inte heller adderas ihop till bredd. Ytan har en egenskap, som kurvan saknar en andra dimension. Ett exempel följer strax. Precis som med punkter kan inte heller kurvor synas, eftersom också de saknar yta. Minst och störst Jan Leidenhed 3 / 6

4 Volymer kan i sin tur inte genereras av på varandra staplade ytor (samma resonemang som ovan) inte heller av packade kurvor eller punkter. Åt motsatta hållet går det bättre. Utsträckning i en godtyckligt vald dimension kan neutraliseras genom att man tilldelar den längden 0 (= avsaknad av längd). Om den berörda dimensionen då försvinner eller ska betraktas som befintlig men oanvänd och i standby-läge får väl bli en fråga för filosoferna eller för den aktuella tillämpningen. Vår klassiska värld beskrivs av tre utbredningsdimensioner, som vi ofta kallar längd, bredd och höjd. Jag hade lika gärna kunnat säga, att vi har 1000 sådana dimensioner, varav 997 stycken alltid har utbredningen 0, alltså saknar utbredning. Med det synsättet kan också punkten ha 1000 dimensioner. Larvigt, eller hur? K 1, K 2, K 3 och K 4 här under visar ett avsnitt av kurvor, där enda skillnaden ligger i avståndet mellan två intilliggande vertikala delar. I K 2 är avståndet 1/2 av K 1 :s, i K 3 1/3 av K 1 :s och så vidare. Hos den n:te bilden (K n ) är avståndet 1/n av avståndet i K 1. Minst och störst Jan Leidenhed 4 / 6

5 Låt nu värdet hos n växa upp mot det oändliga. Då kommer de vertikala linjerna att närma sig varandra allt mer till att så småningom ligga oändligt nära varandra. Aha, till slut blir väl denna hela tiden tätnande kurva en yta? Svaret är nej. Kurvan saknar dimensionen bredd och upptar därför hela tiden, oberoende av antalet slingor, bredden 0. Vi ser de vertikala linjerna, eftersom de är ritade med en viss tjocklek. Ögat lurar oss att dra fel slutsats. Här har jag ramat in en oändligt tät kurva uppritad med korrekt linjetjocklek: Som du ser, ser du inte kurvan! Så här ska även de glesare kurvorna (K n ) se ut. Talet De reella talen återfinns som punkter på en endimensionell tallinje. Så här skrev jag tidigare, men det är inte korrekt! Om jag ändrar De reella talen till De rationella talen, blir det rätt. Ett irrationellt tal kan inte representeras av en punkt. Om detta skriver jag utförligt i kapitlet Min oändlighet. Resten av texten i det här avsnittet (Talet) har utgått, då den utgick från en felaktighet. Den ryska oändligheten Det försvinnande lilla tal 0± jag kallar den ryska nollan kan alltid halveras till ett ännu mindre värde (som också är en rysk nolla). Det sanslöst stora tal jag kallar den ryska oändligheten kan alltid dubbleras till ett (till belopp) ännu större värde (som också är en rysk oändlighet). I analogi med 0± har jag givit den teckenförsedda ryska oändligheten beteckningen ±. Både den ryska nollan 0± och den ryska oändligheten ± representerar i varje ögonblick ett teckenförsett tal, exempelvis extremtalen (+)janl, -janl, (+)JANL och -JANL från tidigare kapitel. Den vanliga nollan och oändligheten 0 är ett heltal som inte följer samma räkneregler som de positiva och negativa talen. kan definitivt inte tolkas som ett tal, men används i vissa fall som ett Minst och störst Jan Leidenhed 5 / 6

6 sådant, till exempel i fallet 7 = 0. Trots att saknar bestämt värde, utgår man från, att det är ett oändligt stort värde på något sätt. Det räcker i praktiken för att få resultatet 0. Jag är mycket tveksam till detta sätt att räkna på. Jag föredrar att använda den ryska oändligheten och den ryska nollan genom att dividera med ± och få resultatet 0±, så här: 7 = 0 ±. Sedan ersätter jag 0± med 0 och är ± medveten om, att resultatet inte är exakt rätt. Stor eller liten? Ändlig storlek är relativ och avgörs av betraktarens tolkning. Min livslängd är oändligt kort (0±) i det eviga perspektivet. För mig själv är den hyggligt lång. Jämfört med vissa elementarpartiklars försvinnande korta liv, så lever jag nästan oändligt länge. Min livslängd är med andra ord 0±, normal och ± på samma gång. I kapitlet Gränsvärden visar jag bland annat, att en funktion som växer mot oändligheten samtidigt går obönhörligt mot 0 beroende på, vem som betraktar den. Minst och störst Jan Leidenhed 6 / 6

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

9-1 Koordinatsystem och funktioner. Namn:

9-1 Koordinatsystem och funktioner. Namn: 9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000 Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

2-1: Taltyper och tallinjen Namn:.

2-1: Taltyper och tallinjen Namn:. 2-1: Taltyper och tallinjen Namn:. Inledning I det här kapitlet skall du studera vad tal är för någonting och hur tal kan organiseras och sorteras efter storleksordning. Vad skall detta vara nödvändigt

Läs mer

Gör-det-själv-uppgifter 1: marknader och elasticiteter

Gör-det-själv-uppgifter 1: marknader och elasticiteter LINKÖPINGS UNIVERSITET Institutionen för ekonomisk och industriell utveckling Nationalekonomi Gör-det-själv-uppgifter 1: marknader och elasticiteter Uppgift 1-4 behandlar efterfråge- och utbudskurvor samt

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

1Mer om tal. Mål. Grundkursen K 1

1Mer om tal. Mål. Grundkursen K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform

Läs mer

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1.

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1. Taluppfattning Talområde 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 19 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial

Läs mer

Dimensioner och fraktal geometri. Johan Wild

Dimensioner och fraktal geometri. Johan Wild Dimensioner och fraktal geometri Johan Wild 9 februari 2010 c Johan Wild 2009 johan.wild@europaskolan.se Får gärna användas i undervisning, kontakta i så fall författaren. 9 februari 2010 1 Inledning och

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken. Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det

Läs mer

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4 Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2005-06-09.kl.08-13 Uppgift 1 ( Betyg 3 uppgift ) Ett plustecken kan se ut på många sätt. En variant är den som ses nedan. Skriv ett program som låter användaren mata in storleken på plusset enligt exemplen

Läs mer

Under min praktik som lärarstuderande

Under min praktik som lärarstuderande tomoko helmertz Problemlösning i Japan och Sverige Japansk matematikundervisning skiljer sig på många sätt från svensk. Vilka konsekvenser får det för hur elever i respektive länder löser problem? Tomoko

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Begrepp :: Determinanten

Begrepp :: Determinanten c Mikael Forsberg 2008 1 Begrepp :: Determinanten Rekursiv definition :: Kofaktorutveckling Låt oss börja definiera determinanten för en 1 1 matris A = (a). En sådan matris är naturligtvis bara ett vanligt

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Föreläsning 3.1: Datastrukturer, en översikt

Föreläsning 3.1: Datastrukturer, en översikt Föreläsning.: Datastrukturer, en översikt Hittills har vi i kursen lagt mycket fokus på algoritmiskt tänkande. Vi har inte egentligen ägna så mycket uppmärksamhet åt det andra som datorprogram också består,

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann Marco Kuhlmann 1 En graf är en struktur av prickar förbundna med streck. Ett tidsenligt exempel på en sådan struktur är ett social nätverk, där prickarna motsvarar personer och en streck mellan två prickar

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre).

Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre). Räkna till 10 Mål: Eleverna skall kunna räkna till 10, i stigande och sjunkande ordningsföljd. Antal elever: minst 10 elever. Koner med talen 1 till 10.( använd konöverdrag och skriv 10 på en lapp på 0-käglan)

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkl ÖVN Lösningsförslag 0.04.0 4.0 6.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

8-4 Ekvationer. Namn:..

8-4 Ekvationer. Namn:.. 8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar

Läs mer

6-3 Statistikgranskning. Namn:

6-3 Statistikgranskning. Namn: 6-3 Statistikgranskning. Namn: Inledning Du har nu lärt dig en hel del om statistik och om diagram. Eftersom statistik används i många sammanhang, ibland med syftet att framhäva en viss tendens eller utveckling,

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

UPPGIFT 1 ÖVERSÄTTNING

UPPGIFT 1 ÖVERSÄTTNING UPPGIFT 1 ÖVERSÄTTNING Fikonspråket är ett hemligt språk med gamla anor som till och med har givit upphov till vissa svenska ord, till exempel fimp (fikonspråkets fimpstukon betyder stump). Rövarspråket

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

Explorativ övning 11 GEOMETRI

Explorativ övning 11 GEOMETRI Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

K3 Om andra ordningens predikatlogik

K3 Om andra ordningens predikatlogik KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket

Läs mer

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss.

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss. 8-2 Förenkling av uttryck. Namn: eller Konsten att räkna algebra och göra livet lite enklare för sig. Inledning I föregående kapitel lärde du dig vad ett matematiskt uttryck är för någonting och hur man

Läs mer

Multiplikation genom århundraden

Multiplikation genom århundraden Multiplikation genom århundraden För många elever i skolan kan multiplikation upplevas som något oöverstigligt. Addition och subtraktion kan de förstå sig på men inte multiplikation. Utan förståelse för

Läs mer

Tvärfallet begränsas av glidningsrisker vid halt väglag, av sidkrafternas storlek och av risker vid passager av brytpunkter, t ex vid omkörning.

Tvärfallet begränsas av glidningsrisker vid halt väglag, av sidkrafternas storlek och av risker vid passager av brytpunkter, t ex vid omkörning. 8 Tvärfall Med tvärfall avses vägbanans lutning i tvärled. Lutningen anges i förhållande till horisontalplanet. Tvärfallet kan göras dubbelsidigt, s.k. takform, eller enkelsidigt. Enkelsidigt tvärfall

Läs mer

Att skriva Hur utformar man en Social berättelse? Lathund för hur en Social berättelse kan skrivas

Att skriva Hur utformar man en Social berättelse? Lathund för hur en Social berättelse kan skrivas 52 56 57 57 59 59 61 61 63 64 64 65 67 67 76 77 77 79 80 83 86 87 89 91 93 95 Seriesamtalets andra möjligheter Sammanfattning Seriesamtal Sociala berättelser Vad är en Social berättelse? För vilka personer

Läs mer

205. Begrepp och metoder. Jacob Sjöström jacobsjostrom@gmail.com

205. Begrepp och metoder. Jacob Sjöström jacobsjostrom@gmail.com 205. Begrepp och metoder Bo Sjöström bo.sjostrom@mah.se Jacob Sjöström jacobsjostrom@gmail.com Hur hög är en stapel med en miljon A4-papper? 100 st 80 grams har höjden 1 cm 1000 1 dm 1 000 000 1000 dm

Läs mer

FOURIERANALYS En kort introduktion

FOURIERANALYS En kort introduktion FOURIERAALYS En kort introduktion Kurt Hansson 2009 Innehåll 1 Signalanalys 2 2 Periodiska signaler 2 3 En komplex) skalärprodukt 4 4 Fourierkoefficienter 4 5 Sampling 5 5.1 Shannon s teorem.................................

Läs mer

2010-09-13 Resultatnivåns beroende av ålder och kön analys av svensk veteranfriidrott med fokus på löpgrenar

2010-09-13 Resultatnivåns beroende av ålder och kön analys av svensk veteranfriidrott med fokus på löpgrenar 1 2010-09-13 Resultatnivåns beroende av ålder och kön analys av svensk veteranfriidrott med fokus på löpgrenar av Sven Gärderud, Carl-Erik Särndal och Ivar Söderlind Sammanfattning I denna rapport använder

Läs mer

Problem: BOW Bowling. Regler för Bowling. swedish. BOI 2015, dag 1. Tillgängligt minne: 256 MB. 30.04.2015

Problem: BOW Bowling. Regler för Bowling. swedish. BOI 2015, dag 1. Tillgängligt minne: 256 MB. 30.04.2015 Problem: BOW Bowling swedish BOI 0, dag. Tillgängligt minne: 6 MB. 30.04.0 Byteasar tycker om både bowling och statistik. Han har skrivit ner resultatet från några tidigare bowlingspel. Tyvärr är några

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

Periodisering i Rebus

Periodisering i Rebus Periodisering i Rebus INTÄKTER När man fakturerar order från resebyrå-modulen kan man välja att få avresedatumet som periodiseringssiffra på intäktskontot, antingen år+månad eller bara år. Inställningen

Läs mer

En skärgårdsdröm Ett gammalt sommarställe har efter en totalrenovering fått ett helt nytt uttryck och blivit ett sommarnöje för flera generationer.

En skärgårdsdröm Ett gammalt sommarställe har efter en totalrenovering fått ett helt nytt uttryck och blivit ett sommarnöje för flera generationer. En skärgårdsdröm Ett gammalt sommarställe har efter en totalrenovering fått ett helt nytt uttryck och blivit ett sommarnöje för flera generationer. Text Kajsa Ihre foto devis bionaz 086 [xxxxx xxxxxx xxxxx]

Läs mer

Programmeringsuppgifter 1

Programmeringsuppgifter 1 Programmeringsuppgifter 1 Redovisning: Ni demo-kör och förklarar för handledaren några av de program ni gjort. Ni behöver inte hinna allt, redovisa så långt ni kommit. Om ni hinner mer kan ni alltid redovisa

Läs mer

Instruktion 5. Talonger och tabeller. Övning 25. Hur man gör en talong? Börja med att ställa in ett styckeavstånd på en tomrad.

Instruktion 5. Talonger och tabeller. Övning 25. Hur man gör en talong? Börja med att ställa in ett styckeavstånd på en tomrad. Instruktion 5. Talonger och tabeller. Övning 25. Hur man gör en talong? Börja med att ställa in ett styckeavstånd på en tomrad. Öppna rullgardinsmenyn Format Stycke följande dialogruta visas. Klicka på

Läs mer

Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation

Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation Innehåll Föreläsning 11 Trie Sökträd Trie och Sökträd 356 357 Trie Ytterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat träd där barnen till

Läs mer

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor Matte Direkt Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer Safari 1A Lärarhandledning MS Enhetsdel Sist i varje kapitel finns ett avsnitt som i första hand tar upp enheter. Här i årskurs 1 handlar

Läs mer

Textsträngar från/till skärm eller fil

Textsträngar från/till skärm eller fil Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,

Läs mer

Den matematiska analysens grunder

Den matematiska analysens grunder KTH:s Matematiska Cirkel Den matematiska analysens grunder Katharina Heinrich Dan Petersen Institutionen för matematik, 2012 2013 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Grundläggande

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

Prov kapitel 3-5 - FACIT Version 1

Prov kapitel 3-5 - FACIT Version 1 Prov kapitel 3-5 - FACIT Version 1 1. Lös ekvationerna algebraiskt a. 13 x + 17 = 7x + 134 Svar: x = 117 / 6 = 19.5 b. x 10 = 84 Svar: x = 84 0.1 = 1.5575 2. Beräkna a. 17 % av 3500 = 595 b. 3 promille

Läs mer

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt?

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt? 2 Materia 2.1 OH1 Atomer och molekyler 1 Vid vilken temperatur kokar vatten? 2 Att rita diagram 3 Vid vilken temperatur kokar T-sprit? 4 Varför fryser man ofta efter ett bad? 5 Olika ämnen har olika smält-

Läs mer

Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet

Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet 195 Gaussiska primtal Christer Kiselman Institut Mittag-Leffler & Uppsala universitet 1. Beskrivning av uppgiften. De förslag som presenteras här kan behandlas på flera olika sätt. Ett första syfte är

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Global nedvärdering av sig själv, andra och livet.

Global nedvärdering av sig själv, andra och livet. Global nedvärdering av sig själv, andra och livet. Att globalt värdera andra människor är som att döma en musikskiva efter dess konvolut. Låt oss nu titta på denna globala värdering om den riktas mot dig

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret.

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret. Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M 2012-01-13 Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna

Läs mer

Kapitel 4 Inför Nationella Prov

Kapitel 4 Inför Nationella Prov Kapitel 4 Inför Nationella Prov Sidan 3 Tretusen fyrahundra fyra 2 a 9 0 b Minsta fyrsiffriga tal är 09 (0029 = 29 är tvåsiffrigt.) 3 a 3 43 b 5 042 c 890 4 a 9 08 b 0 09 c 2 500 000 d 2 050 000 5 a 900

Läs mer

Planeringsspelets mysterier, del 1

Planeringsspelets mysterier, del 1 Peter Lindberg Computer Programmer, Oops AB mailto:peter@oops.se http://oops.se/ 28 februari 2002 Planeringsspelets mysterier, del 1 Om jag ska spela ett sällskapsspel för första gången så vill jag att

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,

Läs mer

Problem att fundera över

Problem att fundera över Problem att fundera över Här får du öva dig på att formulera en förmodan och försökabevisaden. Jag förväntar mig inte att du klarar av att gå till botten med alla frågorna! Syftet är att ge dig smakprov

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

någon skulle föreslå, att ur våra räkningar utesluta tecknet "j/, så att man t. ex. skulle skriva lösningen av

någon skulle föreslå, att ur våra räkningar utesluta tecknet j/, så att man t. ex. skulle skriva lösningen av Om någon skulle föreslå, att ur våra räkningar utesluta tecknet "j/, så att man t. ex. skulle skriva lösningen av andragradsekvationen.1 -f 2 där y' 2 = b, eller i st. f. x=y$-\-yj

Läs mer

Exempelsamling :: Vektorintro V0.95

Exempelsamling :: Vektorintro V0.95 Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,

Läs mer

Om Pythagoras hade varit taxichaufför

Om Pythagoras hade varit taxichaufför 56 Om Pythagoras hade varit taichaufför i Luleå Andrejs Dunkels Högskolan i Luleå Fig 1. Om man vill ta sig från P-platsen i hörnet av Köpmangatan och Timmermansgatan till Vinbutiken (se fig 1) så går

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

UPPGIFT 2 KVADRATVANDRING

UPPGIFT 2 KVADRATVANDRING UPPGIFT 1 LYCKOTAL Lyckotal är en serie heltal, som hittas på följande sätt. Starta med de naturliga talen: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13... Sök upp det första talet i serien, som är större

Läs mer

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. F5 LE1460 Analog elektronik 2005-11-23 kl 08.15 12.00 Alfa En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. ( Impedans är inte samma sak som resistans. Impedans

Läs mer

Parkour! Lärarmaterial

Parkour! Lärarmaterial SIDAN 1 Författare: Kalle Güettler Vad handlar boken om? Isak är en blyg kille som går i nian. Han har ett stort intresse för att åka bräda och på nätet brukar han kolla parkour. Han gillar när de hoppar

Läs mer

Matematik B (MA1202)

Matematik B (MA1202) Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt

Läs mer

Rolladministration i PaletteArena 5.3

Rolladministration i PaletteArena 5.3 SLU Rolladministration i PaletteArena 5.3 Jenny Kjellström 2012-03-16 Beskriver hur man lägger upp och inaktiverar en mottagare, hur man flyttar/styr om fakturor från/till andras inkorgar samt hur man

Läs mer

Nödrop från Expedition C3: skicka fler tekniker!

Nödrop från Expedition C3: skicka fler tekniker! Nödrop från Expedition C3: skicka fler tekniker! Detta har hänt: Expeditionen lättade i maj 2008 efter noggranna förberedelser. Motstånd och faror lurade överallt, men vi litade på vårt trumfkort helautomatisk

Läs mer

Fördjupningskurs i byggproduktion, ht 2009.

Fördjupningskurs i byggproduktion, ht 2009. Umeå Universitet Sida 1 (10) Fördjupningskurs i byggproduktion, ht 2009. Kursvärdering. Omdöme 1 5 (5 bäst) Kursupplägg i stort 1 2 5 Bra projekt där de tidigare projekten i BP1 och BP2 binds ihop. Får

Läs mer

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer