Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel:

Storlek: px
Starta visningen från sidan:

Download "Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel:"

Transkript

1 ÖVNING 1. PRODUKT(Nummer, Namn, Typ, Klass, Prisklass, Vikt, Volym, Fraktkostnad) Nummer, Typ Namn, Klass, Pris, Prisklass, Vikt, Volym, Fraktkostnad Namn, Typ Nummer Typ Klass Pris Prisklass Vikt, Volym, Fraktkostnad Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel: PRODUKT(Nummer, Namn, Typ, Klass, Prisklass, Vikt, Volym, Fraktkostnad) En alternativ skulle vara att välja (Namn, Typ) till PN. I så fall måste vi visa att (Namn,Typ) bestämmer övriga attribut funktionellt: Vi har att: Namn, Typ Nummer Reflexiva lagen ger: Namn, Typ, Typ Nummer, Typ Vilket kan skrivas om som: Namn, Typ Nummer, Typ Och eftersom Nummer, Typ alla övriga attribut så ger transitiva lagen att Namn, Typ också bestämmer övriga attribut funktionellt. 2NF Vi har att Typ Klass. Eftersom {Typ} är en delmängd av {Nummer, Typ} (dvs Typ är en delmängd av primärnyckeln) så har vi ett partiellt funktionellt beroende mellan primärnyckeln och icke-nyckelattributet Klass. Alltså bryter vi ut på följande vis: TYPKLASS(Typ, Klass) PRODUKT(Nummer, Typ, Namn, Pris, Prisklass, Vikt, Volym, Fraktkostnad), PRODUKT.Typ << TYPKLASS.Typ 3NF Eftersom Prisklass är bestämd av Pris och Fraktkostnad är bestämd av Vikt och Volym och samtliga dessa är bestämda (funkt. bestämda) av primärnyckeln så har vi alltså ett transitivt beroende mellan PN och Prisklass, respektive Fraktkostnad (eftersom vare sig Pris eller (Vikt, Volym) är del av PN). FRAKT (Vikt, Volym, Fraktkostnad) PRIS(Pris, Prisklass) PRODUKT(Nummer, Typ, Namn, Vikt, Volym, Pris), PRODUKT.Typ << TYPKLASS.Typ PRODUKT.Pris << PRIS.Pris PRODUKT.(Vikt, Volym) << FRAKT. (Vikt, Volym) TYPKLASS(Typ, Klass)

2 Notera att vi kan visa att för tabellen PRODUKT så gäller följande: Nummer, Typ {visades i A} Namn, Typ Pris, Vikt, Volym. Således skulle man kunna hävda att ett transitivt beroende föreligger mellan Pris, respektive (Vikt, Volym) och primärnyckeln. Så är dock inte fallet eftersom (Namn, Typ) utgör en kandidatnyckel.

3 ÖVNING 2. Primärnyckel för tabellen R blir (Art+Habitat+Byte) tillsammans. Detta eftersom inget av attributen Art, Habitat respektive Byte ensamt räcker till för att bestämma alla övriga attribut. Till exempel har Art flera värden på Habitat (Tiger har habitaten Savann och Lövskog, Habitaten Savann har t ex arten Tiger och Lejon, Bytet Gnu jagas av både Tiger och Lejon osv.). Inte heller någon kombination av två av attributen räcker till för att identifiera det kvarvarande attributet funktionellt (Tiger plus Savann har flera värden på byte, Tiger plus Gnu har flera värden på habitat: Savann och regnskog, och Gnu plus Savann har flera värden på art: Lejon och Tiger). Alltså måste alla attributen ingå i primärnyckeln. Tabellen blir en så kallad all-key tabell. Den resulterande tabellen är i 3NF Tabellen är all-key så villkoren för 2NF (alla icke-nyckelattribut ska vara funktionellt beroende av hela nyckeln: vi har inga icke-nyckelattribut här) och 3NF (det ska inte finnas några transitiva beroenden mellan något icke-nyckel attribut och nyckeln: vi har inga icke-nyckelattribut) är uppfyllda.

4 ÖVNING 3 a) PERSON(Namn, Ålder, Stad, Land) Följande funktionella beroenden råder: Namn Ålder, Stad, Land Stad Land Denna tabell är inte ens i 3NF men väl i 2NF (om vi förutsätter att den är i 1NF). Den är i 2NF eftersom alla icke-nyckel attribut är fullständigt funktionellt beroende av primärnyckeln. Vi har ju bara ett attribut i nyckeln och då måste vi alltid ha 2NF om vi överhuvudtaget har 1NF. Men tabellen är inte i 3NF (och därmed inte heller i BCNF) eftersom det finns ett funktionellt beroende mellan två icke-nyckel attribut nämligen Stad Land och därmed ett transitivt beroende mellan ett icke-nyckelattribut och nyckeln. Varken STAD eller LAND ingår ju i primärnyckel eller eventuella kandidatnycklar (har vi inga här). Alltså måste vi först ordna till 3NF och sen kontrollera om vi på köpet hamnade i BCNF eller om vi måste gå vidare för att komma dit. Men först övergår vi till 3NF: PERSON(Namn, Ålder, Stad) STAD(Stad, Land) Dessa tabeller är i såväl 3NF som BCNF. Att de är i 3NF beror på att inga transitiva beroenden finns mellan icke-nyckelattributen och nyckeln. Att tabellerna är i BCNF beror på att ALLA determinanter är kandidatnycklar. (De enda funktionella beroenden vi hade var ju Namn Ålder, Stad respektive Stad Land och både Namn och Stad är ju primärnycklar. OBS att Stad i tabellen PERSON inte längre utgör en determinant i denna tabell. Det kan även vara bra att kontrollera om nedbrytning var non-loss. Jag gör det genom att JOIN:a PERSON med STAD-LAND och kontrollera att jag bara får tillbaka de tupler jag ursprungligen hade. Om jag får det så är dekomponeringen non-loss! Jag gör en NATURAL JOIN dvs. FN-attributet STAD kommer bara med en gång: Vi utgår från följande exempel tupler (där alla funktionella beroenden är uppfyllda): PERSON NAMN ÅLDER STAD LAND Maria 8 S-tälje Sverige Lisa 7 Säffle Sverige

5 Detta blev (efter 3NF-nedbrytning) : PERSON STAD-LAND NAMN ÅLDER STAD STAD LAND Maria 8 S-tälje S-tälje Sverige Lisa 7 Säffle Säffle Sverige NATURAL JOIN på PERSON och STAD-LAND: (jag återgår till det gamla namnet PERSON på den resulterande tabellen) PERSON NAMN ÅLDER STAD LAND Maria 8 S-tälje Sverige Lisa 7 Säffle Sverige Samma tupler som vi ursprungligen hade, dvs dekomponeringen var non-loss!

6 b) FÖRELÄSNING(Kurs, Lärare, Tid) Följande funktionella beroenden råder: Kurs Lärare Lärare, Tid Kurs FÖRELÄSNING(Lärare, Tid, Kurs) där alltså valts till PN = Lärare, Tid (En alternativ primärnyckel är Kurs+Tid) Gör en exempellistning som visar beroendena: FÖRELÄSNING LÄRARE TID KURS Maria oktober *62 Maria november *62 Petia november *58 Maria december DSVL1:5 Vi testar beroendena ett och ett: först Lärare,Tid Kurs: Eftersom alla fyra tuplerna har OLIKA värden på kombinationen Lärare,Tid så måste beroendet Lärare, Tid Kurs vara uppfyllt! Nu provar vi om Kurs Lärare håller: * 62 har bara ett värde på lärare nämligen Maria *58 har bara ett värde på lärare nämligen Petia DSVL1:5 har bara ett värde på lärare nämligen Maria Dvs även beroendet Kurs Lärare håller! Nu ska vi kontrollera om tabellen är i BCNF: Den är i 3NF (den är i 2NF eftersom det enda icke-nyckelattributet, Kurs, är fullständigt funktionellt beroende av primärnyckeln. Den är i 3NF eftersom det inte finnas några transitiva beroenden mellan vårt enda icke-nyckelattribut och nyckeln). Men, den är INTE i BCNF eftersom vi har en determinant ("det som står till vänster i ett funktionellt beronde") som INTE är en kandidatnyckel nämligen KURS. Alltså måste vi bryta ner tabellen FÖRELÄSNING till (till exempel...):

7 KURS-LÄRARE KURS LÄRARE *62 Maria *58 Petia DSVL1:5 Maria LÄRARE-TID LÄRARE Maria Maria Petia Maria TID oktober november november december Nu är tabellerna i BCNF (De är i 3NF och alla determinanter är kandidatnycklar). Vi provar även här att testa om komponeringen är non-loss eller inte: Vi gör alltså NATURAL JOIN över LÄRARE-TID Och KURS-LÄRARE (även här återtar jag namnet FÖRELÄSNING på den resulterande tabellen). FÖRELÄSNING LÄRARE TID KURS Maria oktober *62 Maria oktober DSVL1:5 Maria november *62 Maria november DSVL1:5 Petia november *58 Maria december *62 Maria december DSVL1:5

8 Här har vi fått tre NYA tupler (som inte fanns i ursprungliga föreläsningen) nämligen andra, fjärde och sjunde tupeln. Dekomponeringen var alltså INTE non-loss. De funktionella beroendena är inte längre uppfyllda t ex har samma kombinationa av LÄRARE,TID (Maria, Oktober i första och andra tupeln) TVÅ OLIKA värden på KURS!

9 Vi provar istället med att göra följande nedbrytning: KURS-LÄRARE KURS LÄRARE *62 Maria *58 Petia DSVL1:5 Maria KURS-TID KURS TID *62 oktober *62 november *58 november DSVL1:5 december Och så slår vi ihop dem via NATURAL JOIN igen: LÄRARE TID KURS Maria oktober *62 Maria november *62 Petia november *58 Maria december DSVL1:5 Jepp, bara de tupler som ursrpungligen fanns!

10 ÖVNING 4 LÅT U VARA EN MÄNGD AV ATTRIBUT och D en mängd av funktionella beroenden över attributen i U. Låt SAT(D) beteckna mängden av de relationer över U som uppfyller beroendena i D. a) Låt U = {a,b,c,d} och D = {b fi c, ad fi d}. Ge ett exempel på en relation som tillhör SAT(D) och en relation som inte tillhör SAT(D). a) Följande relation tillhör SAT(D) a b c d x x y y x x y z Följande relation tillhör inte SAT(D) a b c d x x y y x x z z b) Avgör för vart och ett av påståendena nedan om det är sant eller falskt. i) Om D1 D2 så SAT(D1) SAT(D2) ii) Om D1 D2 så SAT(D2) SAT(D1) iii) Om SAT(D1) SAT(D2) så D1 D2 iv) Om SAT(D2) SAT(D1) så D1 D2

11 i) Om D1 D2 så SAT(D1) SAT(D2) FALSKT. Motexempel enligt nedan: D1 = {a b} D2 = {a b, c d} För att visa att det inte gäller SAT(D1) SAT(D2) räcker det att uppvisa en relation som tillhör SAT(D1) men inte SAT(D2). En sådan relation är: a b c d x x y y x x y z

12 ii) Om D1 D2 så SAT(D2) SAT(D1) FALSKT om vi använder strikt delmängd. I så fall kan vi låta D1 = {a b, b c} och D2 = {a b, b c, a c}. Då stämmer vänsterledet men högerledet är inte sant pga att SAT(D2) = SAT(D1). SANT om vi använder icke-strikt delmängd. Bevis enligt nedan. Låt D1 = {f 1,,f n }, D2 = {f 1,,f n,.f n+1,,f n+k } Vad som behöver visas är att för varje relation A gäller följande implikation: om A tillhör SAT(D2) så A tillhör A SAT(D1). Låt A vara en relation Antag A tillhör SAT(D2) Då uppfyller A de funktionella beroendena f 1,,f n,.f n+1,,f n+k. Således uppfyller A f 1,,f n Per definition så gäller A tillhör SAT(D1). Och därmed är implikationen visad.

13 iii) Om SAT(D1) SAT(D2) så D1 D2 FALSKT. Motexempel enligt nedan. Vi ska nu anta att SAT(D1) SAT(D2) gäller. Det är samma sak som att säga att antalet tupler i SAT(D1) är färre än antalet tupler i SAT(D2). Vilket i sin tur är samma sak som att säga några tupler i SAT(D2) bryter mot några funktionella beroenden i D1 (eftersom de inte är element i SAT(D1). Vilket i sin tur betyder att D1 alltså har fler funktionella beroenden än D2. Således kan inte D1 vara en delmängd av D2. Alternativt ger man bara D1 och D2 några värden, där D1 är har fler element än D2: D2 = {a b} D1 = {a b, c d} Enligt i) så gäller vänsterledet, dvs vi vet att : SAT(D1) SAT(D2) Och vi ser ju att D1 INTE är en delmängd av D2, dvs högerledet gäller inte. Ännu enklare, låt D2 vara tomma mängden. Då gäller definitivt vänsterledet, men inte högerledet.

14 iv) Om SAT(D2) FALSKT. SAT(D1) så D1 D2 Motexempel: Låt D1 = {a b, b c, a c} Låt D2 = {a b, b c, d a} SAT(D2) är en delmängd av SAT(D1) eftersom, den upprätthåller alla funktionella beroenden i D1 OCH dessutom ett beroende till vilket kommer att diskvalificera vissa relationer som finns i SAT(D1) men som bryter mot d a. Men D1 är inte en delmängd av D2.

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY!

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY! ÖVNING 9 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY!

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY! ÖVNING 10 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY!

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY! ÖVNING 10 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Lösningsförslag till Tentamen,

Lösningsförslag till Tentamen, Institutionen för Data- och Systemvetenskap SU/KTH Maria Bergholtz och Paul Johannesson Lösningsförslag till Tentamen, 022 2I-00 Informationssystem och databasteknik För att erhålla betyget tre räcker

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 * * * * DAV B04 - Databasteknik! "# $ %'&( ) KaU - Datavetenskap - DAV B04 - MGö 132 Riktlinjer när man vill skapa en databas 1) Designa så att det är lätt att förstå innebörden. Kombinera inte attribut

Läs mer

Logisk databasdesign

Logisk databasdesign NORMALISERING Peter Bellström Logisk databasdesign 2 Arbetssteget vars syfte är att konstruera en modell (diagram, schema), baserad på en specifik datamodell, över verksamhetens begrepp och samband. Modellen

Läs mer

Informationssystem och databasteknik

Informationssystem och databasteknik Informationssystem och databasteknik Föreläsning 5 Analytisk databasdesign F5! Funktionellt beroende: Pnr Namn Funktion (i vanlig mat. betydelse): 610321 11111 22222 33333 Maria Eva Sture Olle För varje

Läs mer

IT i organisationer och databasteknik

IT i organisationer och databasteknik IT i organisationer och databasteknik Föreläsning 5 Analytisk databasdesign Arkitektur hos ett informationssystem Presentation Användargränssnitt via en browser Applikationslogik Data Java servlets som

Läs mer

Analytisk relationsdatabasdesign

Analytisk relationsdatabasdesign Analytisk relationsdatabasdesign Att förbättra kvaliteten i databaser Presenter s Name Organization name www.horton.com Domän-regler och främmande nyckel regler via DDL Datatyp! Datatyp! Maxvärde! Maxvärde!

Läs mer

Normalisering. Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info.

Normalisering. Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info. Normalisering Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info. Tillbaka i modelleringsfasen. 1NF: Vad menas med ett sammansatt attribut? Exempel:

Läs mer

Lösningsförslag till Exempel tentamen

Lösningsförslag till Exempel tentamen Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Lösningsförslag till Exempel tentamen 2I-1033 IT i Organisationer och Databasteknik Tentamenstiden är 5 timmar Skriv bara på

Läs mer

Tentamen plus lösningsförslag

Tentamen plus lösningsförslag Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Tentamen plus lösningsförslag 2I-1100 Informationssystem och databasteknik Skriv bara på en sida av pappret Skriv namn på varje

Läs mer

Funktionella beroenden - teori

Funktionella beroenden - teori Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att

Läs mer

Normalisering. Christer Stuxberg Institutionen för Informatik och Media

Normalisering. Christer Stuxberg Institutionen för Informatik och Media Normalisering Christer Stuxberg christer.stuxberg@im.uu.se Institutionen för Informatik och Media Översikt Normalisering Dataredundans och Uppdateringsanomalier Anomalier vid insättning Anomalier vid borttagning

Läs mer

NORMALISERING. Mahmud Al Hakim

NORMALISERING. Mahmud Al Hakim NORMALISERING Mahmud Al Hakim mahmud@webacademy.se 1 SCHEMA Schema eller databasschema är en beskrivning av vilka data som kan finnas i en databas, oberoende av vilka data (innehållet) som råkar finnas

Läs mer

Universitetet: ER-diagram

Universitetet: ER-diagram Databaser Design och programmering Fortsättning på relationsmodellen: Normalisering funktionella beroenden normalformer informationsbevarande relationsschemauppdelning Varför normalisera? Metod att skydda

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 1 Normalisering Förut sunt förnuft Nu formell metod riktlinjer för att hjälpa till att gruppera attributen (egenskaperna) för varje relation

Läs mer

Kvalitetstänkande. Utgångsläge Samtliga ER-diagram har överförts till scheman

Kvalitetstänkande. Utgångsläge Samtliga ER-diagram har överförts till scheman Kvalitetstänkande Utgångsläge Samtliga ER-diagram har överförts till scheman Förbättra kvaliteten på relationsscheman Normalformler ger dugligare nycklar Hitta funktionella beroenden med hjälp av slutsatsdragning

Läs mer

Konceptuella datamodeller

Konceptuella datamodeller Databasdesign Relationer, Nycklar och Normalisering Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Konceptuella datamodeller Om man ska skapa en databas som beskriver en del av verkligheten

Läs mer

Lösningsförslag Tentamen, 25 april 03

Lösningsförslag Tentamen, 25 april 03 Lösningsförslag Tentamen, 25 april 03 Uppgift 1 Kommentar: Svårigheterna ligger i att differentiera mellan BIL och BILMODELL och MOTOR och MOTORTYP. Båda avbildare ett sk. powertype-förhållande (templatecopy)

Läs mer

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion.

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion. Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Programdesign, databasdesign Databasdesign Konceptuell design Förstudie, behovsanalys

Läs mer

Grunderna för relationsmodellen!

Grunderna för relationsmodellen! Grunderna för relationsmodellen! 1 Varför behöver jag lära mig relationsmodellen?! Relationsmodellen är den totalt dominerande datamodellen i moderna databassystem Beskriver databaser som en mängd tabeller

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Lördagen den 21 oktober 2006 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Relationell databasdesign

Relationell databasdesign Relationell databasdesign Kapitel 7 Relationell databasdesign sid Uppdelning m.h.a. funktionella beroenden 3 Funktionella beroenden - teori 12 Uppdelningsalgoritmer 27 Designprocess 33 Relational oath

Läs mer

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Inga hjälpmedel är tillåtna (annat än ordbok). Kort syntaxsamling för delar av SQL samt lista med symboler för relationsalgebraiska

Läs mer

Idag. Hur vet vi att vår databas är tillräckligt bra?

Idag. Hur vet vi att vår databas är tillräckligt bra? Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik

Läs mer

Tentamen 2I1033, IT i Organisationer och Databasteknik lördag 17/4 2004, kl. 10 15 LÖSNINGSFÖRSLAG

Tentamen 2I1033, IT i Organisationer och Databasteknik lördag 17/4 2004, kl. 10 15 LÖSNINGSFÖRSLAG Institutionen för Data- och Systemvetenskap SU/KTH Maria Bergholtz Tentamen 2I033, IT i Organisationer och Databasteknik lördag 7/4 2004, kl. 0 5 LÖSNINGSFÖRSLAG Inga hjälpmedel tillåtna. Skriv bara på

Läs mer

Uppdelning. Relationell databasdesign, FB Teori 7-20. Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av

Uppdelning. Relationell databasdesign, FB Teori 7-20. Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av Relationell databasdesign, FB Teori 7-20 Uppdelning Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av R om R i = R, i=1,...,n. Dvs. varje R i är en delmängd av R och varje attribut

Läs mer

Lösningsförslag, tentamen i Databaser

Lösningsförslag, tentamen i Databaser LUNDS TEKNISKA HÖGSKOLA 1(4) Institutionen för datavetenskap Lösningsförslag, tentamen i Databaser 2004-04-20 1. ER-diagram: Matsedel år vecka serveras 1..5 lagas-med Maträtt Ingrediens dag mängd Allergi

Läs mer

Föreläsning 4 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Normalisering (Analytisk databasdesign)

Föreläsning 4 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Normalisering (Analytisk databasdesign) Föreläsning 4 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Normalisering (Analytisk databasdesign) 1 Vad är en databas? Logiskt sammanhängande mängd av data,

Läs mer

Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem?

Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem? Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem? En mängd program som tillåter användaren att skapa och underhålla

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-08-20 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen Lördag 8 juni kl

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen Lördag 8 juni kl Institutionen för Data- och Systemvetenskap IT-universitetet Maria Bergholtz Tentamen DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen Lördag 8 juni kl. 10-14 Inga hjälpmedel tillåtna (syntaxsammanställning

Läs mer

Databasdesign. E-R-modellen

Databasdesign. E-R-modellen Databasdesign Kapitel 6 Databasdesign E-R-modellen sid Modellering och design av databaser 1 E-R-modellen 3 Grundläggande begrepp 4 Begränsningar 10 E-R-diagram 14 E-R-design 16 Svaga entitetsmängder 19

Läs mer

Föreläsning 4 Dagens föreläsning går igenom

Föreläsning 4 Dagens föreläsning går igenom Databasbaserad publicering Föreläsning 4 1 Föreläsning 4 Dagens föreläsning går igenom E/R-modellen, fortsättning Frågor till flera tabeller samtidigt Många-till-många-relationer Läs om E/R-diagram i kapitel

Läs mer

DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL. r s använder vi för att uttrycka frågor där ordet alla figurerar:

DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL. r s använder vi för att uttrycka frågor där ordet alla figurerar: DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL r s använder vi för att uttrycka frågor där ordet alla figurerar: Ex. Vilka personer har stamkundskort vid ALLA klädesbutiker i stad X? Vilka personer har bankkonto

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-12-18 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Tentamen Databasteknik

Tentamen Databasteknik Försättsblad Tentamen Databasteknik 2003 04 29, 8.00 13.00 Inga hjälpmedel. Bedömning (preliminär): uppgifterna ger maximalt 14 + 11 + 11 + 6 + 4 + 4 = 50 poäng. För godkänt krävs 25 poäng (3/25, 4/33,

Läs mer

Exempel tentamen. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt, annars rättas inte tentamen Alla hjälpmedel är tillåtna

Exempel tentamen. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt, annars rättas inte tentamen Alla hjälpmedel är tillåtna Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Exempel tentamen 2I-1100 Informationssystem och Databasteknik Tentamen är öppen i så motto att läroböcker, föreläsningsanteckningar,

Läs mer

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista Databaser Vad är en databas? Vad du ska lära dig: Använda UML för att modellera ett system Förstå hur modellen kan översättas till en relationsdatabas Använda SQL för att ställa frågor till databasen Använda

Läs mer

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 2013 kl. 9-13

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 2013 kl. 9-13 Institutionen för Data- och Systemvetenskap IT-universitetet Maria Bergholtz Tentamen DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 203 kl. 9-3 Inga hjälpmedel tillåtna (syntaxsammanställning

Läs mer

Databaser och databasdesign. Den relationella modellen, normalisering och modellering (2)

Databaser och databasdesign. Den relationella modellen, normalisering och modellering (2) Databaser och databasdesign Den relationella modellen, normalisering och modellering (2) Varför databaser (DB)? Vi vill och måste kunna lagra data på sätt som motsvarar olika verksamheters behov Vad är

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-11-07 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

Relationsdatabasdesign

Relationsdatabasdesign Vad är Relationsdatabasdesign? Relationsdatabasdesign nikosd@kth.se 08-7904460 rum 8522 Connolly/Begg (3rd edition) Kapitel 4., 4.2 och 5 (4th edition) Kapitel 5., 5.2 och 6 (5th edition) Kapitel 6., 6.2

Läs mer

Informationssystem och Databasteknik

Informationssystem och Databasteknik Informationssystem och Databasteknik Föreläsning 4 Relationsmodellen Från konceptuell modell till relationsdatabasschema Analytisk databasdesign Vad är ett databashanteringssystem? En mängd program som

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i

Läs mer

Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18

Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 LiTH, Tekniska högskolan vid Linköpings universitet 1(5) IDA, Institutionen för datavetenskap Juha Takkinen Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 Lokal T2 och

Läs mer

KOMBINATORIK OCH BINOMIALSATSEN

KOMBINATORIK OCH BINOMIALSATSEN KOMBINATORIK OCH BINOMIALSATSEN PERMUTATIONER (Ordnade listor med n element, så kallade n- tipplar) 1. (permutationer av n olika element) Vi betraktar ordnade listor med n olika element,,, Varje bestämd

Läs mer

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder Mängder Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Grundbegrepp: Mängder och element Delmängder Operationer på mängder: Union och snitt Differens och komplement

Läs mer

Databaser - Design och programmering. Operationer i relationsalgebra. Att söka ut data. Exempel DBschema. Att plocka ut data, forts

Databaser - Design och programmering. Operationer i relationsalgebra. Att söka ut data. Exempel DBschema. Att plocka ut data, forts Databaser Design och programmering Relationsalgebra den matematiska grunden för att bearbeta data representerad i relationsmodellen Operationer i relationsalgebra Två typer av operationer: Operationer

Läs mer

Tentamen i. Databasteknik

Tentamen i. Databasteknik Tentamen i Databasteknik Torsdagen den 10/3 2005 14.00-19.00 Tillåtna hjälpmedel: Allt tänkbart material Använd bara framsidan på varje blad Skriv max en uppgift per blad. Skriv tydligt. Motivera allt.

Läs mer

Webbprogrammering, grundkurs 725G54

Webbprogrammering, grundkurs 725G54 Webbprogrammering, grundkurs 725G54 Bootstrap jquery SEO RWD MuddyCards. Tidigare Muddycards Många positiva kommentarer Ibland för högt tempo på föreläsning Lägg ut labbar tidigare Mer föreläsningar (2

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

TDDI60 Tekniska databaser

TDDI60 Tekniska databaser Lena Strömbäck 2006-10-13 Skriftlig tentamen i kursen TDDI60 Tekniska databaser Datum: 2006-10-13 Tid: 8-12 Lokal: T2, U3 Hjälpmedel: Engelsk ordlista tillåten ej elektronisk Poängränser: Tentamen består

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

Databaser och Datamodellering Foreläsning IV

Databaser och Datamodellering Foreläsning IV Webbprogrammering - 725G54 Databaser och Datamodellering Foreläsning IV Agenda Databaser ERD SQL MySQL phpmyadmin Labb 4 Databaser Databas - samling med data Databashanterare Enkelt Kraftfullt Flexibelt

Läs mer

Databasteknik för D1 m fl

Databasteknik för D1 m fl 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1 m fl tisdag 10 januari 2017 Gäller som tentamen

Läs mer

Föreläsning 3 Dagens föreläsning går igenom

Föreläsning 3 Dagens föreläsning går igenom Databasbaserad publicering Föreläsning 3 1 Föreläsning 3 Dagens föreläsning går igenom E/R-modellen & Läs om E/R-diagram i kapitel 2-3 i boken "Databasteknik" eller motsvarande avsnitt på http://www.databasteknik.se/webbkursen/er/index.html

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007

Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007 UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är

Läs mer

Diskret matematik: Övningstentamen 1

Diskret matematik: Övningstentamen 1 Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som

Läs mer

Databasteknik för D1, SDU1 m fl

Databasteknik för D1, SDU1 m fl 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1, SDU1 m fl lördag 7 mars 2015 Gäller som tentamen

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2013-12-12 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Relationsmodellen och syntetisk databasdesign

Relationsmodellen och syntetisk databasdesign Relationsmodellen och syntetisk databasdesign Den teoretiska grunden för relationsdatabaser Från konceptuellt schema till databas Relationsmodellen Bil Ägare En relationsdatabas är en databas som uppfattas

Läs mer

Relationsmodellen. Relations modellen är idag den mest änvända datamodellen för kommersiella

Relationsmodellen. Relations modellen är idag den mest änvända datamodellen för kommersiella Relationsmodellen 2-1 Relationsmodellen Relations modellen är idag den mest änvända datamodellen för kommersiella applikationer. Relationsdatabasstruktur En relationsdatabas består av en samling tabeller,

Läs mer

EMPS(NAME, SALARY, DEPT)

EMPS(NAME, SALARY, DEPT) Databaser Design och programmering Relationsalgebra den matematiska grunden för att bearbeta data representerad i relationsmodellen Operationer i relationsalgebra Två typer av operationer: Operationer

Läs mer

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B. Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +

Läs mer

TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18

TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18 Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18 Jourhavande lärare: Jose M. Peña (1651) Poäng: Tentan består av 2 delar. För godkänd krävs

Läs mer

Abstract. Webbsida för lagring av alumner i en databas. Website containing a database for the storage of alumni contact information.

Abstract. Webbsida för lagring av alumner i en databas. Website containing a database for the storage of alumni contact information. Abstract Webbsida för lagring av alumner i en databas Website containing a database for the storage of alumni contact information Teknisk- naturvetenskaplig fakultet UTH-enheten Besöksadress: Ångströmlaboratoriet

Läs mer

Databasteori Övningar

Databasteori Övningar Databasteori Övningar Eva L. Ragnemalm November 2009, uppdaterad april 2010 Kapitel 1: ER-modellering Skapa ER-diagram för nedanstående övningar (läs om ERmodeller i boken) 1. Universitetet (Detta är samma

Läs mer

Relationer och funktioner

Relationer och funktioner Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer

Läs mer

Grundläggande 1 övningar i kombinatorik

Grundläggande 1 övningar i kombinatorik UPPSALA UNIVERSITET Matematiska institutionen Vera Koponen Baskurs i matematik Grundläggande 1 övningar i kombinatorik Se till att ni klarar av dessa uppgifter innan ni går vidare till svårare uppgifter

Läs mer

Träning i bevisföring

Träning i bevisföring KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar

Läs mer

Databasteori. Övningar

Databasteori. Övningar Databasteori Övningar Erik Prytz Uppdaterad november 2014, november 2015 Eva L. Ragnemalm November 2009, uppdaterad april 2010 Kapitel 1: ER- modellering Skapa ER- diagram för nedanstående övningar (läs

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Mängder, funktioner och naturliga tal

Mängder, funktioner och naturliga tal Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Onsdagen den 7 mars 2007 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Tentamen och lösning, 031215

Tentamen och lösning, 031215 Institutionen för Data- och Systemvetenskap SU/KTH Paul Johannesson, Maria Bergholtz Tentamen och lösning, 0325 2I-033, IT i Organisationer och databasmetodik Skriv bara på en sida av pappret Skriv namn

Läs mer

Matematik för språkteknologer

Matematik för språkteknologer 1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos

Läs mer

TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner

TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner TATM79: Föreläsning 6 Logaritmer och eponentialfunktioner Johan Thim augusti 06 Den naturliga logaritmen Vi börjar med att introducera den naturliga logaritmen. Definition. Den naturliga logaritmen ln

Läs mer

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material Tentamen i lördagen den 13 mars 2004 Tillåtna hjälpmedel: Allt upptänkligt material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Lite om databasdesign och modellering

Lite om databasdesign och modellering Lite om databasdesign och modellering Konceptuell databasdesign Med konceptuell databasdesign avses processen att konstruera en datamodell för en verksamhet, oberoende av fysiska villkor. Modelleringen

Läs mer

Informationssystem och Databasteknik

Informationssystem och Databasteknik Informationssystem och Databasteknik Föreläsning 4 Relationsmodellen Från konceptuell modell till relationsdatabasschema Inför projektarbetet: - sammansmältning av flera överlappande modeller av samma

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Tentamen i. Databasteknik. för D1, SDU1 m fl. tisdag 15 januari 2013

Tentamen i. Databasteknik. för D1, SDU1 m fl. tisdag 15 januari 2013 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1, SDU1 m fl tisdag 15 januari 2013 Gäller som

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

När du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel.

När du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel. Logik och bevis II 3. föring Detta avsnitt handlar om olika metoder för att bevisa påståenden, och hur man kan konstruera ett bevis. I varje avsnitt finns en allmän beskrivning av metoden, varför den fungerar

Läs mer

Lösningsförslag till. tentamen för 1E1601

Lösningsförslag till. tentamen för 1E1601 Lösningsförslag till tentamen för 1E1601 måndag 10 mars 2003 Lösningsförslag till tentamen för 1E1601 10 mars 2003 Sid 1 av 3 1. a. Antaganden: i. Varje film har ett eget beställningsnummer så att det

Läs mer