Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem?

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem?"

Transkript

1 Föreläsning 3 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Vad är ett databashanteringssystem? En mängd program som tillåter användaren att skapa och underhålla databaser Normalisering (Analytisk databasdesign) 1 2 DATABASSYSTEM Användare/Programmerare Applikationsprogram/Frågor Relationsdatabas DBMS Program för att hantera frågor/program Program för att hantera lagrade data Lagrad databasdefinition (metadata) Lagrad databas En relationsdatabas är en databas som uppfattas av användaren som en samling tabeller - oberoende av hur datamängden fysiskt är lagrad. 3 4

2 Relations schema Project PRNR START KLART PLATS BUDGET Attribut Domän t.ex. Domänen för attributen BUDGET är Integer större än noll Grad - antal attribut Relation Project PRNR Prnr1 Prnr2 Prnr3 Prnr4 START KLART PLATS Goteborg Falun Stockholm Lund BUDGET Cell Kardinalitet - antalet rader (tuppler) Tuppel ( sveng elska ) (Rad) 5 6 Egenskaper hos relationer Atomära värden i varje cell Grafisk notation för konceptuella scheman - avbildningsreglerna avgör vad som kan utgöra identifierare! APA : Sträng * äter 1..1 BANAN Värdena i varje kolumn är av samma typ Varje rad (tuple) är unik Ordningen mellan attributen är inte alltid oväsentlig Ordningen mellan raderna är oväsentlig et för varje attribut är unikt för en relation TOTALITET Textsträng APA ENVÄRDHET alternativ, starkare, notation: UNICITET (båda max-värdena = 1, alternativt ENVÄRT+INJEKTIVT) TOTALITET 0..* äter 1..1 BANAN 7 8

3 Från ett konceptuellt schema till en relationsdatabas Enkelt objekt - envärda attribut : String 1..1 UNIK Ålder: String 1..1 äger 0..* 0..* Regno: String 1..1 UNIK Märke: String 1..1 nr: String 1..1 UNIK : String 1..1 Ett sätt: Ett annat sätt: ((), Ålder) ÄGER((, Regnr)) ((Regnr), Märke) 0..* ÄGANDE Regnr Ålder Regnr Märke nr Identifierande attribut är skuggat Enkelt objekt - flervärda attribut nr nr: String 1..1 UNIK : String 1..1 Titel: String 0..* Titel nr Titel Civ.ing Fil.dr Civ.ing nr Nycklar? Titel nr Titel Civ.ing Fil.dr Tekn.dr En nyckel är ett antal attribut (t ex ett) som unikt identifierar en rad. Den/de attribut som väljs som identifierare kallas primärnyckel. Eventuella övriga nycklar blir alternativnycklar. En främmande nyckel är ett/flera attribut i en tabell som svarar mot primärnyckeln i en annan tabell. nr i tabellen TITEL ingår i primärnyckeln för tabellen TITEL men utgör även främmande nyckel mot tabellen. Främmande nyckel-attribut är det som relaterar olika tabeller till varandra. Alla värden som förekommer i främmande-nyckel kolumerna måste ha sin motsvarighet som primärnyckel i en annan tabell, eller också måste de vara NULL. De två sista villkoren brukar kallas referential integrity

4 Entity integrity Ingen del av primärnyckeln får vara NULL (primärnyckeln identifierar ju en rad och måste alltid finnas). Referential integrity Alla värden för kolumner som utgör främmande nyckel kolumner mot en annan tabell måste svara mot existerande primärnyckel-värden för denna andra tabell. Eller också måste värdena i främmande nyckelkolumnerna vara NULL. Detta betyder bland annat att främmande nyckel kolumnerna i en tabell måste ha samma domäner som primärnyckel kolumnerna i den tabell som de refererar till. Identifierare Objekt kan identifieras med hjälp av attribut och/eller samband mellan objekt. Avbildningsreglerna för ett attribut som ensamt ska tjäna som identifierare måste alltid vara UNIKT och TOTALT (se nedan). Detta betyder att alla sådana attribut kan väljas ensamma som primärnyckel. Motsatsen till totala attribut kallas f. ö. PARTIELL(a) attribut (eller partiella relationer). En identifierare för ett objekt kan sättas samma av ett eller flera attribut som hör till objektet eller ett attribut plus ett eller flera samband mellan objektet och andra objekt. A attributename: Datetype 1..1 UNIK Sammansatta identifierare Sammansatta identifierare KURSDELTAGANDE nr: String 1..1 Kurskod: String 1..1 Nivå: String 1..1 Entitetstypen KURSDELTAGANDE modellerar att en student går en viss kurs. Man kan läsa kurser på flera olika nivåer där C-nivån har en svårare tenta än A-nivån. Här finns inget attribut som ensamt är både unikt och totalt (en viss student kan läsa flera kurser än en så kurskod är inte unikt, en kurs har flera deltagare så personnummer är inte unikt. Detsamma gäller nivå där flera studenter kan läsa t ex B-nivån). Kombinerar man ihop attributen personnummer och kurskod får man dock en unik identifierare (detta under förutsättning att man inte kan läsa samma kurs på flera olika nivåer. Om detta gäller måste även nivå inkluderas i identifieraren). KURS Kurskod: String 1..1 UNIK : String 1..1 Vad identifierar KURS? Jo, Kurskod! (Unikt och totalt) hör_till * KURSTILLFÄLLE Kursansvarig: String 1..1 Starttid: String 1..1 Sluttid: String 1..1 Inget av attributen hos klassen KURSTILLFÄLLE är unikt och totalt. Inte ens om man kombinerar ihop alla attributen är det säkert att detta blir unikt (en lärare kan vara ansvarig för olika kurser som går under samma tidsperiod). KURSDELTAGANDE nr Kurskod Nivå Om vi däremot väljer att identifiera ett kurstillfälle med attributen starttid, sluttid och kurskod (dvs KURSTILLFÄLLES relation mot KURS) har vi en unik identifierare

5 KURS Kurskod: String 1..1 UNIK : String 1..1 hör_till * KURSTILLFÄLLE Kursansvarig: String 1..1 Starttid: String 1..1 Sluttid: String 1..1 Surrogatnycklar Vanliga användarspecificerade nycklar kan vara bristfällig ett par avseenden: KURS Kurskod KURSTILLFÄLLE Kurskod Tabellen KURSTILLFÄLLE har en primärnyckel som består av kolumnerna Kurskod, Starttid och Sluttid. Kolumnen Kurskod ingår i PN men utgör även FN mot tabellen KURS. Starttid Sluttid Kursansvarig 1. De kan förändras Exempelvis händer det att attribut som t ex avdelningsnummer/namn förändras när ett företag organiseras om. 2. Olika användarnamn kan användas för att identifiera samma entitet. T ex KUNDER KUND CUSTOMER jfr homonymer. Surrogat är systemgenererade entitetsidentifierare vars unikhet är garanterad för alltid och som alltså ej kan förändras Surrogatnycklar Från konceptuellt schema till databas, fortsättning ANVÄNDARE BEHÖVER INTE VARA MEDVETNA OM ATT SURROGAT-NYCKLAR ANVÄNDS, EFTERSOM DESSA BARA ANVÄNDS INTERNT. FORTFARANDE HAR MAN "I LEVANDE LIVET" BEHOV AV ATT KUNNA IDENTIFIERA OBJEKT, OCH BEHOVET AV "ENTITY INTEGRITY" GÖR ATT (ANVÄNDARNAS) PRIMÄR-NYCKEL BEHÖVS. INTERNT KOMMER DOCK SURROGATET ATT ANVÄNDAS SOM ENVÄRDA UNIKA PRIMÄR-NYCKLAR OCH ÄVEN I Partiella relationer (och för all del attribut) ger upphov till problem med NULL-värden. Har man inte modellerat bort risken för NULL-värden bör man ta hand om det vid transformationen från konceptuell modell till relationsschema. Partiella relationer och attribut undviks t ex om man använder isahierarkier. REFERENSER SOM FRÄMMANDE NYCKLAR

6 NULL ANSTÄLLDA NULL Null-värden kan ge problem vid join. AVDELNING Pnr Anst.nr Adress Avd.nr Avdelning Avd.nr Vad betyder egentligen NULL? Värde saknas? Värde finns men är ej känt? (just nu...) Värde är ej tillämpligt? (jfr arvs-hierarkier ) A Byv. 3 3 Forskning B Solsv. 6 5 Försäljn AA Byv. 5 3 Admin B Byv X Solv. 7 NULL Y Byv. 11 NULL En join mellan anställda över Avd.nr kommer att resultera i att de två sista anställda inte kommer med. Beroende på omständigheterna kan detta vara vad som avsågs eller felaktigt. Pnr Anst.nr Adress Avd.nr Avdelning Avd.nr A Byv. 3 3 Forskning B Solsv. 6 5 Försäljn AA Byv. 5 3 Forskning B Byv.7 1 Admin : String 1..1 UNIK Ålder: String äger 0..1 Regno: String 1..1 UNIK Märke: String 1..1 Partiella relationer alternativ lösning: : String 1..1 UNIK Ålder: String äger 0..1 Regno: String 1..1 UNIK Märke: String 1..1 nr Bil Regnr Ägs-av Typ AIB Volvo BPL Fiat FJK 359 NULL Saab Det sammanbindande attributet läggs så att det får så få nullvärden som möjligt! Här antas att det finns fler personer utan bilar än tvärtom. nr ÄGANDE Bil / Ägs-av Regnr AIB BLP 845 Bil Regnr Typ AIB 436 Volvo BPL 845 Fiat FJK 359 Saab 23 24

7 Samband där avbildningarna har M ( många, * ) på en av sidorna : String 1..1 UNIK Ålder: String äger 0..* Regno: String 1..1 UNIK Märke: String 1..1 Regel: Främmande nyckeln ska placeras i den.tabell som sitter på * ( många ) - sidan! nr Bil Regnr Ägs-av Typ AIB Volvo BPL Fiat FJK 359 NULL Saab M:M ( många till många, * : * ) måste lösas : String 1..1 UNIK Ålder: String * äger 0..* Regno: String 1..1 UNIK Märke: String 1..1 M:M- relationer måste alltid lösas med ett relationsobjekt (jämför med reifiering). Nullvärden undviks dessutom. nr Vid den första konceptuella modellen fick ju M:M samband finnas (såvida inte sambandet hade egna attribut). Vid övergång till ett relationsschema bildar man en en ny tabell som innehåller identiferarna från respektive entitet som sammankopplades via M:Msambandet ÄGANDE Bil / Ägs-av Regnr AIB AIB BPL JTL 739 Bil Regnr Typ AIB 436 Volvo BPL 845 Fiat FJK 359 Saab JTL 739 BMW 27 28

8 ANSTÄLLD Arvssamband nr :String 1..1 UNIK : String 1..1 KONSULT Avdelning: String 1..1 Projekt: String 1..1 Översättning av entitet med sammansatta icke-lexikala identifierare nr: String 1..1 UNIK : String * 1..1 RUM Rumsnr: String 0..* 1..1 bor_på 1..1 ingår_i HOTEL Hnamn: String 1..1 UNIK Typ: String 1..1 Rumsnummer räcker inte till för att identifiera (= vara möjlig att välja som primärnyckel) tabellen RUM! Anställd nr Avd Dam Herr nr Konsult nr Projekt PR nr Rumsnr H Anna 2A Astoria Lisa 3B Ritz Eva 4S Astoria Pelle 2A Plaza RUM Rumsnr 2A 3B 4S 2A H Astoria Ritz Astoria Plaza HOTEL H Typ Astoria 5* Ritz 3* Plaza 5* Informationsförlust? Från ett konceptuellt schema till en relationsdatabas Övning: Översätt följande två scheman til två olika relationsdatabasstrukturer: nr: String 1..1 UNIK nr: String 1..1 UNIK : String 1..1 UNIK Ålder: Integer 0..* äger 0..* Regno: String 1..1 UNIK Märke: String 1..1 ISA ANSTÄLLD Anstnr: String 1..1 UNIK 1..1 gift_med 1..1 ANSTÄLLD Anstnr: String 1..1 UNIK Ett sätt: ((), Ålder) ÄGER((, Regnr)) ((Regnr), Märke) Ett annat sätt: ÄGANDE Regnr Ålder Regnr Märke Vart tog alla regler vägen? 31 32

9 Vart tog alla regler vägen fortsättning? Domändefinition - Domänbeskrivningar - Referensregler (Främmande Nyckel-specifikationer) - Integritetsregler (triggers) Kontroll av data skall ske så tidigt (så nära källan) som möjligt! Domänkarakteristika datatyp längd format Exempel numeric, integer, char* 5 siffror, 30 tkn ååmmdd, nnnn-nnnnnnn Systemet skall inte kontrollera att data inte är fel, utan undanröja möjligheterna till att det blir fel * siffra, heltal, tecken Domäner för nycklar Inför SQL (DDL-delen): PK AK FK ej null, unika unika, men får vara null, eller delvis null måste vara samma (domänspecifikt) som PK i föräldratabell EMPLOYEE Eid: String 1..1 UNIK Detta blir två tabeller: EMPLOYEE((EID), BID) 1..* 1..1 works_at BUSINESS Bid: String 1..1 UNIK och BUSINESS(BID) Hur defineras tabellen EMPLOYEE ovan? SQL har en DDL-del (lite mer okänd än DML-delen). DDL betyder Data Definition Language. DML betyder Data Manipulation Language. Med DDL kan vi definiera tabeller, regler etc. Med DML kan vi sen ställa frågor mot de tabeller vi skapat

10 SQL: DDL-exempel Mera främmande nycklar... CREATE TABLE EMPLOYEE (EID VARCHAR(11) NOT NULL UNIQUE, BID CHAR(7) NOT NULL, PRIMARY KEY(EID), FOREIGN KEY(BID) REFERENCES BUSINESS ON DELETE CASCADE ON UPDATE CASCADE) Med hjälp av DDL-satsen ovan har vi realiserat ett antal regler. Entity integrity regler: Ingen del av primärnyckeln får vara NULL och PN måste vara unik för varje förekomst av entiteten. Alltså måste det (de) attribut som väljs till PN deklareras som NOT NULL och UNIQUE *. Vidare bör man ta ställning till vad som ska hända med främmande nyckel-attributet vid DELETE respektive UPDATE av en föräldra -entitet. DELETE och UPDATE-regler talar om just vilka effekter ett borttag eller en uppdatering av en föräldraentitet får på barn -entiteten. Här har vi valt att låta såväl DELETE som UPDATE vara CASCADES. Dvs ett borttag av en föräldraentiet innebär att även barnentiteten tas bort. En uppdatering av en föräldraentitet innebär att även främmande nyckelfältet i barnentiteten uppdateras. Vilka andra typer av effekter på DELETE/ INSERT kunde man valt? CREATE TABLE EMPLOYEE (EID VARCHAR(11) NOT NULL UNIQUE, BID CHAR(7) NOT NULL, PRIMARY KEY(EID), FOREIGN KEY(BID) REFERENCES BUSINESS ON DELETE CASCADE ON UPDATE CASCADE) Här talar man om att BID i tabellen EMPLOYEE refererar till (är främmande nyckel mot) tabellen BUSINESS. Det måste alltså finnas en primärnyckel i BUSINESS vars värden svarar mot värdena för BID i tabellen EMPLOYEE. Om man inte skriver SQL kan man fortfarande visa vilka främmandenyckelrelationer som råder. T ex genom *) ibland innebär själva deklarationen av ett attribut som PN just att NOT NULL resp. UNIQUE upprätthålls. Då behöver man inte ange detta specifikt. EMPLOYEE. BID = BUSINESS.BID DDL / Arvssamband nr :String 1..1 UNIK : String 1..1 TRIGGERS ANSTÄLLD KONSULT Avdelning: String 1..1 Projekt: String 1..1 Anställd(nr:char(10), Avd:varchar(20)) PK nr FK nr REFERENCES UPDATE OF.nr CASCADES DELETE OF CASCADES (nr:char(10), :varchar(20)) PK nr Konsult(nr:char(10), Projekt:varchar(20)) PK nr FK nr REFERENCES UPDATE OF.nr CASCADES DELETE OF CASCADES Regler för verksamheten som tas med i modellen! - Beställningspunkt skall kontrolleras vid utleverans - Inrapporterad körsträcka måste överstiga förgående inrapporterade körsträcka - Kunds kreditgräns får ej överskridas - Om beställningspunkt är större än antal-i-lager skall beställningsmeddelande skrivas ut TIDSINSTÄLLDA TRIGGERS aktiveras vid tider eller efter tidsintervall 39 40

11 Triggers händelse som utlöser (insert, update, delete, retrieve) objekt (attribut eller entitet) som berörs villkor som utlöser triggern åtgärder när triggern utlöses Triggers exempel CREATE TRIGGER Signalera_stora_ökningar: AFTER UPDATE OF SALARY ON EMPLOYEE REFERENCING NEW AS n OLD AS o FOR EACH ROW MODE DB2SQL IF n.salary > 1.1 * o.salary SIGNAL SQLSTATE ( Salary increase > 10 % ) EMPLOYEE Name Adress Salary Kalle Byvägen Olle Solstigen Stina Ekgränd Kurt Byvägen Funktionellt beroende: Pnr Funktion (i vanlig mat. betydelse): Kontrollera relationer genom normalisering (Analytisk databasdesign) Ej funktion: Maria Eva Sture Olle För varje värde på Pnr, tex 22222, får det finnas högst ett värde på ett. Däremot får två (eller flera) Pnr ha samma värde på. Dessutom finns det som inte pekas ut av något Pnr. Liksom det finns Pnr:er som inte pekar ut något Maria Eva Sture Olle Här är det funktionella beroendet inte uppfyllt. Pnr:et pekar ut två värden på, nämligen Maria och Eva

12 Funktionellt beroende: Maria Eva Sture Olle Pnr Funktion (i vanlig mat. betydelse): För varje värde på Pnr, tex 22222, får det finnas högst ett värde på ett. Däremot får två (eller flera) Pnr ha samma värde på. Dessutom finns det som inte pekas ut av något Pnr. Liksom det finns Pnr:er som inte pekar ut något. Semantiken i funktionella beroenden Primärnyckeln i en tabell bestämmer övriga attribut funktionellt (dvs givet en viss primärnyckel finns det maximalt ett värde på alla övriga attribut/kolumner) Dessutom är vissa normalformer definerade i termer av funktionella beroenden Ej funktion: Maria Eva Sture Olle Här är det funktionella beroendet inte uppfyllt. Pnr:et pekar ut två värden på, nämligen Maria och Eva. Kom ihåg att funktionella beroenden är ett uttryck för semantiken, betydelsen, i en applikation. Det svåra i en designprocess är att klarlägga denna semantik Funktionellt beroende, exempel Produkt Prodnr Mtrl Färg Lagerplats 1234 trä gul hylla stål grå hylla5 Prodnr Prodnr Prodnr Mtrl Färg Lagerplats 1NF, 2NF och 3NF 1NF A relation is in first normal form iff the domains for all attributes are atomic 2NF A relation is in second normal form iff it is in first normal form and all the nonkey attributes are fully functionally dependent on the key När man ibland talar om Fullständigt funktionellt beroende har det att göra med primärnyckelns "minimalitet", dvs attributen skall vara beroende av hela (sammansatta) nyckeln. I en del litteratur gör man inte denna distinktion. 3NF A relation is in third normal form iff it is in second normal form and no nonkey attribute is transitively dependent on the key 47 48

13 1 NF En relation (tabell) är i 1NF omm varje attribut i tabellen består av atomära värden. Hur skulle en tabell se ut om den inte var i 1NF (dvs. i 0NF)? Pnr Ort Postnr Ann, Maria Kista Kalle Södertälje Maria Södertälje Lisa Kista Attributet innehåller en mängd värden, dvs tabellen är inte i 1 NF. Två möjliga lösningar: 1. Pnr Ort Postnr Ann Kista Maria Kista Kalle Södertälje Maria Södertälje Lisa Kista Pnr Ort Postnr Kista Södertälje Södertälje Kista NF Pnr Ann Maria Kalle Maria Lisa Observera att def. av 1NF inte talar om vare sig nycklar eller funktionella beroenden. Alla attribut ska vara atomära. Punkt slut. Lösning nr 2 bygger dock intuitivt på att vi i den ursprungliga tabellen insåg att Pnr funktionellt bestämde alla de andra attributen (i alla fall så länge utgjorde en mängd värden). I den ursprungliga tabellen kunde alltså Pnr väljas till primärnyckl (PN). I så fall kan man alltid övergå till 1 NF genom att bryta ut PN plus det attribut som inte var atomärt och skapa en en ny tabell av dessa två. I den gamla tabellen blir Pnr, Ort och Postnr kvar Nycklar... Pnr Ort Postnr Ann Kista Maria Kista Kalle Södertälje Maria Södertälje Lisa Kista Pnr Ort Postnr Pnr Kista Ann Södertälje Maria Södertälje Kalle Kista Maria Lisa Det (de) attribut som ska utgöra primärnyckel måste funktionellt bestämma alla övriga attribut. Vilka funktionella beroenden finns i 1? Jo, Pnr, Ort, Postnr Pnr och får utgöra PN Vilka funktionella beroenden finns i 2? I första tabellen har vi Pnr Ort, Postnr så där får Pnr bli PN. I andra tabellen finns inga funktionella beroenden utan båda attributen behövs för att identifiera en rad. Partiellt funktionellt beroende A --> B kallas ett partiellt funktionellt beroende omm det existerar ett C som är en äkta delmängd av A OCH C --> B En relation, R, är i 2NF omm den är i 1NF och om det för varje attribut i R gäller ETT av följande villkor: 1. Attributet ingår i en kandidatnyckel (ev. den som väljs som PN) 2. Attributet är INTE partiellt beroende av en kandidatnyckel (ev. PN). Mao, alla attribut ska vara fullständigt funktionellt beroende av hela primärnyckeln, inte bara en del av denna

14 2NF En tabell är i 2NF omm den är i 1NF och alla attribut är funktionellt beroende av hela primärnyckeln. Dvs Pnr, Ort, Postnr Vi fortsätter exemplet från 1NF: gäller. Dvs. för varje par av värden på Pnr och så finns det högst ett värde på såväl Ort som Postnr. Pnr Ort Postnr Ann Kista Maria Kista Kalle Södertälje Maria Södertälje Lisa Kista NF 2NF -NAMN Pnr Ort Postnr Pnr Kista Ann Södertälje Maria Södertälje Kalle Kista Maria Lisa Men både Ort och Pnr bestämms också av enbart Pnr. Alltså gäller Pnr Ort, Postnr. Ort och Postnr är alltså inte beroende av hela nyckeln. Bryt ut Pnr och de attribut som Pnr bestämmer till en egen tabell! Som synes får vi samma lösning som lösning 2. när vi försökte gå från 0NF till 1NF. Lösning 2. var alltså redan i 2NF! ENTITET/ KLASS a: Datatype 1..1 UNIK b: Datatype 1..1 c: Datatype 1..1 c: Datatype 1..1 Identifierare - Primärnyckel? TABELL blev ju en tabell: a b c d Observera att om a har avbildningsregeln 1..1 UNIK och övriga attribut (dvs. b, c, d) 1..1 så finns det ett funktionellt beroende: a b, c, d dvs a kan väljas till PN. TABELL a b c d Transitivt beroende Ett funktionellt beroende X --> Y för en relation R utgör ett transitivt beroende om följande båda saker gäller: 1. Det existerar en mängd attribut Z, sådan att Z varken utgör en kandidatnyckel för R eller ingår i en kandidatnyckel för R 3NF En tabell är i 3NF omm den är i 2NF och det inte existerar några transitiva beroenden mellan något icke-nyckel attribut och nyckeln. 2NF 2NF (och 3NF!) -NAMN Pnr Ort Postnr Pnr Kista Ann Södertälje Maria Södertälje Kalle Kista Maria Lisa I vårt fall bestämmer Postnr Ort, dvs. Postnr Ort. Dessutom är ju Ort bestämd av Pnr, dvs Pnr Ort. Och Postnr är inte någon kandidatnyckel, inte heller del av någon sådan. 2. X --> Z OCH Z --> Y Något svagare definition (baserad på primärnyckel istället för kandidatnyckel): Z får varken utgöra primärnyckel eller ingå i primärnyckeln. 3NF POST Postnr Ort Kista Södertälje Södertälje 3NF Pnr Postnr Ort är transitivt beroende av nyckeln (Pnr). Lösning: Bryt ut det transitiva beroendet till en egen tabell

15 Tabell i 2N Kurs Datum Lärare Sal Antal_sittplatser DB: Maria F1 100 DB: Kalle F1 100 PP: Kalle F2 50 SYS: Maria F1 50 SÄK: Kurt F1 100 Tabell i 3NF Kurs Datum Lärare Sal Mera 3NF Kurs, Datum --> Lärare, Sal, Antal_sittplatser Sal --> Antal_sittplatser Tabell i 3NF Sal Antal_sittplatser Problem vid ofullständig normalisering Ofullständig normalisering leder till sk uppdateringsanomalier: INSÄTTNING: Man kan inte lägga in uppgifter om en sals antal sittplatser om salen ifråga inte används av en kurs BORTTAG: När den enda kursen som en sal används i tas bort så försvinner även alla uppgifter om salen DB: Maria F1 DB: Kalle F1 PP: Kalle F2 SYS: Maria F1 SÄK: Kurt F1 F1 100 F2 50 UPPDATERING: Om man bygger om en sal och följdaktligen kanske vill ändra angivelsen av antal platser (om nu salen blivit mindre/större) så måste man ändra på ALLA rader där just denna sal förekommer - risk för inkonsistens! 57 58

Föreläsning 4 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Normalisering (Analytisk databasdesign)

Föreläsning 4 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Normalisering (Analytisk databasdesign) Föreläsning 4 Transformation från konceptuell datamodell till relationsschema ( Syntetisk databasdesign ) Normalisering (Analytisk databasdesign) 1 Vad är en databas? Logiskt sammanhängande mängd av data,

Läs mer

Informationssystem och Databasteknik

Informationssystem och Databasteknik Informationssystem och Databasteknik Föreläsning 4 Relationsmodellen Från konceptuell modell till relationsdatabasschema Inför projektarbetet: - sammansmältning av flera överlappande modeller av samma

Läs mer

IT i organisationer och databasteknik

IT i organisationer och databasteknik IT i organisationer och databasteknik Föreläsning 4 Relationsmodellen Från konceptuell modell till relationsdatabasschema Regler i ER-scheman eller UMLklass diagram? I Som klasser: RABATT KlassArabatt:

Läs mer

Informationssystem och Databasteknik

Informationssystem och Databasteknik Informationssystem och Databasteknik Föreläsning 4 Relationsmodellen Från konceptuell modell till relationsdatabasschema Analytisk databasdesign Vad är ett databashanteringssystem? En mängd program som

Läs mer

Informationssystem och databasteknik

Informationssystem och databasteknik Informationssystem och databasteknik Föreläsning 5 Analytisk databasdesign F5! Funktionellt beroende: Pnr Namn Funktion (i vanlig mat. betydelse): 610321 11111 22222 33333 Maria Eva Sture Olle För varje

Läs mer

Analytisk relationsdatabasdesign

Analytisk relationsdatabasdesign Analytisk relationsdatabasdesign Att förbättra kvaliteten i databaser Presenter s Name Organization name www.horton.com Domän-regler och främmande nyckel regler via DDL Datatyp! Datatyp! Maxvärde! Maxvärde!

Läs mer

IT i organisationer och databasteknik

IT i organisationer och databasteknik IT i organisationer och databasteknik Föreläsning 5 Analytisk databasdesign Arkitektur hos ett informationssystem Presentation Användargränssnitt via en browser Applikationslogik Data Java servlets som

Läs mer

Relationsmodellen och syntetisk databasdesign

Relationsmodellen och syntetisk databasdesign Relationsmodellen och syntetisk databasdesign Den teoretiska grunden för relationsdatabaser Från konceptuellt schema till databas Relationsmodellen Bil Ägare En relationsdatabas är en databas som uppfattas

Läs mer

Design och underhåll av databaser

Design och underhåll av databaser Design och underhåll av databaser 1. Modell av verkligheten 2. Normalformer 3. Introduktion till DDL 4. Skapa databaser 5. Skapa tabeller 6. Skapa index 7. Restriktioner 8. Ta bort databaser, tabeller

Läs mer

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista Databaser Vad är en databas? Vad du ska lära dig: Använda UML för att modellera ett system Förstå hur modellen kan översättas till en relationsdatabas Använda SQL för att ställa frågor till databasen Använda

Läs mer

Databasens består av: Tabell Kolumner fält Rader poster (varje post är unik)

Databasens består av: Tabell Kolumner fält Rader poster (varje post är unik) Databasföreläsning Databasens består av: Tabell Kolumner fält Rader poster (varje post är unik) Tabeller Personer Databas Nummer Namn Födelseår 1 Tina 1950 2 Siv 1965 3 Olle 1980 Platt databas: all information

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i

Läs mer

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Inga hjälpmedel är tillåtna (annat än ordbok). Kort syntaxsamling för delar av SQL samt lista med symboler för relationsalgebraiska

Läs mer

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY!

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY! ÖVNING 10 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Konceptuell modellering

Konceptuell modellering Konceptuell modellering En konceptuell modell beskriver data och datasamband på ett representationsoberoende sätt. Vad modellen sen ska implementeras som/i får inte påverka modellens utformning! Grundbegrepp:

Läs mer

Databaser och Datamodellering Foreläsning IV

Databaser och Datamodellering Foreläsning IV Webbprogrammering - 725G54 Databaser och Datamodellering Foreläsning IV Agenda Databaser ERD SQL MySQL phpmyadmin Labb 4 Databaser Databas - samling med data Databashanterare Enkelt Kraftfullt Flexibelt

Läs mer

! Webprogrammering. ! Databasteori och praktik. ! Fö, le, la + projekt. ! Examination (tenta, dugga + labb, ! Studera användarna och deras problem

! Webprogrammering. ! Databasteori och praktik. ! Fö, le, la + projekt. ! Examination (tenta, dugga + labb, ! Studera användarna och deras problem Webprogrammering och databaser! Idag: Diverse praktiskt om kursen Webprogrammering Databaser, terminogi Start på ER-modellering! Webprogrammering Kursöversikt! Databasteori och praktik! Fö, le, la + projekt!

Läs mer

Databaser och databasdesign. Den relationella modellen, normalisering och modellering (2)

Databaser och databasdesign. Den relationella modellen, normalisering och modellering (2) Databaser och databasdesign Den relationella modellen, normalisering och modellering (2) Varför databaser (DB)? Vi vill och måste kunna lagra data på sätt som motsvarar olika verksamheters behov Vad är

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2013-12-12 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion.

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion. Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Programdesign, databasdesign Databasdesign Konceptuell design Förstudie, behovsanalys

Läs mer

Webprogrammering och databaser. Konceptuell datamodellering med ER-modellen

Webprogrammering och databaser. Konceptuell datamodellering med ER-modellen Webprogrammering och databaser Konceptuell datamodellering med ER-modellen 2 Programutveckling Interaktionsdesign, behovsanalys Programdesign, databasdesign Implementation 3 Programdesign, databasdesign

Läs mer

Konceptuella datamodeller

Konceptuella datamodeller Databasdesign Relationer, Nycklar och Normalisering Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Konceptuella datamodeller Om man ska skapa en databas som beskriver en del av verkligheten

Läs mer

Databasteknik för D1, SDU1 m fl

Databasteknik för D1, SDU1 m fl 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1, SDU1 m fl lördag 7 mars 2015 Gäller som tentamen

Läs mer

Databaser design och programmering. Design processen ER- modellering

Databaser design och programmering. Design processen ER- modellering Databaser design och programmering Design processen ER- modellering 2 Programutveckling Förstudie, behovsanalys Programdesign, databasdesign Implementation 3 Programdesign, databasdesign Databasdesign

Läs mer

Informationssystem och Databasteknik, 2I-1100 HT2001. Relationsalgebra. Relationsalgebran är sluten: R 1 op R 2 R 3.

Informationssystem och Databasteknik, 2I-1100 HT2001. Relationsalgebra. Relationsalgebran är sluten: R 1 op R 2 R 3. Primtiva operatorer projektion π selektion σ union differens - kryssprodukt X Relationsalgebra Tilldelning := Relationsalgebran är sluten: Med hjälp av dessa operatorer kan andra (icke-primitiva) operatorer

Läs mer

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista Databaser Vad är en databas? Vad du ska lära dig: Använda UML för att modellera ett system Förstå hur modellen kan översättas till en relationsdatabas Använda SQL för att ställa frågor till databasen Använda

Läs mer

Lösningsförslag till Exempel tentamen

Lösningsförslag till Exempel tentamen Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Lösningsförslag till Exempel tentamen 2I-1033 IT i Organisationer och Databasteknik Tentamenstiden är 5 timmar Skriv bara på

Läs mer

Relationsdatabasdesign, 2I-4067

Relationsdatabasdesign, 2I-4067 Relationsdatabasdesign 2I-4067 Relationsdatabasdesign, 2I-4067 Lärare Maria Bergholtz, rum 4636, telefon 6658, e-mail maria@dsv.su.se Nikos Dimitrakas, e-mail nikos-di@dsv.su.se Michael Persson, rum 2675,

Läs mer

! Teori och praktik. ! Ändringar från förra året. ! Examination (tenta, projekt) LiU. ! Varför ni? ! Varför överhuvudtaget? LiU

! Teori och praktik. ! Ändringar från förra året. ! Examination (tenta, projekt) LiU. ! Varför ni? ! Varför överhuvudtaget? LiU Databaser Design och programmering, IDA Kursen, diverse praktiskt Varför databaser? Vad är en databas? Andra viktiga begrepp Kursöversikt Teori och praktik Fö och bok lektioner, labbar i projekt (3,5hp=100h)

Läs mer

Tentamen DATABASTEKNIK - 1DL116

Tentamen DATABASTEKNIK - 1DL116 Uppsala universitet Institutionen för informationsteknologi Kjell Orsborn Tentamen 2003-05-20 DATABASTEKNIK - 1DL116 Datum...Tisdagen den 20 Maj, 2003 Tid...12:00-17:00 Jourhavande lärare...kjell Orsborn,

Läs mer

Webprogrammering och databaser. 729G28 Webprogrammering och databaser. Kursöversikt. Praktisk info. Webprogrammering. Ändringar mot förra året

Webprogrammering och databaser. 729G28 Webprogrammering och databaser. Kursöversikt. Praktisk info. Webprogrammering. Ändringar mot förra året 729G28 Webprogrammering och databaser Föreläsning 1: Diverse praktiskt om kursen Webprogrammering Databaser, terminogi Webprogrammering och databaser Personal: Examinator Jalal Maleki, jalma@ida.liu.se

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-11-07 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Webprogrammering och 729G28 databaser Webprogrammering och databaser Kursöversikt Webprogrammering Designprocessen Lösningsförslag

Webprogrammering och 729G28 databaser Webprogrammering och databaser Kursöversikt Webprogrammering Designprocessen Lösningsförslag 729G28 Webprogrammering och Kursansvarig: Eva Ragnemalm, IDA eva.ragnemalm@liu.se Kursassistent: Anders Märak Leffler anders.marak.leffler@liu.se Webprogrammering och Föreläsning 1: Diverse praktiskt om

Läs mer

Databaser - Design och programmering. Kursöversikt. Exempel: telefonbok. Varför databaser?

Databaser - Design och programmering. Kursöversikt. Exempel: telefonbok. Varför databaser? Databaser Design och programmering! Diverse praktiskt! Varför databaser?! Vad är en databas?! Andra viktiga begrepp Kursöversikt! Teori och praktik! Samläsning! Olika projekt! Examination (tenta, labb

Läs mer

Databaser - Design och programmering. Relationsmodellen. Relationer - som tabeller. Relationer som tabeller. Alternativa notationer: Relationsschema

Databaser - Design och programmering. Relationsmodellen. Relationer - som tabeller. Relationer som tabeller. Alternativa notationer: Relationsschema Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Relationsmodellen Introducerades av Edward Codd 970 Mycket vanlig Stödjer kraftfulla

Läs mer

Kvalitetstänkande. Utgångsläge Samtliga ER-diagram har överförts till scheman

Kvalitetstänkande. Utgångsläge Samtliga ER-diagram har överförts till scheman Kvalitetstänkande Utgångsläge Samtliga ER-diagram har överförts till scheman Förbättra kvaliteten på relationsscheman Normalformler ger dugligare nycklar Hitta funktionella beroenden med hjälp av slutsatsdragning

Läs mer

Logisk databasdesign

Logisk databasdesign NORMALISERING Peter Bellström Logisk databasdesign 2 Arbetssteget vars syfte är att konstruera en modell (diagram, schema), baserad på en specifik datamodell, över verksamhetens begrepp och samband. Modellen

Läs mer

SQLs delar. Idag. Att utplåna en databas. Skapa en databas

SQLs delar. Idag. Att utplåna en databas. Skapa en databas Idag SQLs delar Hur skapar vi och underhåller en databas? Hur skapar man tabeller? Hur får man in data i tabellerna? Hur ändrar man innehållet i en tabell? Index? Vad är det och varför behövs de? Behöver

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-08-20 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Lite om databasdesign och modellering

Lite om databasdesign och modellering Lite om databasdesign och modellering Konceptuell databasdesign Med konceptuell databasdesign avses processen att konstruera en datamodell för en verksamhet, oberoende av fysiska villkor. Modelleringen

Läs mer

Databasdesign. E-R-modellen

Databasdesign. E-R-modellen Databasdesign Kapitel 6 Databasdesign E-R-modellen sid Modellering och design av databaser 1 E-R-modellen 3 Grundläggande begrepp 4 Begränsningar 10 E-R-diagram 14 E-R-design 16 Svaga entitetsmängder 19

Läs mer

Databaser - Design och programmering

Databaser - Design och programmering Databaser - Design och programmering Eva L. Ragnemalm, IDA (eva.ragnemalm@liu.se) Fö 1; introduktion Kursen, diverse praktiskt Varför databaser? Vad är en databas? Andra viktiga begrepp 2 Kursöversikt

Läs mer

DDL Kommandon CREATE/DROP Database CREATE /ALTER/DROP Table ALTER/ADD/DROP Column CREATE /ALTER/DROP Index

DDL Kommandon CREATE/DROP Database CREATE /ALTER/DROP Table ALTER/ADD/DROP Column CREATE /ALTER/DROP Index INNEHÅLL SQL DEL 4 DDL Kommandon CREATE/DROP Database CREATE /ALTER/DROP Table ALTER/ADD/DROP Column CREATE /ALTER/DROP Index Chapter 3, 6, 8 delar av. Beginning SQL Server 2008 for Developers 1 CREATE

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-12-18 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Normalisering. Christer Stuxberg Institutionen för Informatik och Media

Normalisering. Christer Stuxberg Institutionen för Informatik och Media Normalisering Christer Stuxberg christer.stuxberg@im.uu.se Institutionen för Informatik och Media Översikt Normalisering Dataredundans och Uppdateringsanomalier Anomalier vid insättning Anomalier vid borttagning

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 * * * * DAV B04 - Databasteknik! "# $ %'&( ) KaU - Datavetenskap - DAV B04 - MGö 132 Riktlinjer när man vill skapa en databas 1) Designa så att det är lätt att förstå innebörden. Kombinera inte attribut

Läs mer

Tentamen 4,5 hp Delkurs: Databaser och databasdesign 7,5hp Tentander: VIP2, MMD2, INF 31-60, ASP

Tentamen 4,5 hp Delkurs: Databaser och databasdesign 7,5hp Tentander: VIP2, MMD2, INF 31-60, ASP Tentamen 4,5 hp Delkurs: Databaser och databasdesign 7,5hp Tentander: VIP2, MMD2, INF 31-60, ASP Skrivtid: 14.30-18.30 Hjälpmedel: papper, penna och radergummi Betygsgränser: G = 36p (60 %), VG = 48p (80

Läs mer

Tentamen 2I1033, IT i Organisationer och Databasteknik lördag 17/4 2004, kl. 10 15 LÖSNINGSFÖRSLAG

Tentamen 2I1033, IT i Organisationer och Databasteknik lördag 17/4 2004, kl. 10 15 LÖSNINGSFÖRSLAG Institutionen för Data- och Systemvetenskap SU/KTH Maria Bergholtz Tentamen 2I033, IT i Organisationer och Databasteknik lördag 7/4 2004, kl. 0 5 LÖSNINGSFÖRSLAG Inga hjälpmedel tillåtna. Skriv bara på

Läs mer

Övningar i SQL. SQLAccess.doc Ove Lundgren 2000-11-14

Övningar i SQL. SQLAccess.doc Ove Lundgren 2000-11-14 Övningar i SQL Övningar i SQL Använd Access för att öva SQL (= Structured Query Language) Skapa tabeller med SQL 1. Ny databas: SQLÖVNING Klicka: Frågor > Ny > Design > OK >Stäng > SQL Radera ordet SELECT.

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 16 Januari 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Kompendium till databaser och informationssystem 10p för SY2 2000

Kompendium till databaser och informationssystem 10p för SY2 2000 Högskolan Dalarna Anders Forsman tel: 023-778956 email: afm@blg.du.se Kompendium till databaser och informationssystem 10p för SY2 2000 2000-09-04 Innehållsförteckning INNEHÅLLSFÖRTECKNING... 2 1 DATAMODELLERING...

Läs mer

Modul DB1-2 Datamodellering

Modul DB1-2 Datamodellering Modul DB- Datamodellering Antal föreläsningar: Antal laborationer: Förkunskapskrav: Grundläggande kännedom om databaser (Modul DB-) Kurslitteratur: Referenslitteratur: Praktisk datamodellering ISBN: 9-44-800-

Läs mer

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 2013 kl. 9-13

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 2013 kl. 9-13 Institutionen för Data- och Systemvetenskap IT-universitetet Maria Bergholtz Tentamen DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 203 kl. 9-3 Inga hjälpmedel tillåtna (syntaxsammanställning

Läs mer

Grunderna för relationsmodellen!

Grunderna för relationsmodellen! Grunderna för relationsmodellen! 1 Varför behöver jag lära mig relationsmodellen?! Relationsmodellen är den totalt dominerande datamodellen i moderna databassystem Beskriver databaser som en mängd tabeller

Läs mer

Universitetet: ER-diagram

Universitetet: ER-diagram Databaser Design och programmering Fortsättning på relationsmodellen: Normalisering funktionella beroenden normalformer informationsbevarande relationsschemauppdelning Varför normalisera? Metod att skydda

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Lördagen den 21 oktober 2006 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Vad är en databas? Exempel på databaser: Databas = Organiserad samling och lagring av information.

Vad är en databas? Exempel på databaser: Databas = Organiserad samling och lagring av information. Vad är en databas? Exempel på databaser: Kortregister på kontor Sjukvårdsjournal Bokregister på bibliotek Medlemsregister i en förening Kundregister på företag Telefonkatalogen Databas = Organiserad samling

Läs mer

Normalisering. Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info.

Normalisering. Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info. Normalisering Varför? För att åstadkomma en så bra struktur i databasen som möjligt med minimalt med dubbellagrad info. Tillbaka i modelleringsfasen. 1NF: Vad menas med ett sammansatt attribut? Exempel:

Läs mer

D1. Create Domain TEXT30 char(30) Default INGET VÄRDE! ;

D1. Create Domain TEXT30 char(30) Default INGET VÄRDE! ; Lösningsförslag till Övning i SQL Data Definition Language (DDL) D1. Create Domain TEXT30 char(30) Default INGET VÄRDE! ; D2. Create Domain CHARNRKEY char(7 D3. Create Table Skiva( T1. Create Table Skiva(

Läs mer

Relationsdatabasdesign

Relationsdatabasdesign Vad är Relationsdatabasdesign? Relationsdatabasdesign nikosd@kth.se 08-7904460 rum 8522 Connolly/Begg (3rd edition) Kapitel 4., 4.2 och 5 (4th edition) Kapitel 5., 5.2 och 6 (5th edition) Kapitel 6., 6.2

Läs mer

Databaskunskap 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för:

Databaskunskap 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Databaskunskap 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Namn: Personnummer: Individuell prövning 41E03B Öppen för alla Tentamensdatum: 2013-08-20 Tid: 09:00-13:00 Hjälpmedel: Inga hjälpmedel

Läs mer

Idag. Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten / 20

Idag. Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten / 20 Idag Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten 2009 1 / 20 Idag Hur skapar vi och underhåller en databas? Hur skapar man tabeller?

Läs mer

Relationell databasdesign

Relationell databasdesign Relationell databasdesign Kapitel 7 Relationell databasdesign sid Uppdelning m.h.a. funktionella beroenden 3 Funktionella beroenden - teori 12 Uppdelningsalgoritmer 27 Designprocess 33 Relational oath

Läs mer

Reducering till relationsscheman

Reducering till relationsscheman E-R-modellen, Reducering till rel.scheman 6-26 Reducering till relationsscheman En databas som överensstämmer med ett E-R-databasschema kan representeras som en mängd relationsscheman ty E-R-modellen och

Läs mer

Exempel-tentamen 1. + Lösningsförslag. Inga hjälpmedel är tillåtna.

Exempel-tentamen 1. + Lösningsförslag. Inga hjälpmedel är tillåtna. Institutionen för Data- och Systemvetenskap SU/KTH Maria Bergholtz Exempel-tentamen + Lösningsförslag Inga hjälpmedel är tillåtna. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt,

Läs mer

2. Objekt, operatorer och integritetsregler 3. Databasobjekt

2. Objekt, operatorer och integritetsregler 3. Databasobjekt FÖ 3: Databaskursen 1. Relationsdatabaskomponenter 2. Objekt, operatorer och integritetsregler 3. Databasobjekt 4. Objektet tabell 5. Synonymer 6. Schema 7. Integritetsregler och constraints: PK, FK, Unique,

Läs mer

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen Lördag 8 juni kl

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen Lördag 8 juni kl Institutionen för Data- och Systemvetenskap IT-universitetet Maria Bergholtz Tentamen DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen Lördag 8 juni kl. 10-14 Inga hjälpmedel tillåtna (syntaxsammanställning

Läs mer

NORMALISERING. Mahmud Al Hakim

NORMALISERING. Mahmud Al Hakim NORMALISERING Mahmud Al Hakim mahmud@webacademy.se 1 SCHEMA Schema eller databasschema är en beskrivning av vilka data som kan finnas i en databas, oberoende av vilka data (innehållet) som råkar finnas

Läs mer

Tentamen plus lösningsförslag

Tentamen plus lösningsförslag Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Tentamen plus lösningsförslag 2I-1100 Informationssystem och databasteknik Skriv bara på en sida av pappret Skriv namn på varje

Läs mer

Starta MySQL Query Browser

Starta MySQL Query Browser Starta MySQL Query Browser 1. Starta MySQL Query Browser genom att antingen välja i Startmenyn: 2. eller leta upp ikonen på skrivbordet för start av MySQL Query Browser och dubbelklicka på den. 3. Du bör

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 1 Normalisering Förut sunt förnuft Nu formell metod riktlinjer för att hjälpa till att gruppera attributen (egenskaperna) för varje relation

Läs mer

Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel:

Pga att (Nummer och Typ) tillsammans bestämmer övriga attribut funktionellt väljer vi (Nummer, Typ) till primärnyckel: ÖVNING 1. PRODUKT(Nummer, Namn, Typ, Klass, Prisklass, Vikt, Volym, Fraktkostnad) Nummer, Typ Namn, Klass, Pris, Prisklass, Vikt, Volym, Fraktkostnad Namn, Typ Nummer Typ Klass Pris Prisklass Vikt, Volym,

Läs mer

Kursens mål. Databasteknik TDDB48. Lärare. Kursorganisation. Laborationsinformation. Inlämning av laborationer. Responsible: 2000-01-26

Kursens mål. Databasteknik TDDB48. Lärare. Kursorganisation. Laborationsinformation. Inlämning av laborationer. Responsible: 2000-01-26 Kursens mål Databasteknik TDDB48 http://www.ida.liu.se/~tddb48 Förstå de koncept som ligger bakom databaser och databasorganisation Designa och bygga datamodeller (effektiva filstrukturer) Använda databasfrågespråk

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 10 April 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Idag. Hur vet vi att vår databas är tillräckligt bra?

Idag. Hur vet vi att vår databas är tillräckligt bra? Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik

Läs mer

Modul DB1-1 Databasmodellering

Modul DB1-1 Databasmodellering Modul DB1-1 Databasmodellering Antal föreläsningar: 2 Antal laborationer: 1 Förkunskapskrav: Databasintroduktion Kurslitteratur: Referenslitteratur: Praktisk datamodellering ISBN: 91-44-38001-1 1 Innehållsförteckning

Läs mer

Lösningsförslag till fiktiv tentamen för DD1370 Databasteknik och informationssystem

Lösningsförslag till fiktiv tentamen för DD1370 Databasteknik och informationssystem Lösningsförslag till fiktiv tentamen för DD1370 Databasteknik och informationssystem Hösten 2011 1. a) Jag följer kokboken (förel 3, bild 34) a. Regeln säger att alla objektklasser med e-termer ska bilda

Läs mer

Databasteori. Övningar

Databasteori. Övningar Databasteori Övningar Erik Prytz Uppdaterad november 2014, november 2015 Eva L. Ragnemalm November 2009, uppdaterad april 2010 Kapitel 1: ER- modellering Skapa ER- diagram för nedanstående övningar (läs

Läs mer

Lär känna MS SQL 2008 / Övning. Observera. Tips. Förberedelse

Lär känna MS SQL 2008 / Övning. Observera. Tips. Förberedelse Lär känna MS SQL 2008 / Övning Observera Övningar som finns tillgängliga är till för att du ska kunna testa dina kunskaper och träna på dem. Det är helt upp till dig när du vill genomföra och om du vill

Läs mer

Databasteknik för D1 m fl

Databasteknik för D1 m fl 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1 m fl tisdag 10 januari 2017 Gäller som tentamen

Läs mer

08/12/14. Databasteknik och informationssystem DD1370. Behövs Föreläsning 8? Kursens (återstående) mål Dagens föreläsning

08/12/14. Databasteknik och informationssystem DD1370. Behövs Föreläsning 8? Kursens (återstående) mål Dagens föreläsning 08/12/14 Behövs Föreläsning 8? Databasteknik och informationssystem DD1370 Idag F7 - (sista nyheterna & repetition) F8 (?) - (repetition, repetition, repetition ) Föreläsning 7 Svara med knapptryckning

Läs mer

Tentamen Databasteknik

Tentamen Databasteknik Försättsblad Tentamen Databasteknik 2003 04 29, 8.00 13.00 Inga hjälpmedel. Bedömning (preliminär): uppgifterna ger maximalt 14 + 11 + 11 + 6 + 4 + 4 = 50 poäng. För godkänt krävs 25 poäng (3/25, 4/33,

Läs mer

Databasteknik för D1, SDU1 m fl

Databasteknik för D1, SDU1 m fl 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1, SDU1 m fl onsdag 21 augusti 2013 Gäller som

Läs mer

Webbprogrammering, grundkurs 725G54

Webbprogrammering, grundkurs 725G54 Webbprogrammering, grundkurs 725G54 Bootstrap jquery SEO RWD MuddyCards. Tidigare Muddycards Många positiva kommentarer Ibland för högt tempo på föreläsning Lägg ut labbar tidigare Mer föreläsningar (2

Läs mer

Exempel tentamen. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt, annars rättas inte tentamen Alla hjälpmedel är tillåtna

Exempel tentamen. Skriv bara på en sida av pappret Skriv namn på varje papper Skriv läsligt, annars rättas inte tentamen Alla hjälpmedel är tillåtna Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Exempel tentamen 2I-1100 Informationssystem och Databasteknik Tentamen är öppen i så motto att läroböcker, föreläsningsanteckningar,

Läs mer

Prova på-laboration i SQL

Prova på-laboration i SQL Prova på-laboration i SQL Peter Dalenius petda@ida.liu.se Institutionen för datavetenskap, Linköpings universitet 2006-09-19 1. Introduktion till databaser Databaser finns i så gott som alla sammanhang

Läs mer

Innehåll MySQL Intro. Ex på ett index Index typer ISAM Balanserat träd Pk och Fk i MySQL Eget index För o nackdelar med index

Innehåll MySQL Intro. Ex på ett index Index typer ISAM Balanserat träd Pk och Fk i MySQL Eget index För o nackdelar med index Innehåll MySQL Intro Ex på ett index Index typer ISAM Balanserat träd Pk och Fk i MySQL Eget index För o nackdelar med index Institutionen Institutionen för Datavetenskap, för Kommunikation Fysik o och

Läs mer

Ett arbetsexempel Faktureringsrutin

Ett arbetsexempel Faktureringsrutin Ett arbetsexempel Faktureringsrutin Detta dokument är skrivet för att i första hand förstå den process som äger rum och vilka steg som man ska genomföra och att förstå vad som utförs i de tre viktiga stegen

Läs mer

För att XCOPY i SQL Server Express ska fungera måste data och logg ligga i samma mapp, vilket naturligtvis inte är så bra.

För att XCOPY i SQL Server Express ska fungera måste data och logg ligga i samma mapp, vilket naturligtvis inte är så bra. 1 Datafiler tillhör alltid en filgrupp. Det måste alltid finnas en PRIMARY group. Det är inget som hindrar att datafiler på olika diskar tillhör samma filgrupp. PRIMARY gruppen innehåller huvudfilen till

Läs mer

1. SQL DDL (Data Definition Language) 2. Skapa tabell

1. SQL DDL (Data Definition Language) 2. Skapa tabell FÖ 4: Databaskursen 1. SQL DDL (Data Definition Language) 2. Skapa tabell 3. Lägga till PK 4. Data Dictionary Views 5. Namn på constraints 6. Lägga till FK 7. Lägga till en kolumn 8. Objektet sekvens 9.

Läs mer

08/11/13. Databasteknik och informationssystem DD1370 F3. Ett urval ur databasen bestäms av en SQL-fråga. Påminnelse: Deadline på tisdag

08/11/13. Databasteknik och informationssystem DD1370 F3. Ett urval ur databasen bestäms av en SQL-fråga. Påminnelse: Deadline på tisdag Påminnelse: Deadline på tisdag Databasteknik och informationssystem DD1370 F3 Petter Ögren Inlämningsuppgift 1 - Skall mailas in senast 23:59 på tisdag. - Redovisas på övningen på onsdag - Inspireras av

Läs mer

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY!

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY! ÖVNING 9 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18

Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 LiTH, Tekniska högskolan vid Linköpings universitet 1(5) IDA, Institutionen för datavetenskap Juha Takkinen Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 Lokal T2 och

Läs mer

Lösningsförslag, tentamen i Databaser

Lösningsförslag, tentamen i Databaser LUNDS TEKNISKA HÖGSKOLA 1(4) Institutionen för datavetenskap Lösningsförslag, tentamen i Databaser 2004-04-20 1. ER-diagram: Matsedel år vecka serveras 1..5 lagas-med Maträtt Ingrediens dag mängd Allergi

Läs mer

Funktionella beroenden - teori

Funktionella beroenden - teori Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att

Läs mer

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material Tentamen i lördagen den 13 mars 2004 Tillåtna hjälpmedel: Allt upptänkligt material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

VAD GÖR DU / VEM ÄR DU?

VAD GÖR DU / VEM ÄR DU? INNEHÅLL Vad blir din roll Databaser vad är och varför Terminologi Datamodellering vad är och varför Utvecklingsprocessen SQL vad är det Data / Information / Kunskap Kapitel 1 delar av. Praktisk Datamodellering

Läs mer

Lösningsförslag till Tentamen,

Lösningsförslag till Tentamen, Institutionen för Data- och Systemvetenskap SU/KTH Maria Bergholtz och Paul Johannesson Lösningsförslag till Tentamen, 022 2I-00 Informationssystem och databasteknik För att erhålla betyget tre räcker

Läs mer

Tentamen NDA01G Öppen för alla. Tentamenskod: Inga hjälpmedel är tillåtna

Tentamen NDA01G Öppen för alla. Tentamenskod: Inga hjälpmedel är tillåtna Databasteknik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen NDA01G Öppen för alla Tentamenskod: Tentamensdatum: 2016-11-04 Tid: 14:00-19:00 Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Structured query language (SQL)

Structured query language (SQL) Structured query language SQL) Varför SQL? SQL är ett standardspråk som är oberoende av databashanteringssystemen som finns på marknaden. Med andra ord kommer du kunna arbeta mot nästan alla sorters relationsdatabaser

Läs mer