10. Relativitetsteori Tid och Längd



Relevanta dokument
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

Einsteins relativitetsteori, enkelt förklarad. Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den

1 Den Speciella Relativitetsteorin

Tentamen Relativitetsteori , 27/7 2013

Einstein's svårbegripliga teori. Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den

Tentamen Relativitetsteori , 27/7 2019

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.

Tentamen Relativitetsteori

Speciell relativitetsteori inlämningsuppgift 2

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Instuderingsfrågor Krafter och Rörelser

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner

Vad vi ska prata om idag:

Maria Österlund. Ut i rymden. Mattecirkeln Tid 2

Relativitetsteori, introduktion

Relativitetsteorins grunder, våren 2016 Räkneövning 1 Lösningar

Tentamen Relativitetsteori , 29/7 2017

Tid (s)

MEKANIKENS GYLLENE REGEL

9-2 Grafer och kurvor Namn:.

Övningar Arbete, Energi, Effekt och vridmoment

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

3. Mekaniska vågor i 2 (eller 3) dimensioner

Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult

Miniräknare, formelsamling

1 Den Speciella Relativitetsteorin

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Speciell relativitetsteori

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

I once saw Einstein on a train which whistled past our station. - Your clock ticks much too slow, I yelled. - Ach, nein. That's time dilation

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)

Fysiken i naturen och samhället

Prov Fysik 2 Mekanik

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

Fysik. Ämnesprov, läsår 2014/2015. Delprov B. Årskurs. Elevens namn och klass/grupp

1.4 Räta linjer modellering

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar

Den Speciella Relativitetsteorin DEL I

Repetitionsuppgifter i Fysik 1

ESN lokala kursplan Lgr11 Ämne: Fysik

= + = ,82 = 3,05 s

Tentamen Relativitetsteori , 22/8 2015

Corioliseffekter. Uppdaterad: Om bildsekvenserna Bildsekvens 1: Boll far förbi rymdstationen längs en rät linje Bildsekvens 2:...

4 Solsystemet. OH1 Tidszonerna 2 Tidszonerna 3 En jordglobs skala OH2 Årstiderna 4 Varför har vi årstider?

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist

Kosmologi. Ulf Torkelsson Teoretisk fysik CTH/GU

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

Provmoment: Ladok-kod: A133TG Tentamen ges för: TGIEA16h, TGIEL16h, TGIEO16h. Tentamens Kod: Tentamensdatum: Tid: 14-18

Tentamen Fysikaliska principer

Coriolis-effekter. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den.

Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor

Matematik D (MA1204)

En hinderbana står uppställd på scenen. Fullt med rockringar, hopprep, bandyklubbor, bockar, mattor. Hela klassen står framför publiken.

17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2

Fysik. Ämnesprov, läsår 2013/2014. Delprov C. Årskurs. Elevens namn och klass/grupp

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den

LUNDS KOMMUN POLHEMSKOLAN

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Lektion på Gröna Lund, Grupp 1

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter.

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Fysik. Ämnesprov, läsår 2012/2013. Delprov C. Årskurs. Elevens namn och klass/grupp

PROBLEM OCH LÖSNINGAR RUNT TYNGDLÖSHET

Final i Wallenbergs Fysikpris

Aalto-Universitetet Högskolan för ingenjörsvetenskaper. KON-C3004 Maskin- och byggnadsteknikens laboratoriearbeten DOPPLEREFFEKTEN.

Ord att kunna förklara

Upp gifter. 1. Vilken hastighet måste en boll minst ha för att kunna nå 14,5 m upp i luften?

Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något.

1. Månens rörelser. Övning 1: Illustrera astronomiska fenomen

Datum: , , , ,

WALLENBERGS FYSIKPRIS

Instuderingsfrågor för godkänt i fysik år 9

4-8 Cirklar. Inledning

MITT I RYMDEN. Uppdrag för åk f-3. Välkommen till uppdraget Mitt i rymden i Universeums rymdutställning på plan 3.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

2 Materia. 2.1 OH1 Atomer och molekyler Kan du gissa rätt vikt?

Tentamen i Fysik våglära, optik och atomfysik (FAF220),

Sammanfattning av lektion 5 Eskilstuna

HT 99 Matematiklärande 10 p Delkurs 1 Att göra matematiken gripbar Sarah Dikman (ll99sdi@du.se) Johan Schröder (ll99jsc@du.se)

4. Allmänt Elektromagnetiska vågor

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Arbete Energi Effekt

Lgr 11 - Centralt innehåll och förmågor som tränas:

WALLENBERGS FYSIKPRIS 2019

Lösningar Kap 11 Kraft och rörelse

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem.

Kartläggningsmaterial för nyanlända elever. Uppgifter Fysik. 1 2 Steg 3

Moment Viktiga exempel Övningsuppgifter

Upp gifter. 1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa.

Svar och anvisningar

Massa och vikt Mass and weight

Repetition Energi & Värme Heureka Fysik 1: kap version 2013

Transkript:

Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur är en sådan storhet där man i Celsiusskalan jämför temperaturen hos något föremål/ material med de förhållanden som råder då vatten fryser (0 C) eller kokar (100 C). Om man skulle mäta temperaturen i Kelvinskalan skulle vatten istället frysa vid 273,15 K. Detsamma gäller erfarenhetsmässigt också för mätningar av hastigheter. För att ta två exempel; 1) Om man i en hastighet av 95 km/h blir omkörd av ett annat fordon som håller hastigheten 105 km/h så kommer det att uppfattas som att det andra fordonet passerar relativt långsamt, särskilt jämfört med om man istället skulle möta ett fordon som håller hastigheten 105 km/h. I det första fallet skulle ju den relativa hastigheten mellan fordonen bara vara 10 km/h medan i det andra fallet den skulle vara 200 km/h. I det här fallet jämför vi dels var och en av de båda hastigheterna med marken (vägen, träd eller hus omkring), som vi anser vara stilla, för att få 95 respektive 105 km/h, och dels de båda hastigheterna som uppmätts relativt marken med varandra. I ett andra exempel skulle man kunna vidga perspektivet lite och tänka sig att man tittar på fordonen från rymden; 2) Förutom att bilarna rör sig med en viss hastighet på vägen så har ju hela planeten jorden dels en rotation med en viss hastighet dels rör den sig i en bana runt solen, så om man skulle mäta bilarnas hastighet från solens position skulle denna vara summan av jordens omloppshastighet (29 783 m/s), rotationshastighet (225 m/s) och bilarnas hastighet (c:a 30 m/s) med riktning, d.v.s. i medeltal c:a 30 000 m/s. Sedan rör sig ju hela solsystemet runt vår galax Vintergatans centrum, som rör sig genom universum Vilken hastighet som mäts beror alltså på vilket referenssystem som används, om ett fordons hastighet mäts från ett annat fordon (detta andra fordon utgör referenssystemet), i jämförelse med marken (referenssystemet utgörs av marken) eller jämfört med solen (solen utgör referenssystemet). Låt oss se på ytterligare ett exempel:

Exempel I: BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Säg, helt hypotetiskt, att en boll kastas rakt upp med hastigheten v 1 av någon som ligger på en släpvagn som dras efter ett fordon som rör sig framåt med hastigheten v 2 (se Fig. 9.1). v 1 v h V 2 Fig. 9.1 Eftersom hela ekipaget har en hastighet v 2 framåt kommer dock bollen precis när den kastas förutom hastigheten v 1 att även ha en hastighet v 2 framåt, jämfört med marken. Den som kastar bollen (senare kallad deltagare, någon som är i vila i förhållande till händelsen/ förloppet) kommer också att färdas med hastigheten v 2 framåt och kommer hela tiden att befinna sig rakt under bollen. D.v.s. den som kastade bollen upplever det som att bollen bara rör sig rakt upp med utgångshastigheten v 1 och sedan rakt ned efter att den vänt, d.v.s. totala sträckan 2h (mätt med släpvagnen som referenssystem). För någon som står stilla på marken och ser fordonet och släpvagnen passera förbi (senare kallad observatör, någon som är i rörelse i förhållande till händelsen/ förloppet) kommer dock upplevelsen vara att bollen följer en kastparabel som är längre än 2h enligt streckad bana i figur 9.1, med utgångshastigheten v (= ), mätt med marken som referenssystem. Under den tid som bollen är i luften kommer alltså den som kastat bollen och någon som står stilla på marken att mäta att bollen färdats olika lång sträcka, men också att den haft olika utgångshastighet. Den som kastade mäter en kortare sträcka men också en lägre hastighet, vilket verkar rimligt med lägre hastighet borde bollen intuitivt färdas kortare sträcka på samma tid.

Ljushastighetens konstans Vad blir situationen om man istället mäter på en partikel som färdas i hög hastighet och samtidigt sänder ut en foton (ljus). Säg att partikeln färdas framåt med en hastighet som motsvarar halva ljushastigheten relativt marken när en foton sänds ut med ljusets hastighet relativt partikeln, också den framåt (se Fig. 9.2). Intuitivt skulle man då förvänta sig att fotonen skulle färdas med en hastighet på en och en halv gånger ljushastigheten (1,5c) relativt marken. Enligt både teoretiska resonemang och experimentella försök är så inte fallet dock. Fotonens hastighet relativt marken kommer fortfarande att vara bara ljushastigheten. Också för det fall att fotonen skulle sändas ut bakåt är fotonens hastighet relativt marken fortfarande exakt lika med ljushastigheten (och inte som man kanske skulle kunna förvänta sig 0,5c). v = 0,5c V 1 V 2 Fig. 9.2 v, v 1 och v 2 avser hastigheter relativt marken D.v.s. i Fig. 9.2 ovan gäller att v 1 = v 2 = c. Fotonens hastighet relativt partikeln kommer också att vara exakt lika med ljushastigheten. Oavsett referenssystem mäts fotonernas hastighet alltid upp till ljushastigheten. Detta fenomen brukar refereras till som ljushastighetens konstans.

Tidsdilatation Att ljusets hastighet alltid mäts upp till samma värde oavsett referenssystem får en del märkliga konsekvenser. Låt oss återvända till exemplet med någon som kastar en boll från ett släp i rörelse. Exempel II c c d (= c t) h (= c t 0 ) OBS! Ej skalenlig figur v tiden = 0 tiden = t x (= v t) Fig. 9.3 Istället för att kasta en boll låter vi personen tända en ficklampa istället. På samma sätt som för bollen kommer då deltagaren på släpet att se fotonerna åka rakt upp en sträcka h med hastigheten c. En observatör som ser ficklampan tändas då ekipaget passerar förbi kommer som i exemplet med bollen att uppfatta att fotonerna, förutom att sändas uppåt, också rör sig lite framåt då ekipaget rör sig framåt. Observatören kommer då att registrera att fotonerna förflyttar sig sträckan d för att nå höjden h (observera att figuren ej är skalenlig). Sträckan d ges via Pythagoras sats som: d = (x 2 + h 2 ) där x är den sträcka ekipaget förflyttat sig fram till dess att fotonerna nått höjden h. Vi ser att sträckan d är längre än sträckan h. D.v.s. deltagaren och observatören kommer att mäta upp olika långa sträckor för fotonernas färd upp till höjden h. I fallet med bollen var det inget märkligt med det eftersom de också registrerade olika hastighet hos bollen, men i fallet med fotonerna vet vi ju att man mäter upp precis samma hastighet c oavsett referenssystem. Både observatör och deltagare kommer alltså att mäta upp hastigheten c. Enligt det vanliga sambandet mellan sträcka s, hastighet v och tid t s = v t skulle detta vara orimligt. Den enda förklaringen skulle vara om observatör och deltagare

skulle uppmäta olika tid för förloppet att fotonerna når höjden h över släpvagnen. Låt oss anta att deltagaren skulle mäta upp tiden t 0 och observatören tiden t. Vi kan då uttrycka ovanstående samband mellan sträckorna enligt följande (se Fig. 9.3): c t = [(v t) 2 + (c t 0 ) 2 ] c 2 t 2 = v 2 t 2 + c 2 t 2 0 c 2 t 2 - v 2 t 2 = c 2 t 2 0 c 2 (t 2 v 2 t 2 /c 2 ) = c 2 t 2 0 (t 2 v 2 t 2 /c 2 2 ) = t 0 t 2 (1 v 2 /c 2 2 ) = t 0 t (1 v 2 /c 2 ) = t 0 t = t 0 / (1 v 2 /c 2 ) Sambandet mellan den tid t som observatören mäter upp och den tid t 0 som deltagaren mäter upp för samma förlopp (att fotonerna når höjden h) ges alltså av: t = t 0 / (1 v 2 /c 2 ) Om fordonet rör sig kommer den tid t 0 som deltagaren mäter upp för förloppet att vara kortare än den tid t som observatören mäter upp för samma händelse. Tiden t 0 kallas för egentiden och är den tid som skulle mätas upp av någon som är i vila jämfört med händelsen/ förloppet/ mätningen (den tid som mäts upp av någon som följer med händelsen). Fenomenet att observatören, som inte följer med händelsen (som är i rörelse jämfört med händelsen), mäter upp en längre tid för förloppet/ händelsen kallas för tidsdilatation. Detta fenomen har också kunnat observeras i verkligheten, bl.a. genom att jämföra tiden som två mycket exakta atomur mätt upp för förloppet att ett mycket snabbt flygplan genomfört en flygning ett varv runt jorden, där det ena uret befunnit sig på flygplatsen och det andra ombord på flygplanet. Vid återkomsten till flygplatsen kunde det konstateras att de två uren uppmätt olika tid.

Exempel III: Längdkontraktion Säg att ett väldigt snabbt flygplan förflyttar sig med hastigheten v från punkt A till punkt B över jordytan, enligt figur 9.4 nedan. Fig. 9.4 v t 0 A l 0 B Säg också att en person på marken observerar flygplanets förflyttning från A till B, en sträcka som personen på marken mätt upp till l 0. Enligt sambandet mellan sträcka hastighet och tid får personen på marken då följande för planets förflyttning: l 0 = v t Sedan tidigare vet vi dock att piloten i flygplanet inte kommer att mäta samma tid för förloppet att flygplanet förflyttar sig från A till B. Piloten följer ju med händelsen och är alltså deltagare när det gäller att mäta tiden för händelsen. Piloten kommer alltså att mäta egentiden t 0. För sträckan mellan A och b får då piloten: L = v t 0 Båda kommer dock att mäta samma hastighet v, eftersom det är den relativa hastigheten mellan dem. Om personen på marken och piloten inte mäter samma tid för händelsen måste det då innebära att de inte heller uppmäter samma längd på den sträcka flygplanet förflyttar sig från A till B. Sambandet mellan de uppmätta sträckorna kan fås från följande, genom att utnyttja sambandet mellan tiderna t och t 0 som personen på marken och piloten mäter upp:

l 0 = v t, t = t 0 / (1 v 2 /c 2 ) l 0 = v t 0 / (1 v 2 /c 2 ) [L = v t 0, enligt ovan] l 0 = L / (1 v 2 /c 2 ) L = l 0 (1 v 2 /c 2 ) Man kan se att den sträcka L piloten mäter upp för förflyttningen är kortare än den som personen på marken mätt upp. Fenomenet kallas för längdkontraktion. Observera att l 0 mäts av den som är i vila jämfört med sträckan som mäts. Personen på jorden rör sig ju inte relativt sträckan AB, så när det gäller sträckmätningen är personen på marken deltagare medan piloten är observatör (rör sig i förhållande till sträckan AB). Å andra sidan följer piloten med i förflyttningen för vilken tiden mäts. Piloten är alltså deltagare i händelsen att flygplanet färdas från A till B och mäter egentiden t 0, medan personen på marken är observatör och mäter tiden t. Lektionsuppgifter 10.1 En båt färdas över en 120 m bred älv. Båten har hastigheten 1,5 m/s i förhållande till vattnet. Vid landningen visar det sig att båten under överfarten drivit 36 m nedströms. i) Hur stor hastighet har vattnet jämfört med strandkanten? ii) I vilken riktning måste båten sätta kurs för att landa mitt emot startplatsen? 10.2 En rymdfarare seglar iväg långt ute i världsrymden med hastigheten 2,83 10 8 m/s i förhållande till jorden. Efter 10 år i rymdskeppet undrar han hur mycket äldre tvillingsystern på jorden har blivit? Hur lyder svaret?

10.3 i) Förklara symbolerna och innehållet i formeln t = t 0 / (1-v 2 /c 2 ). Förklara vad som menas med egentid. ii) Avgör om vart och ett av följande påståenden är sant eller falskt: 1) En process som försiggår på en plats som är i rörelse i förhållande till oss, pågår under längre tid för oss än för någon som befinner sig på platsen. 2) En klocka som rör sig i förhållande till oss går saktare än klockor som är i vila i förhållande till oss. 10.4 Ett rymdskepp som befinner sig i vila i förhållande till dig är 85 m långt. Vilken längd observerar du för rymdskeppet om det passerar dig med en hastighet av 0,95c? Övningsuppgifter 10.5 En man står i en arbetshiss som går lodrätt uppåt med konstant hastighet. Han sparkar ut en liten sten så att den får en vågrät utgångshastighet i förhållande till hissen. Bortse från luftmotstånd. Vilken slags kaströrelse får stenen i) när man använder hissen som referenssystem? ii) när man använder marken som referenssystem? 10.6 Ett rymdskepp passerar jorden med hastigheten 2,00 10 8 m/s i förhållande till jorden. Rymdfararna mäter ett jorddygn (24 timmar på jorden) med sina klockor. Hur länge kommer de att anse att dygnet varar? 10.7 Du och en av dina vänner reser i var sitt rymdskepp i hög hastighet. Han talar om för dig att hans skepp är 25 m långt och att det identiska skepp du befinner dig i är 24 m långt. Hur långt är enligt dig i) ditt eget rymdskepp? ii) Din väns rymdskepp? iii) Hastigheten för din väns rymdskepp?