MRS GER IN VIVO- BILDER AV HJÄRNANS VÄVNADER

Relevanta dokument
Proton magnetic resonance spectroscopy in brain tumours: clinical applications, 1999 Lunds Universitet

Magnetresonans mer än bara bilder! Nya MR-tekniker kan ge bättre diagnostik, terapikontroll och utvärdering av hjärnans funktion

Svarsmall för CT/MR normal hjärna, MS, hjärntumör (inkl. mätning av tumörstorlek) och demens

Nationella riktlinjer för MS Quality Hotel Ekoxen, Linköping 1 oktober 2014

Standardiserad rapportering av småkärlssjukdom

Multipel skleros - Pars radiologica

MOG- associerad sjukdom. Joachim Burman, Överläkare Neurologkliniken Akademiska sjukhuset

Neuro-PET inom demens och tumördiagnostik

Diagnos och förlopp av MS. Anders Svenningsson Neurologiska Kliniken Norrlands Universitetssjukhus

MRT är en mer känslig metod för att identifiera epileptogena lesioner än DT och bör utföras på alla patienter med oklar etiologi.

Multipel Skleros Multipel skleros

Medicin B, Medicinsk temakurs 3, 30 högskolepoäng

Multipel Skleros (MS)

Utvärdering av onkologisk behandling. Anders Sundin Prof. Öl. Radiologi, Karolinska Institutet, Karolinska Universitetssjukhuset

Erik Stomrud, ST-läkare, med dr, Emmaboda hälsocentral, Enheten för klinisk minnesforskning, SUS. Kriterier: Minnesnedsättning. Sämre jfr med tidigare

Röntgenveckan Lars-Olof Wahlund Professor Centrum för Alzheimerforskning NVS Institutionen, Karolinska Institutet

Monitorering av immunmodulerande behandling med flödescytometri

Göran Solders Karolinska Universitetssjukhuset. Mitokondriella sjukdomar. Behandling

CENTRALA NERVSYSTEMETS PATOLOGI

Snabbkurs i visuell bedömning vid demensutredning

Kan gamla oligodendrocyter

Frontotemporal demens Klinik, utredning, rådgivning

RANO-KRITERIER till hjälp vid bedömning av behandlingseffekt på HJÄRNTUMÖRER

MR kronjuvelen. MR-teknik. Rocket Science. Tre ägg: Vad är det vi avbildar? Fältstyrka i Tesla (T) Mårten Annertz Neuroröntgen

Information till dig som blivit ordinerad

CRP och procalcitonin: Variation vid okomplicerad elektiv sectio

Virala CNS infektioner hos barn. - prognos efter encefalit i barndomen

Odontologisk ÖNH diagnostik omfattar

Utvecklingskraft Cancer

Delprov 3 Vetenskaplig artikel. Namn: Personnummer:

PATIENTINFORMATION FRÅN SANOFI GENZYME. Information till dig som blivit ordinerad Aubagio (teriflunomid)

NATIONELLT CORE CURRICULUM i NEUROLOGI Kunskaper, färdigheter och förhållningssätt efter genomgången grundutbildning i läkarprogrammet

Epilepsi. Vad är epilepsi? EPILEPSI Johan Zelano 2 september 2013

Neuropsykologi och kognitiv neurovetenskap, 15hp, ht16 Läsanvisningar till respektive föreläsning

Kvantifiering av intrakardiomyocytära och intramyocellulära lipider med eko-planar spektroskopisk bildtagning (EPSI)

Fördjupningsföreläsning - multimodal diagnostik av epilepsi. Håkan Sjunnesson. Neuroradiolog. Föreläsningen är gjord av Lars Stenberg

Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:

I PRIMÄRVÅRDENS BRUS Vad ska vi göra? Vad ska vi hitta? Vad är sjukdom? Om tester och andra hjälpmedel i den kliniska vardagen.

Handläggning av solida, benigna levertumörer i icke-cirrotisk lever

MS och kognitiv påverkan

CMV/EBV Molekylär diagnostik. Annika Allard Klinisk Mikrobiologi/Virologi Norrlands Universitetssjukhus

Om betydelsen av självupplevd kognitiv försämring hos patienter på en minnesmottagning

Epilepsi. Epilepsi. Behövs multimodal utredning? Epilepsikirurgi. Fördjupningsföreläsning - multimodal diagnostik av epilepsi

Vaskulär demens Vad krävs för diagnosen? Katarina Nägga, Öl, Med Dr Neuropsykiatriska Kliniken Universitetssjukhuset MAS Malmö

Långtidsuppföljning efter UVI

NEURORADIOLOGI En liten introduktion

Avancerad kurs i magnetresonanstomografi (MRT), inriktning mot undersökningar av hjärnan

Kan man se minnet på röntgen?

Njurtumörer hos barn

Reliability of Visual Assessment of Medial Temporal Lobe Atrophy

O M T E N TA M E N 2

Beteendegenetik. Vårt genetiska kod. Koden överförs vid celldelning. Handlar om hur psykologiska förmågor och möjliga beteenden ärvs i DNA

Proteinklumpar i nervsystemet en mekanism bakom flera sjukdomar

Tidig upptäckt. Marcela Ewing. Spec. allmänmedicin/onkologi Regional processägare Tidig upptäckt Regionalt cancercentrum väst

MDK-rutin för Urotelialcancer

1/23/2017. Metoder för morfologisk och funktionell hjärnavbildning. Jarl Risberg Neuroutbildarna i Lund. René Descartes ( )

PROSTATACANCER. Johan Stranne Docent/Överläkare 17/ SK-kurs Uroradiologi Prostatacancer

Samtidig förekomst av prostatacancer och rektalcancer hos män -en studie i MR av lilla bäckenet

Den anpassningsbara hjärnan efter stroke

I huv et på en neuroradiolog

En liten fallbeskrivning

Leverpåverkan vid obesitas

Arbetsdokument Nationella riktlinjer för rörelseorganens sjukdomar

Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:

MR: En körning flera sekvenser. MR : mätning av många parametrar. Vad krävs för erhålla en MR bild. D van Westen, BFC, Sus, Lund, VT2010

MS eller multipel skleros är den allmännast förekommande. Läkemedelsbehandlingen av MS BLIR MÅNGSIDIGARE

Hjärnans Plasticitet. Lars Nyberg. Strålningsvetenskaper & Integrativ Medicinsk Biologi Umeå Universitet.

Förstå din Tecfidera -behandling. Information till dig som blivit ordinerad behandling med Tecfidera.

Nya biomarkörer för diagnostik av tidig ovarialcancer; studier på cystvätskor och blod

Forskning om diagnos och behandling vid Alzheimers sjukdom

Öroninflammation Svante Hugosson

Nmr-spektrometri. Matti Hotokka Fysikalisk kemi

Neurologi. RDK Frösundavik Magnus Fogelberg

Struma. Förstorad sköldkörtel

Tentamen Patologi, Optikerprogrammet VT2016

NEURORADIOLOGI. Susanne Müller MD, PhD. Spec i diagnostisk radiologi, neuroradiologi och nukleärmedicin Röntgenkliniken KS, Huddinge

Finns det kopplingar mellan traumatiska hjärnskador och demens?

Tarmflorabakterier och D-vitamin viktiga byggstenar för vår hälsa

Symptom vid demenssjukdom. Primära symptom vid demenssjukdom. Primära symptom vid demenssjukdom. Primära symptom vid demenssjukdom

Hydrocefalus. Birgitte Berthelsen Neurosektionen, Radiologi SU/Sahlgrenska

Lathund för handläggning av malignt melanom/dysplastisk naevus i Uppsala-Örebroregionen reviderad

Vaskuliter hos barn. Stora kärl Giant Cell Arteritis Takayasu Arteritis. Medelstora kärl Polyarteritis Nodosa Kawasaki Disease

TILL DIG SOM FÅR TYSABRI BEHANDLING MED TYSABRI VID SKOVVIS FÖRLÖPANDE MS

REGISTER OCH UTVÄRDERING AV RESULTATEN EFTER KIRURGISK EPILEPSIBEHANDLING

Struma. Förstorad sköldkörtel

Rapport vårens utskick 2017

Ataxier Vad händer i nervsystemet? Sakkunnig: docent Tor Ansved, specialist i neurologi och klinisk neurofysiologi, Läkarhuset Odenplan, Stockholm

Sluttentamen del 2 i patologi för läkarprogrammet

Skademekanismer i hjärnan efter hjärnischemi

Innehållet i denna fil får endast användas för privat bruk. Kopiering eller annan användning kräver tillstånd från Stefan Lönnerholm, Akademiska

TILL DIG SOM FÅR BEHANDLING MED TYSABRI VID SKOVVIS FÖRLÖPANDE MS (NATALIZUMAB)

Diabetesfoten. Diabetesfoten. Angiopati. Neuropati. Diabetes. Claudicatio - Gangrän. Makro. Mikro

ONKOLOGISK BEHANDLING AV PRIMÄRA HJÄRNTUMÖRER. Katja Werlenius Onkologkliniken, SU/Sahlgrenska Hjärntumördagarna 25 aug 2011

I neutrofila celler så utgör calprotectin - 5 % av totala proteininnehållet - 60 % av proteininnehållet i cytoplasman

Nervsystemet. Mikro och makrostruktur, begrepp att bygga på. Mikrostrukturen. Dendriter Mottagande delen. Soma. Axon hilloc Trigger Komponent

MRT vid MS. Magnetkameraundersökningen ger dig koll på din MS

Törstprov och minirintest

02/ BEN-SWE-0057 Broschyr Biologiska & sjukdomar BIOLOGISKA LÄKEMEDEL OCH INFLAMMATORISKA SJUKDOMAR

Transkript:

magnetresonansspektroskopi MRS GER IN VIVO- BILDER AV HJÄRNANS VÄVNADER Med magnetresonansspektroskopi (MRS) är det möjligt att kemiskt analysera hjärnans vävnader in vivo. I praktiken är det intressant främst för differen tial - diagnostik och för att se sjukdomsutbredning i hjärnan. ISABELLA BJÖRKMAN- BURTSCHER, docent, specialist - läkare vid sektionen för neuro - radiologi, Bild- och funktions - diagnostiskt centrum, Univer si - tetssjukhuset i Lund isabella.bjorkman-burtscher@ med.lu.se Magnetresonansspektroskopi (MRS) har använts som analytisk metod av kemister och fysiker sedan introduktionen av NMR-tekniken under 1940-talet. Nästan parallellt med intåget av den bildgivande MR-tekniken i den kliniska verksamheten under 1980-talet utvecklades MRS-tekniker, som utöver de sedan tidigare möjliga kemiska in vitro-analyserna av kroppens vävnader tillät in vivo-undersökningar. Förväntningarna på klinisk MRS var stora under teknikens barnaår, men trots att den tekniska utvecklingen av MRS har hållit jämna steg med de övriga bildgivande MR-metoderna har en bred klinisk användning av MRS-tekniken uteblivit. MRS tillåter, som komplement till bildgivande och funktionella MR-metoder, kemisk analys av vävnader in vivo. MRSundersökningar utförs med en vanlig klinisk magnetkamera Figur 1. Normalt MR-spektrum hos vuxen. MR-spektrum (3 tesla, SVS, TE 30 ms, SE) från den parietooccipitala vitsubstansen. Synliga metaboliter: Lip 0,9 1,4, NAA 2,02, Glx 2,05 2,5, Cr 3,03, Cho 3,22, mi 3,56 (förkortningar, se Tabell I). TABELL I. Vanliga metaboliter observerade i ett spektrum av hjärnvävnad. 1 Metabolit Förkortning 0,9 och 1,25 Alifatiska CH 3 - och CH 2 -grupper Lip 1,34 Laktat Lac 2,02 N-acetylaspartat NAA 2,05 2,5 Glutamat och glutamin Glu + Gln = Glx 3,03 Kreatin Cr 3,22 Kolin Cho 3,56 Myoinositol mi 1 = parts per milion; position av metaboliten på x-axeln av ett spektrum baserad på en extern referenssubstans. Positionen på x-axeln är oberoende av fältstyrkan. utrustad med en mjukvara som tillåter insamling och utvärdering av MRS-data. Det område eller de områden som ska analyseras definieras under MRS-undersökningen. I van liga fall samlas data in från ett eller flera cirka 2 2 2 cm stora volymer (single volume MRS) alternativt från ett större område, som i sin tur delas in i mindre volymer (multivoxel-mrs, chem ical shift imaging eller MRS imaging). Undersökningstiden varierar beroende på frågeställning och antal undersökta områden, men vanligen krävs 15 till 30 minuter. Därtill kommer utvärderingstiden, som även denna är beroende av frågeställning, undersökningsprotokoll, utvärderingsverktyg och vana. Resultaten av undersökningen presenteras i ett MR-spek t - rum (Figur 1), och dess utseende varierar något beroende på undersökningsparametrar, undersökningsområdet, patientens ålder och patologin. På grund av att antalet undersökningsparametrar är stort är det svårt att erhålla robusta kvantitativa data, varför metaboliternas koncentrationer ofta anges som kvoter mellan olika metaboliter eller som arbiträr enhet. Kvantitativa data kan erhållas om standardiserade undersökningstekniker tillsammans med speciella utvärderingsverktyg såsom jmrui [1] eller LCModel [2] används. Sensitiviteten hos en MR-kamera med en fältstyrka på 1,5 tesla är cirka 0,1 mmol/l, och enbart molekyler som är»mrsynliga«omfattas av undersökningen. MRS kan utföras på de flesta av kroppens vävnader, men det huvudsakliga kliniska användningsområdet är undersökning av hjärnvävnad. Metaboliter relevanta för analysen av hjärn- sammanfattat Magnetresonansspektroskopi (MRS) tillåter, som komplement till bildgivande och funktionella MR-metoder, kemisk analys av vävnader in vivo. Förändringar i metaboliternas koncentrationer återspeglar patofysiologiska processer i hjärnvävnaden, t ex neuron - undergång eller neuron dys - funktion (minskning av neuronmarkören N-acetylaspartat), proliferation eller nedbrytning av cellmembran och myelin (ökning eller minskning av kolin och myo - inositol) eller ackumulation av laktat i samband med an - aerob glukolys. I klinisk rutin används MRS främst inom differentialdia - gnostiken (mellan t ex hjärn - abscesser, primära och sekundära hjärntumörer eller mellan olika metabola sjukdomar) och för kartläggning av sjukdomsutbredning inom hjärnan (vid t ex encefaliter eller epilepsi). läkartidningen nr 47 2008 volym 105 3443

fakta. Metaboliter relevanta för undersökning av hjärnan funktion och vanliga fynd N-acetylaspartat (NAA) [16] representerar både NAA och N-acetylaspartylglutamat (NAAG). NAA är en neuronmarkör med förekomst i nervceller. NAA bidrar till syntesen och underhållet av myelin samt till den neuronala energimetabolismen av mitokondrier och specifika fettsyror. NAA fungerar som en neuronal osmolyt. NAA är en reservoar för glutamat och ett substrat för syntesen av N-acetylaspartylglutamat. NAAG är en av hjärnans vanligaste peptider och finns i neuron, oligodendrocyter och mikroglia. Via NAAG signalerar astrocyter om neuronens växlande behov av vaskulär energitillförsel och metabolisk»sophantering«. Minskning av NAA i spektrumet åter - speg lar nervcellsundergång, nervcellsdysfunktion, minskning av dendritiska strukturer eller myelinskada. En ökning av NAA ses vid Canavans sjukdom och kan uppstå vid vitsubstanssjukdomar som angriper myelinet vid samtidigt bevarande av axon, vilket leder till en relativt ökad axonhalt per undersökningsvolym. Kolin (Cho) representerar bl a fosfokolin och glycerofosfokolin (intracellulära membranprekursorer och membrannedbrytningsprodukter). Cho är en markör för celltäthet och membranomsättning. Cho är en osmolyt på cellulär nivå. En ökning av Cho reflekterar syntes eller nedbrytning av celler och myelin, ökad celltäthet och proliferation av membranfosfolipider. Kvoten mellan NAA och Cho används ibland som relativt mått på neurontäthet. Kreatin (Cr) representerar både kreatin och fosfokreatin. Cr är involverat i cellens energimetabolism [17]. Cr är en osmolyt på cellulär nivå. Låga Cr-nivåer kan vara relaterade till hypometabolism. Kvantitativ analys av Cr-koncentrationer har visat sig vara differentialdiagnostiskt viktig i t ex metabola sjukdomar eller vitsubstanssjukdomar. Myoinositol (mi): För att kunna bedöma vissa metaboliter såsom t ex mi och Glx (ne- dan) krävs att MRS-undersökningen är utförd med korta ekotider. mi är en gliamarkör med högst koncentration i gliaceller. mi är involverad i osmoregulationen och neurotransmissionen. Ökad mi-nivå ses vid t ex gliaskada, hyper osmolära tillstånd eller vid återhämtning efter hypoxi. Glutamat (Glu) och glutamin (Gln): Glu och Gln har överlappande resonansfrekvenser och är svåra att separera vid 1,5 tesla. Därför summeras de ofta under begreppet Glx. Glu är en excitatorisk neurotransmittor. Gln är prekursor till Glu. Båda finns huvudsakligen i astrocyter. En ökning av Glx ses vid t ex hepatisk encefalopati. En övergående Glx-ökning observeras vid bl a hypoxi, drunkningstillbud eller brist på ornitintranskarbamylas (OTC). Laktat (Lac): Laktatkoncentrationen är normalt på gränsen till att kunna detekteras. Laktat kan ibland ses i små mängder hos friska patienter, framför allt hos nyfödda barn eller vid höga fältstyrkor (3 tesla eller högre). För övrigt är förekomsten ett tecken på patologi. En patologisk laktatackumulation uppträder vid t ex anaerob metabolism (hyp- oxi), mitokondriella sjukdomar, inflammation eller makrofaginfiltration. Lipider (Lip): Lipider och makromolekyler är normalt tätt bundna till membranstrukturer och är därför osynliga. Förekomst av Lip är generellt ett tecken på patologi. Kontamination av spektrumet med fettsignaler från skalpen vid felaktig positionering av undersökningsområdet eller signal från makromolekyler vid undersökning med kort ekotid (TE <35 ms) är dock undantag från denna regel. Ökade lipidsignaler ses vid framför allt membrannedbrytning. 3,5 3,0 2,5 2,0 1,5 1,0 0,5 A B C Figur 2. Hjärnabscess. Kontrastförstärkt T1-viktad MRI (A) av en hjärn abscess med MRS-volymen utmärkt i den cystiska portionen. MR-spektrum (B) förenligt med pyogen abscess (3 tesla, SVS, TE 20 ms, STEAM) med närmast total avsaknad av NAA (2 ), Cr (3,03 ) och Cho (3,22 ), men förekomst av Lip (0,9 1,4 ), Lac (1,33 ), aminosyror såsom alanin (1,48 ), acetat (1,9 ), succinat (2,4 ). Under antibiotikabehandling förändras spektrumets utseende, och vid en steril abscess (C) återstår enbart ett för cystiska lesioner ospecifikt spektrum med varierande mängd Lac (1,33 ) och Lip (0,9 1,4 ) (förkortningar, se Tabell I). vävnad sammanfattas i Tabell I och beskrivs närmare i Fakta [3]. Bedömningen av ett MR-spektrum utgår från dels variationer i kemiska koncentrationer, som förändrar arean under topparna för den specifika metaboliten, dels förekomst av i ett normalt spektrum inte synliga patologiska metaboliter (t ex laktat, acetat, alanin) eller exogena substanser (t ex mannitol eller propandiol). MRS har blivit en robust teknik när det gäller reproducerbarhet och användarvänlighet. Detta har medfört att intresset för MRS i klinisk verksamhet har ökat, och tröskeln för användningen av metoden har sjunkit. Tyvärr är artefakter i MRS inte lika iögonfallande som vid MRI, och även om fallgroparna är minst lika vanliga, är de ofta inte lika kända [4]. Detta medför problem för oerfarna radiologer när det gäller tolkning av resultaten och extern granskning av undersökningar där undersökningsprotokoll och grunddata 3444 läkartidningen nr 47 2008 volym 105

A B C Figur 3. Hjärntumör. Kontrastförstärkt T1-viktad (A), FLAIR (fluid-attenuated inversion recovery) (B) och T2-viktad MRI (C) av ett glioblastoma multiforme. MR-spektrumet (3 tesla, CSI, TE 288 ms, SE) från den kontrastladdande tumörkomponenten (D) visar kraftig minskning av NAA (2,02 ) och ökad förekomst av Cho (3,22 ) och Lac (1,33 ). I randzonen av tumören är dessa spektrala förändringar mind re uttalade men väl synliga (E), medan spektrumet från ödemzonen uppvisar enbart en minskning av NAA (2,02 ) (F) (förkortningar, se Tabell I). D E F saknas eller där enbart delar av t ex multivoxelundersökningar är tillgängliga. Kliniska användningsområden MRS ska ses som ett komplement till andra bildgivande eller funktionella undersökningsmetoder, och undersökningen ska vara inriktad på en specifik frågeställning. Förändringar i metaboliternas koncentrationer (som är proportionella till arean under topparna i spektrumet) återspeglar patofysiologiska processer i hjärnvävnaden, t ex neuronundergång eller neurondysfunktion (minskning av N-acetylaspartat), cellproliferation eller celldöd (bl a ökning eller minskning av kolin), ackumulation av laktat i samband med anaerob glukolys etc. Eftersom många sjukdomar kan leda till liknande patofysiologiska processer, finns en stor överlappning mellan metaboliternas reaktionsmönster och olika patologiska tillstånd. Därför krävs att MR-spektrum analyseras mot bakgrund av klinisk, funktionell och anatomisk/morfologisk information. MRS har sina största användningsområden inom differen - tial diagnostiken (av t ex hjärntumörer mot abscesser eller olika metabola sjukdomar), inom kartläggningen av sjukdomsutbredningen i hjärnans olika delar (t ex vid encefalit, metabola sjukdomar och vitsubstanssjukdomar) och inom fastställandet av prognostiska kriterier (efter t ex drunkningstillbud, hypoxi eller inför operation vid t ex terapiresistent epilepsi). Nedan illustreras några kliniska problem där MRS kan användas som länk i den diagnostiska kedjan. Abscesser och tumörer Avkapslade bakteriella hjärnabscesser kan differentialdia - gnostiskt vara svåra att skilja från cystiska eller nekrotiska primära hjärntumörer eller metastaser såväl som från opportunistiska eller parasitära infektioner. MR-spektrumet av den cystiska komponenten i en pyogen abscess återspeglar bakteriernas metabola aktivitet och har ett karakteristiskt utseende [5]. Avsaknaden av kolin, kreatin och N-acetylaspartat, ackumulationen av laktat och alifatiska CH 3 - och CH 2 -grupper samt förekomsten av metaboliter som normalt inte ses i ett humant hjärnvävnadsspektrum (acetat, succinat och alanin) ger spekt - rumet dess karakteristiska utseende (Figur 2). Vid avsaknad av de sistnämnda abscesspecifika meta bo li ter - na återstår differen tialdiagnostiskt även den sterila abscessen. Under antibiotikabehandling försvinner dessa metaboliter. Ett sådant spektrum kan representera en steril abscess likaväl som någon annan form av cystisk nekrotisk hjärnlesion (Figur 2 C) [6, 7]. En analys av cystans omgivande vävnad kan i dessa fall ge ytterligare information om lesionens genes. De vanligaste primära hjärntumörerna är kända för sitt in - filt rativa och heterogena växtsätt, vilket återspeglas i patologiska spektrum i tumöromgivningen med normalt morfologiskt utseende såväl som heterogena spektrum i olika tumörområden (Figur 3). Avsaknad av denna infiltration i kringliggande vävnader talar å andra sidan också mer för ett lokalt nodulärt växtsätt, vilket är vanligast hos metastaser eller meningiom. Sistnämnda entitet är dock sällan ett radiologiskt differentialdiagnostiskt problem. MRS används även för att kunna kartlägga en lesions malignitetsgrad närmare [6]. En hög membranomsättning, ökad celltäthet och ökad vaskularitet i högmaligna tumörer åter - speg las inte bara i perfusions- och diffusionsförändringar, utan även i generellt kraftigt ökat kolinvärde, minskat N-acetyl - aspartatvärde och i varierande grad ökade värden av laktat och alifatiska CH 3 - och CH 2 -grupper. Encefaliter MRS kan normalt inte fastställa vilket agens som ligger bakom en encefalit eller en inflammatorisk process. Metodens styrka»mrs har blivit en robust teknik när det gäller reproducerbarhet och användarvänlighet.«läkartidningen nr 47 2008 volym 105 3445

ligger dock i möjligheten att detektera sjukdomens utbredning och eventuellt engagemang av hjärnparenkym som på konventionella MR-bilder fortfarande förefaller friskt [8]. Även för uppföljningen kan MRS vara av värde genom att tidigt kunna uärksamma patofysiologiska processer talande för progress eller regress av sjukdomen. Spektrum vid encefaliter karakteriseras i första hand av en minskning av N-acetylaspartat som uttryck för både en dysfunktion och/eller en undergång av nervceller. Ökningen av kolin står i det akuta stadiet i första hand för den ökade cellomsättningen på grund av parenkymskadan och destruktionen, medan samma parameter vid läkningen och i ett mer kroniskt stadium återspeglar bl a reparationsmekanismer såsom glios. Ett annat vanligt fynd vid encefalit är en ökning av myoinositol [9] (Figur 4). A B Metabola sjukdomar Spektroskopi vid metabola sjukdomar används kliniskt för att hitta eller bekräfta en sjukdom, underlätta bedömningen av prognosen och monitorera behandlingsresultat eller sjukdomsförlopp [10]. Upptäckten av laktat hos patienter med känd eller misstänkt mitokondriell sjukdom bekräftar diagnosen eller sjukdomens engagemang av det centrala nervsystemet. Ytterligare exempel på typiska spektroskopifynd vid metabola sjukdomar är fenylalanintoppen (7,3 ) vid fenylketon - uri, total avsaknad av kreatin vid obehandlat Frahm Hane feld Bianchi-syndrom och partiell återhämtning av krea tintoppen vid behandling av detta syndrom med kreatintillskott, exceptionellt höga värden N-acetylaspartat vid Canavans sjukdom eller en ackumulation av glutamat och glutamin vid brist på ornitintranskarbamylas (OTC). Multipel skleros Patologiska fynd vid multipel skleros omfattar såväl ödem, demyelinisering, degeneration och axonskada, såsom reparationsprocesser och remyelinisering. Beroende på sjukdomens status ses MRS-fynd av varierande grad [11]. MRS detekterar patologiska områden veckor till månader innan konventionella MR-undersökningar visar tecken på fokala demyeliniserande lesioner. I MR-synliga MS-plack ses en ökning av kolin, myoinositol, laktat och alifatiska CH 3 - och CH 2 -grupper, vil- C Figur 5. Kortikal dysplasi. T2-viktad MRI (A) av kortikal dysplasi hos ett 5 år gammalt barn med partiell epilepsi. MRS-volymen motsvarande spektrumet i bild B är utmärkt i bild A. MR-spektrum förenligt med kortikal dysplasi (3 tesla, SVS, TE 20 ms, STEAM) med kraftig minskning av NAA (2 ) och ökad mi (2,56 ). MR-spektrum (C, D) från en multivoxel-mrs-undersökning (3 tesla, TE 288 ms, SE) motsvarande den kortikala dysplasin (C) och kontralateral normal hjärnvävnad (D). Multivoxelundersökningen är utförd med lång ekotid och visar därför inte toppen av mi (3,56 ). NAA-nivån (2,02 ) är minskad och Cho-nivån (3,22 ) är ökad i lesionen (C), medan spektrumet från den kontralaterala sidan är normal (D) (förkortningar, se Tabell I). D B D A C Figur 4. Encefalit/inflammation. Patient med oklar, PAD-verifierad inflammatorisk process. MRS visar utbredda förändringar med varierande grad av minskning av NAA (2,02 ) och Cho (3,22 ) samt ökning av mi (3,56 ). Förändringarna är mer uttalade temporalt (A, B; 3 tesla, SVS, TE 20 ms, STEAM, samt lokaliseringsbilder) än parietooccipitalt (C, D) (förkortningar, se Tabell I). 3446 läkartidningen nr 47 2008 volym 105

»MRS ska ses som ett komplement till andra bildgivande eller funktionella undersökningsmetoder «ken beror på membran- och myelinnedbrytningen och en ökad gliacellsaktivitet. Minskningen av N-acetylaspartat är ett uttryck för både ödem (vilket medför en minskning av antalet neu ron/axon per mätt volymenhet) och nervcellsdysfunktion och först i andra hand ett uttryck för axondegeneration eller nervcellsundergång. Detta återspeglar sig också i en partiell återhämtning av N-acetylaspartat vid remyelinisering. Epilepsi Inom diagnostiken av epilepsisjukdomar används MRS som ett komplement för lateralisering av det epileptogena fokuset [12, 13]. Den största andelen av de epilepsipatienter som undersökts med MRS har temporallobsepilepsi (TLE), där MRS visar en cirka 20-procentig minskning av N-acetylaspartat i fokussidan och en sensitivitet på cirka 80 100 procent för lateraliseringen. Minskningen av N-acetylaspartat motsvarar histologiskt vanligen en mesial temporal skleros med neuronundergång och glios. Andra MRS-fynd är en lätt ökning av kolin och kreatin. En temporär postiktal ackumulation av laktat anses vara en markör för det epileptogena fokuset. Mellan 20 och 55 procent av patienter med unilaterala EEG-fynd visar bilaterala patologiska spektrum, dock med en mer marginell N-acetyl - aspartatminskning kontralateralt till fokuset. Även hos patienter med normala MR-fynd kan metoden användas för lateralisering och detektion av tidiga metabola förändringar. Patienter med grava bilaterala MRS-förändringar har dålig pro - gnos avseende anfallsfrihet postoperativt, medan lätta kontralaterala MRS-förändringar inte anses vara en prognostiskt negativ faktor. Även patienter med extratemporalt belägna epileptogena fokus såsom frontallobsepilepsier visar i första hand minskad halt N-acetylaspartat. Minskningen är mest uttalad i området för det epileptogena fokuset, men mindre uttalade MRS-för - änd ringar ses även utanför fokuset och kontralateralt till den icke-epileptogena hemisfären. Även lesionsassocierade epileptiska fokus uppvisar ofta grava metabola avvikelser, som uttryck för både det epileptiska fokuset och den underliggande patologin (Figur 5). Normalt åldrande och demens Eftersom MR-spektrum återspeglar bl a nervcellernas, myelinets och gliacellernas täthet och funktion, ses stora skillnader i det spektrala mönstret mellan nyfödda barn med en mycket låg myeliniseringsgrad och parenkymmognad och gamla patienter med parenkymdegeneration eller parenkymskada av varierande grad. Den nyföddes spektrum karakteriseras av, jämfört med en vuxens, låga nivåer N-acetylaspartat och höga kolinoch myoinositolvärden. Under de första levnadsmånaderna sker i takt med myeliniseringen en övergång till ett vuxenspektrum [14]. Trots stora skillnader i studieupplägg (lokalisation av mätområden, mätparametrar och utvärderingsmetod) sammanstrålar resultaten i litteraturen till en generell konsensus att nivåerna av N-acetylaspartat sjunker några få till tio procent med normalt åldrande, som uttryck för minskad neurontäthet och metabol viabilitet. När det gäller åldersrelaterade föränd - ringar av de resterande metaboliterna går dock åsikterna isär. Differentialdiagnostiken mellan olika demenssjukdomar baserar sig i första hand på analysen av metabolitförändringar i olika områden. MR-spektrum vid Alzheimers sjukdom karakteriseras i första hand av en ökning av myoinositol och en minskning av N-acetylaspartat [15]. Omfattningen av reduktionen av N-acetylaspartat är större vid alzheimer än vid normalt åldrande. I differentialdiagnostiken mellan olika demenssjukdomar är distributionen av minsk ningen av N-acetylaspartat över hjärnans olika områden en viktigare parameter än dess storlek. De spektrala föränd - ringarna är vid t ex alzheimer först synliga och störst i hippocampus och temporalloben, medan distributionen av MRSförändringar vid frontala demenstyper motsvarar frontalloberna. Vid multiinfarktdemens motsvarar den vitsubstansförändringarnas utbredning sedd på MR. Potentiella bindningar eller jävsförhållanden: Inga uppgivna. REFERENSER 1. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129 (1):35-43. 2. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14(4):260-4. 3. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000; 13:129-53. 4. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artefacts. NMR Biomed. 2004;17:361-81. 5. Burtscher IM, Holtås S. In vivo proton MR spectroscopy of untreated and treated brain abscesses. AJNR Am J Neuroradiol. 1999;20(6): 1049-53. 6. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses [review]. NMR Biomed. 2003;16(3):123-31. 7. Burtscher IM, Holtås S. Proton magnetic resonance spectroscopy in brain tumours: clinical applications [review]. Neuroradiology. 2001;43(5):345-52. 8. Sundgren PC, Burtscher IM, Lundgren J, Geijer B, Holtås S. MRI and proton spectroscopy in a child with Rasmussen s encephalitis. Case report. Neuroradiology. 1999;41(12): 935-40. 9. Kingsley PB, Shah TC, Woldenberg R. Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed. 2006;19:435-62. 10. Cecil KM, Kos RS. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders [review]. Top Magn Reson Imaging. 2006;17 (4):275-93. 11. De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis [re - view]. J Neuroimaging. 2007;17 Suppl 1:31S-35S. 12. Hammen T, Stefan H, Eberhardt KE, W-Huk BH, Tomandl BF. Clinical applications of 1H-MR spectroscopy in the evaluation of epilepsies what do pathological spectra stand for with regard to current results and what answers do they give to common clinical questions concerning the treatment of epilepsies [review]? Acta Neurol Scand. 2003; 108(4):223-38. 13. Schäuble B, Cascino GD. Advances in neuroimaging: management of partial epileptic syndromes. Neurosurg Rev. 2003;26:233-46. 14. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res. 1999;46(4):474-85. 15. Kantarci K, Petersen RC, Boeve BF, Knopman DS, Tang-Wai DF, O Brien PC, et al. 1H MR spectro s - copy in common dementias. Neurology. 2004;63(8):1393-8. 16. Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri AMA, editors. N-acetylaspartate: a unique neuronal molecule in the central nervous system. Bethesda, MD: Springer; 2006. 17. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107-213. läkartidningen nr 47 2008 volym 105 3447