Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive Probability Slumpförsök Utfall Utfallsrum Händelse Mängd Delmängd Union Snitt Komplement Varandra uteslutande oförenliga, disjunkta Uttömmande Sannolikhet 1
Slumpförsök Vi kommer att tala om sannolikheter i samband med slumpförsök. Ett slumpförsök är ett försök, som kan upprepas under likartade förhållanden, och där resultatet vid varje enskild upprepning inte kan förutsägas med säkerhet. Försök i vid mening aktivitet, process, förlopp. Exempel på slumpförsök: Tärningskast (1, 2, 3, 4, 5 eller 6?) Lottdragning (Vinst eller ej?) Slumpmässigt urval från en population (Vilka blir utvalda?) Befruktning av äggcell (Pojke eller flicka?) Radioaktivt sönderfall (Antal partiklar under ett visst tidsintervall?) Industriell tillverkning av en enhet. (Riktig eller felaktig?) 2
Utfall och utfallsrum Resultatet av ett slumpförsök kallas för ett utfall. Mängden av alla möjliga utfall kallas för försökets utfallsrum. Betecknas: S. OBS Vi tänker oss att utfallen är definierade så att ett och endast ett utfall inträffar varje gång försöket utförs. Ex.: Ge förslag till utfallsrum. Försök: Ett kast med en tärning Utfallsrum: S = Försök: Befruktning av en äggcell Utfallsrum: S = Försök: Två kast med ett mynt Utfallsrum: S = 3
Händelser Utfallen är de elementära beståndsdelarna i ett utfallsrum. En händelse är en samling av ett eller flera utfall. Vi säger att händelsen inträffar om och endast om något av utfallen i motsvarande samling av utfall inträffar. För varje tänkbar händelse kan man räkna upp de utfall, som innebär att händelsen inträffar. Ex.: Tärningskast. Sex möjliga utfall. S = {1, 2, 3, 4, 5, 6}. Vi ser på händelsen att få ett jämnt antal prickar. Vart och ett av utfallen 2, 4 och 6 innebär att händelsen inträffar. Händelsen jämnt antal prickar motsvaras alltså av delmängden {2, 4, 6}. 4
Ex.: Tärningskast. S = {1, 2, 3, 4, 5, 6}. Definiera olika händelser som delmängder av utfallsrummet. Händelse Delmängd A = att få ett udda antal A = prickar B = att få högst 3 B = prickar C = att få sexa C = D = att inte få sexa D = E = att få en sjua E = 5
Mer om händelser Händelse = delmängd av utfallsrummet S. Händelser betecknas ofta A, B, C etc. Med symboler och begrepp från mängdläran kan vi bilda nya händelser och uttrycka egenskaper hos händelser. T.ex.: Union: A B Snitt: A B Komplement: A A och B disjunkta Händelsen att A eller B (eller båda) inträffar Händelsen att både A och B inträffar Händelsen att A inte inträffar A och B kan inte inträffa samtidigt (är varandra uteslutande) Rita Venn-diagram. 6
Ex: Tärningskast. S = {1, 2, 3, 4, 5, 6}. Låt A = händelsen Udda antal = {1, 3, 5} B = händelsen Högst tre = {1, 2, 3} A B = A B = A = B = A B = A B = A A = A A = Ex: För godtyckliga A och B, illustrera med Venndiagram att: A kan uttryckas som en union av två disjunkta delar: A = ( A B) ( A B). A B kan uttryckas som en union av två disjunkta delar: A B = A ( A B). 7
Vad är sannolikhet? Sannolikheten, P(A), för händelsen A är ett slags mått på hur säkert det är att händelsen skall inträffa. P(A) är ett tal mellan noll och ett. NCT ger tre olika sannolikhetsdefinitioner: 1. Den klassiska sannolikhetsdefinitionen. Ett slumpförsök har n möjliga utfall, alla lika möjliga. Av dessa utfall är det n A stycken som innebär att händelsen A inträffar. Då är n ( A) = = n P A antal"gynnsamma"utfall antal möjliga utfall Kommentar: Vad menas med att de möjliga utfallen skall vara lika möjliga? Oklart. Om det betyder att utfallen skall ha lika sannolikhet, så förutsätter ju den klassiska sannolikhetsdefinitionen att man redan vet vad sannolikhet är. Då är det egentligen inte fråga om någon definition utan snarare en regel som talar om hur man kan beräkna sannolikheten för en händelse, ifall man redan vet att alla utfall har lika sannolikhet. 8
2. Den frekventistiska sannolikhetsdefinitionen. Sannolikheten för händelsen A uppfattas som den relativa frekvens med vilken A inträffar vid en mycket lång serie upprepningar av slumpförsöket: P(A) relativa frekvensen för händelsen A i det långa loppet. Kommentar: Man tänker sig att den relativa frekvensen för A i det långa loppet tenderar att stabilisera sig på en viss nivå. Hur vet man att det är så? Man brukar hänvisa till gjorda iakttagelser av de relativa frekvensernas stabilitet (se kommande exempel). 3. Den subjektiva sannolikhetsdefinitionen. Sannolikhet antas uttrycka grad av tilltro. P(A) = mått på hur starkt en person tror på påståendet att A skall inträffa Kommentar: (1) Olika personer kan ha olika stark tilltro till ett och samma påstående. (2) Inget krav att slumpförsöket skall kunna upprepas. 9
Ex: Relativa frekvensernas stabilitet. En serie på 500 kast med ett mynt har simulerats med Minitab. Relativa frekvensen krona vid växande antal kast har registrerats. Relativ frekvens krona vid växande antal kast med ett mynt 1,0 0,9 Rel. frekv. krona 0,8 0,7 0,6 0,5 0,4 0,5 0,3 0,2 0 100 200 300 Kast nr. 400 500 10
Några räkneregler för sannolikheter Vi utgår från tre grundantaganden: 1. Vi har ett slumpförsök med utfallsrummet S = {O 1, O 2,, O n } 2. Varje utfall, O i, har en sannolikhet P(O i ) (i = 1, 2,, n) 3. Dessa sannolikheter uppfyller villkoren 0 P(O i ) 1 (i = 1, 2,, n) P(O 1 ) + P(O 2 ) + + P(O n ) = P( O i ) = 1 n i= 1 Vi betraktar alltså ett slumpförsök med ändligt många utfall, där varje utfall har sin givna sannolikhet, och där dessa sannolikheter uppfyller villkoren ovan. Vidare utgår vi från följande definition: 11
Definition: Sannolikheten för en händelse A är lika med summan av sannolikheterna för de utfall som innebär att A inträffar, dvs. P(A) = A P ( O i ) Av dessa antaganden, plus definitionen, följer formellt ett antal resultat. Vid lösning av sannolikhetsproblem har man ofta användning av dessa resultat, vilka i fortsättningen får betraktas som etablerade räkneregler. Några räkneregler följer här (försök bevisa några). Fler kommer längre fram. För varje händelse A är 0 P(A) 1. P(S) = 1 Om A och B är disjunkta händelser, så är P(A B) = P(A) + P(B) Om A 1, A 2,, A k är parvis disjunkta, så är P(A 1 A 2 A k ) = P(A 1 )+P(A 2 )+ +P(A k ) 12
Några exempel med likformig sannolikhetsmodell Om alla utfall i utfallsrummet har samma sannolikhet, har vi en likformig sannolikhetsmodell. Om S = {O 1, O 2,, O n }, så innebär en likformig slh-modell att P(O 1 ) = = P(O n ) = 1/n. Ex.: Tärningskast, P(1) = = P(6) = 1/6. Vid slumpförsök med likformig slh-modell kan slh för en händelse A beräknas såsom: na P( A) =, n där n = antal möjliga utfall av försöket n A = antal utfall därav, som innebär att A inträffar (= antal gynnsamma utfall) (Det här är ju den klassiska sannolikhetsdefinitionen.) 13
Ex.: Lotteri med 100 lotter varav 5 är vinstlotter. Välj en lott på måfå (dvs. med lika slh för alla lotter). Vad är slh för vinst? P(Vinst) = Ex.: Två kast med en tärning. 36 möjliga utfall (se figur nedan), som alla antas ha lika slh. Första 1 kastet 2 3 4 5 6 Andra kastet 1 2 3 4 5 6 P(Högst två prickar i första kastet) = P(Summan lika med 5) = P(Summan större än 8) = P(Åtminstone en sexa) = 14
Vid beräkning av antal möjliga och antal gynnsamma utfall har man ibland nytta av kombinatorik; se följande exempel, som handlar om OSU. OSU (obundet slumpmässigt urval) från en ändlig population betyder att alla möjliga delmängder av given storlek skall ha lika sannolikhet att väljas ut. Ex.: Tre personer skall väljas genom OSU från en grupp med åtta personer, varav fyra är män och fyra är kvinnor. a) Vad är slh att en man och två kvinnor blir valda? Antal möjliga utfall = Antal gynnsamma utfall = Slh = b) Vad är slh att få tre män? Antal möjliga utfall = Antal gynnsamma utfall = Slh = 15
Generalisering av föregående problem: Population med N individer, av vilka N 1 har en viss egenskap (och övriga N-N 1 saknar egenskapen). Genom OSU (utan återläggning) skall n personer väljas ut. (OSU innebär att alla delmängder av storlek n skall ha lika slh att väljas.) Vad är slh att få exakt x personer som har den aktuella egenskapen (och n-x personer som inte har egenskapen)? P(x personer med egenskapen) = N ( x 1 N N )( n x N ( ) n 1 ) 16