X. Repetitia mater studiorum

Relevanta dokument
X. Repetitia mater studiorum. Termofysik, Kai Nordlund

X. Repetitia mater studiorum

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)

14. Sambandet mellan C V och C P

IV. Faser. Termofysik, Kai Nordlund

9. Termodynamiska potentialer

Kapitel III. Klassisk Termodynamik in action

IV. Faser. IV.1. Partikeltalet som termodynamisk variabel

IV. Faser. Viktiga målsättningar med detta kapitel

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel I. Introduktion och första grundlagen

14. Sambandet mellan C V och C P

där vi introducerat Nu förändras även de övriga termodynamiska potentialernas derivator:

Termodynamik och inledande statistisk fysik

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

Räkneövning 5 hösten 2014

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

III. Klassisk termodynamik

III. Klassisk termodynamik. Termofysik, Kai Nordlund

VI. Reella gaser. Viktiga målsättningar med detta kapitel

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

III. Klassisk termodynamik

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Studieanvisningar i statistisk fysik (SI1161) för F3

TERMOFYSIK Kai Nordlund, 2005

TERMOFYSIK Andrea Sand, Kursens www-hemsida: ameinand/kurser/termo2018/

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Lösningar till tentamen i Kemisk termodynamik

TERMOFYSIK Kai Nordlund, Kursens www-hemsida: knordlun/termo/

4. Kondenserade fasers termodynamik 4.1 Fasdiagram

Viktiga målsättningar med detta kapitel. Förstå skillnaden mellan jämvikt och ojämvikt. Förstå idealgasens tillståndsekvation

TERMOFYSIK I. Introduktion och första grundlagen

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

V. Den klassiska idealgasen

Kapitel II. Termodynamikens statistiska bas

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Grundläggande termodynamik Materialfysik vt Kondenserade fasers termodynamik 4.1 Fasdiagram. Endoterma och exoterma processer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Tentamen i Kemisk Termodynamik kl 14-19

@

Tentamen - Termodynamik 4p

Materialfysik vt Fasta ämnens termodynamik 4.1 Fasdiagram

24. Ekvipartitionsprincipen. Termofysik, Kai Nordlund

Lösningar till tentamen i Kemisk termodynamik

V. Den klassiska idealgasen

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

och/eller låga temperaturer bildar de vätskor, nåt som inte händer för Dieterici-modellen, och virialexpansionen.

Räkneövning 2 hösten 2014

Tentamen i kemisk termodynamik den 12 juni 2012 kl till (Salarna L41, L51 och L52)

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl

Tentamen KFKA05 och nya KFK080,

Gamla tentafrågor, FYS022:2, Statistisk Fysik, rörande statistisk fysik och statistisk kvantfysik. P i = 1 Z exp( βe i), Z = i.

TFYA12 - Termodynamik och statistisk mekanik. Mats Nilsson

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Exempel på statistisk fysik Svagt växelverkande partiklar

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Tentamen i Kemisk Termodynamik kl 13-18

Termodynamik Föreläsning 7 Entropi

Övningstentamen i KFK080 för B

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs!

4. Kondenserade fasers termodynamik 4.1 Fasdiagram

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

7. Inre energi, termodynamikens huvudsatser

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Kapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki

Tentamen i Kemisk Termodynamik kl 14-19

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

Termodynamik FL7 ENTROPI. Inequalities

Planering Fysik för V, ht-10, lp 2

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

21. Boltzmanngasens fria energi

II. Termodynamikens statistiska bas. Termofysik, Kai Nordlund

Temperatur T 1K (Kelvin)

Lösningar till tentamen i Kemisk termodynamik

Tentamen KFKA05 Molekylära drivkrafter 1: Termodynamik,

Repetition. Termodynamik handlar om energiomvandlingar

Tentamen i Termodynamik för K och B kl 8-13

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.

Statistisk Termodynamik

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-1 Termodynamik C. Norberg, LTH

Kap 4 energianalys av slutna system

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

Kap 12 termodynamiska tillståndsrelationer

Fysikaliska modeller

Viktiga målsättningar med detta delkapitel

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

7. Anharmoniska effekter

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Transkript:

X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system med utgångspunkt i deras mikroskopiska beståndsdelars. Den klassiska (jämvikts-)termodynamiken behandlar endast system som är i jämvikt. Ett system i termodynamisk jämvikt uppvisar ingen förändring i sitt tillstånd på vilken som helst tidsskala. Ett viktigt tillägg är dock att processer som leder till jämvikt också ofta behandlas som en del av termodynamiken Trots denna formella definition kan klassisk termodynamikens resultat ofta i praktiken användas också för system i ojämvikt. Detta är möjligt om någon process av intresse sker under tidsskalor τ intressant >> τ förflyttning till jämvikt Termofysik, Kai Nordlund 2012 2

X.2. Olika processer En reversibel process är en makroskopisk process som sker så långsamt i jämförelse med systemets interna relaxationstider τ att systemet i varje skede av processen kan antas vara i jämvikt. τ makroskopisk >> τ intern relaxation (1) Då ett system under varje skede av en reversibel process är i jämvikt är de termodynamiska variablerna hela tiden väldefinierade. 1) Isochoriska processer: V = konstant 2) Isobariska processer: P = konstant 3) Isotermiska processer: T = konstant 4) Adiabatiska processer: Reversibla processer i termiskt isolerade system kallas adiabatiska processer. Termofysik, Kai Nordlund 2012 3 X.3. Grundlagarna Termofysik, Kai Nordlund 2012 4

X.3.1. Första grundlagen E = Q W (2) de = dq dw (3) Termofysik, Kai Nordlund 2012 5 X.3.2. Andra grundlagen Entropin i ett isolerat system kan endast öka och antar då systemet nått jämvikt sitt maximala värde de = T ds P dv (4) Klassiska versioner: Clausius version: Värme kan inte av sig själv övergå från en kallare till en varmare kropp. Kelvins version: Ingen process vars enda resultat är omvandling av värmeenergi till arbete är möjlig. Kelvins version uttrycks ofta i formen. Evighetsmaskiner av klass II är omöjliga Termofysik, Kai Nordlund 2012 6

En evighetsmaskin av klass I är en maskin som producerar arbete utan tillförsel eller förbrukning av energi. En evighetsmaskin av klass II är en maskin som utan tillförsel av mekanisk energi omvandlar värmeenergi till arbete. Termofysik, Kai Nordlund 2012 7 X.3.3. Tredje grundlagen Termodynamikens III grundlag (Nernst s teorem) är S = 0 då T 0 (5) vilket också innebär att det är omöjligt att nå den absoluta nollpunkten. Tredje grundlagen implicerar vidare att C V = 0 då T 0 (6) Termofysik, Kai Nordlund 2012 8

X.4. Entropi, temperatur och tryck S = k B ln Ω (7) där Ω = Antalet mikrotillstånd för ett visst makrotillstånd (8) För stora värden på antalet mikrotillstånd n är Ω(n) en skarpt pikad funktion av n omkring det mest sannolika tillståndet (t.ex. för spinnsystem N/2 där N är hela antalet tillstånd): Termofysik, Kai Nordlund 2012 9 Ω(n) Ω 0 0 Ν/2 n Halvvidden av detta Γ är typiskt N Sannolikheten för att ett system skall iakttas i ett visst makrotillstånd är proportionell mot antalet mikrotillstånd som ingår i makrotillståndet Termofysik, Kai Nordlund 2012 10

Detta leder till att entropin alltid maximeras i ett slutet system. Temperaturens statistiska definition: 1 T = ( ) S E V,N (9) Tryckets statistiska definition: P T ( S V ) E (10) Termofysik, Kai Nordlund 2012 11 X.4.1. Potentialdifferentialer och Maxwellrelationerna F = E T S (11) G = E T S + P V (12) H = E + P V (13) Ω = F µn (14) (15) de = T ds P dv ( T V ) S = ( P S ) V (16) dh = T ds + V dp ( T P ) S = ( V S ) P (17) df = SdT P dv ( S V ) T = ( P T ) V (18) Termofysik, Kai Nordlund 2012 12

dg = SdT + V dp ( S P ) T = ( V T ) P (19) (20) Ensemblens beteckning Process då systemet strävar mot jämvikt Benämning N V E Entropin S maximeras Mikrokanonisk N V T Fria energin F minimeras Kanonisk N P T Gibbs potential G minimeras Isotermisk-isobarisk µv T Makrokanonisk I makrokanoniska systemet gäller: dω = SdT P dv Ndµ (21) S = ( Ω T ) V,µ (22) Termofysik, Kai Nordlund 2012 13 N = ( Ω µ ) T,V = V ( P µ ) T,V (23) Termofysik, Kai Nordlund 2012 14

X.4.2. Carnotmaskinen Carnot-maskinen är en abstrakt prototyp för värmemaskiner. Maskinen fungerar mellan två temperaturnivåer T 1 och T 2 (T 1 > T 2 ): T 1 Q 1 M W arbete B Q 2 T 2 Maskinen genomlöper en cyklisk process. I varje cykel tas en värmemängd Q 1 från nivån T 1 varav en del W uttas i form av nyttigt arbete. Resten Q 2 = Q 1 W avges i form av spillvärme till nivån T 2. En kylmaskin är en värmemaskin driven i omvänd ordning så att arbete W sätts in för att kyla ner behållaren T 2. Termofysik, Kai Nordlund 2012 15 En värmepump är en värmemaskin driven i omvänd ordning så att arbete W sätts in för att värma upp behållaren T 1. Termofysik, Kai Nordlund 2012 16

X.5. Fasövergångar Fasjämvikt definieras av g 1 (T, P ) = g 2 (T, P ) (24) där g = G/N är Gibbs potential per partikel. Tre faser kan vara i jämvikt bara i diskreta punkter. Exempel: Termofysik, Kai Nordlund 2012 17 P is vatten kritisk punkt P t gas trippelpunkt T t T Clausius-Clapeyron-ekvationen beskriver hur en fasövergångskurva förändras lokalt: dp dt = där L är det latenta värmet för en fasövergång. L T V. (25) Fastransitioner som har ett ändligt latent värme, eller vars Gibbs-potentials derivata är diskontinu- Termofysik, Kai Nordlund 2012 18

erlig, kallas fastransitioner av I ordningen. Sådana fastransitioner för vilka ( g/ T ) är kontinuerlig kallas fastransitioner av II ordningen. Termofysik, Kai Nordlund 2012 19 X.5.1. Binära fasdiagram Övre delen är en helt blandad vätska (L) Nedre delen är den så kallade α-fasen, där Cu och Ni är slumpmässigt blandade i en viss gitterstruktur En dylik fas kallas isomorf. Dessa är båda enkla en-fasområden (eng. single phase ). Mellanfasen är ett s.k. tvåfas-område (eng. two phase ) där det samtidigt existerar två olika former av materialet i jämvikt. Där finns alltså i detta fall både vätska (L) och α-fas; därav beteckningen α + L i bilden. Linjerna som omger dessa kallas på latin solidus och liquidus. Termofysik, Kai Nordlund 2012 20

Man kan från ett fasdiagram direkt lista ut den exakta kompositionen i en given punkt i tvåfasområdet. Betrakta t.ex. punkten B i bilden, som är punkten x = 35 vikt-% Ni vid 1250 C. Kompositionen bestäms på följande sätt: 1. Rita en horisontell linje (eng. tie line ) från punkt B till liquidus- och soliduslinjerna. 2. Från punkterna där tie line skär liquidus och solidus ser man vilken komposition av vätska respektive fast ämne detta motsvarar. Hur mycket det finns av L respektive α. kan bestämmas med den s.k. hävstångsregeln (eng. lever rule ). För att göra detta räknar man längden R och S av då två delarna, och dividerar med hela längden. Men (viktigt) man bör göra det åt det motsatta hållet: alltså andelen L bestäms av längden på S och vice versa. Termofysik, Kai Nordlund 2012 21 Alltså i exemplet ovan är relativa viktandelen av L W L = S R + S = C α C 0 C α C L (26) samt relativa andelen α W α = R R + S = C 0 C L C α C L (27) Termofysik, Kai Nordlund 2012 22

X.5.2. Fasdiagrammens termodynamiska bas Uppkomsten av fasdiagram kan alltid förstås på basen av minimering av Gibbs potential (Gibbs fria energi) G som funktion av temperaturen. T.ex. i ett binärt fasdiagram kan fasdiagrammet för en viss temperatur T bestämmas om man känner till G α (x) för alla faser α och kompositioner x vid denna temperatur. Om man upprepar proceduren för alla T, kan hela fasdiagrammet bestämmas. Ett exempel på hur variationen av G( α (x, T ) leder till ett enkelt fasdiagram: Termofysik, Kai Nordlund 2012 23 Termofysik, Kai Nordlund 2012 24

X.6. Idealgasernas statistiska mekanik Termofysik, Kai Nordlund 2012 25 Kanonisk fördelning p r = 1 Z e βɛ r S = k B Σp r ln p r = k B Σp r [ln Z + βɛ r ] = k B ln Z + βk B E ty E = p r ɛ r F = E T S = E T [k B ln z + βk E] }{{} =1/T F = k B T ln Z (28) Z = e βf (29) Ē = ln Z(β) (30) β Makrokanonisk fördelning p nn = 1 Z N e +β[µn ɛ n] S = k B Σp nn ln p nn = k B Σp nn [ ln Z N + βµn βɛ n ] = k B ln Z N k B βµ < N > +βk B E N =< N >= Σp nn N = T S = E + k B T ln Z N µ N 0 = F + k B T ln Z N µ N F µ N Ω Ω = k B T ln Z N (31) Sambandet mellan den stora partitionsfunktionen och den stora potentialen: Z N = e βω Termofysik, Kai Nordlund 2012 26

X.6.1. Den klassiska idealgasen P V = Nk B T (32) Maxwell-Boltzmann s fördelningsfunktion för energier i en idealgas: n(e)de = 2 N E B T de (33) π V (k B T ) 3/2e E/k Distributionens form (enligt hastigheterna): Termofysik, Kai Nordlund 2012 27 n(v) 1D: n(v x ) 3D: n(v) v Energin för partiklar i en idealgas: E = 3 2 P V = 3 2 Nk BT (34) Termofysik, Kai Nordlund 2012 28

Sackur-Tetrode-ekvationen: { 5 S = S int + Nk B 2 + 3 2 ln mk } B + Nk 2π 2 B ln V N + 3 2 Nk B ln T (35) För idealgaser som består av molekyler med inre frihetsgrader gäller dessutom ekvipartitionsprincipen: Varje molekylär frihetsgrad vars energi ger ett kvadratiskt bidrag till energin, bidrar vid tillräckligt höga temperaturer med 1 2 k BT till en idealgas inre energi per molekyl. där tillräckligt hög definieras av när de kvantiserade energinivåerna börjar exciteras. Termofysik, Kai Nordlund 2012 29 X.6.2. System med variabelt partikeltal ε k n k ε 2 n 2 ε 1 n 1 ε 0 n 0 Tillståndsekvationen ges av n k : partiklar eller molekyler i det k:te molekylära tillståndet. N = k < n k >= k 1 e (ɛ k µ)/k B T 1 (36) P V = Ω = k Ω k = k k B T ln e (µ ɛ k )n k /k B T (37) n k =0 Termofysik, Kai Nordlund 2012 30

Fallet då gasen är tunn ger Maxwell-Boltzmann-distributionen Fallet då varje tillstånd kan ha godtycklig ockupation ger Bose-Einstein-distributionen Fallet då varje tillstånd kan ha ockupation 0 eller 1 ger Fermi-Dirac-distributionen Medelockupationen: < n k >= Ω k µ (38) Maxwell-Boltzmann-fördelningsfunktionen: < n k >= e (µ ɛ k )/k B T (39) Bose-Einstein-fördelningsfunktionen: < n k >= 1 e (ɛ k µ)/k B T 1 (40) Termofysik, Kai Nordlund 2012 31 Fermi-Dirac-fördelningsfunktionen: n k = 1 e (ɛ k µ)/k B T + 1 (41) Termofysik, Kai Nordlund 2012 32

X.7. Svartkroppsstrålning Planck s fördelningslag: de(ν) = 8πhV c 3 ν 3 dν e hν/k B T 1 (42) Totala strålningsintensiteten från en svartkropp: I = σt 4 (43) Termofysik, Kai Nordlund 2012 33 X.8. Transportteori Ficks lag: Diffusionsekvationen: j n = D n x 2 n(r, t) = 1 D n(r, t) t (44) (45) Termofysik, Kai Nordlund 2012 34

X.9. Diverse relationer ovh värden Volymutvidgningskoefficienten i tre dimensioner: α 1 V ( V T ) P. (46) Isotermiska kompressibiliteten: κ T 1 V ( V P ) T. (47) Fermi-energin: ( ) ɛ F = 2 3π 2 2/3 m n2/3 g (48) 2 Termofysik, Kai Nordlund 2012 35 Barometerformeln: n(h) n 0 = e mgh/k B T (49) Van der Waals tillståndsekvation för gaser: (P + N 2 V 2 a)(v Nb) = Nk BT. (50) Termofysik, Kai Nordlund 2012 36