Finansmatematik II Kapitel 3 Risk och diversifiering



Relevanta dokument
P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t),

Finansmatematik II Kapitel 5 Samvariation med marknaden

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som

Finansmatematik II Kapitel 4 Tillväxt och risk

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

S t : Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

Stokastiska vektorer och multivariat normalfördelning

Ekonomisk styrning Delkurs Finansiering

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Stokastiska vektorer

Innehåll. Standardavvikelse... 3 Betarisk... 3 Value at Risk... 4 Risknivån i strukturerade produkter... 4

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

5B Portföljteori och riskvärdering

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

MVE051/MSG Föreläsning 7

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

Enkel och multipel linjär regression

Härledning av Black-Littermans formel mha allmänna linjära modellen

Föreläsning 7: Punktskattningar

Lektionsanteckningar 11-12: Normalfördelningen

Föreläsning 7: Punktskattningar

1 LP-problem på standardform och Simplexmetoden

TAMS79: Föreläsning 10 Markovkedjor

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Introduktion till statistik för statsvetare

Föreläsning 11: Mer om jämförelser och inferens

1 Positivt definita och positivt semidefinita matriser

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel 1

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Vektorgeometri för gymnasister

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

1 Konvexa optimeringsproblem grundläggande egenskaper

Kovarians och kriging

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag

Rådgivning i praktiken

1 Kvadratisk optimering under linjära likhetsbivillkor

Stockholms Universitet Statistiska institutionen Termeh Shafie

Matematisk statistik för B, K, N, BME och Kemister

Några vanliga fördelningar från ett GUM-perspektiv

SF1901 Sannolikhetsteori och statistik I

CAPM (capital asset pricing model)

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder

Grafer och grannmatriser

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17

0 om x < 0, F X (x) = c x. 1 om x 2.

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Stokastiska processer

Stokastiska processer och simulering I 24 maj

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Hur måttsätta osäkerheter?

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Uppgift 1. f(x) = 2x om 0 x 1

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Markovkedjor. Patrik Zetterberg. 8 januari 2013

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL

Del 2 Korrelation. Strukturakademin

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

Föreläsning 7: Punktskattningar

Tentamen i Finansmatematik I 19 december 2003

1 Duala problem vid linjär optimering

Korrelation och autokorrelation

Lycka till!

Kap 2. Sannolikhetsteorins grunder

Introduktion till statistik för statsvetare

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

Tentamen i Matematisk statistik Kurskod S0001M

7.5 Experiment with a single factor having more than two levels

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Stockholms Universitet Statistiska institutionen Termeh Shafie

Föreläsning 7: Stokastiska vektorer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Regressionsmodellering inom sjukförsäkring

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06


Föreläsning 12: Regression

4 Diskret stokastisk variabel

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsningsanteckningar till kapitel 8, del 2

Subtraktion. Räkneregler

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Konvergens för iterativa metoder

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

SF1901: Sannolikhetslära och statistik

Optimering med bivillkor

Föreläsning 6, Matematisk statistik Π + E

Tentamen i Matematisk statistik Kurskod S0001M

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Transkript:

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering

2 Finansmatematik II Risk och diversifiering Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier. Aktieprisena vid tiden t är S (t),..., S m (t). Låt V j (t) beteckna värdet av innehavet i aktie j vid tiden t, j =,..., m; V j (t) = a j S j (t), där a j är antalet av aktie j i portföljen. Portföljvärdet vid tiden t, P (t), ges av och aktie j har vikten P (t) = V (t) +... + V m (t) v j (t) = V j (t)/p (t) i portföljen. Portföljens avkastning i tidsintervallet (t, t + t), R P (t, t + t), ges av där R P (t, t + t) = P (t + t) P (t) P (t) = v j (t)r j (t, t + t), j= R j (t, t + t) = V j(t + t) V j (t) V j (t) är avkastningen av aktie j under tidsintervallet. Övning Visa detta. Portföljens avkastning har variansen = S j(t + t) S j (t) S j (t) Var(R P (t, t + t)) = j= k= v j (t)v k (t)cov(r j (t, t + t), R k (t, t + t)) = v(t) Q t v(t), där v(t) = (v (t),..., v m (t)). Vi har sett i Kapitel 2 att Q t Q t med god approximation, där Q är kovariansmatrisen för aktiernas årstillväxt. Det har därför ingen betydelse vilken av dessa matriser som används. Vi ska här använda portföljens volatilitet σ P (t) = v(t) Qv(t) som mått på portföljrisken. Matrisen Q antages vara icke singulär vilket är detsamma som att alla egenvärden är strikt positiva. Antag att vi funnit att vissa vikter är optimala i något avseende och att vi bildar en portfölj med dessa vikter. Vikterna ändras med tiden och när de avviker väsentligt från de optimala får man balansera om portföljen (minska de innehav som blivit för stora och öka de som blivit för små) så att vikterna återställs.

Risk och diversifiering 3 Risken kan minskas genom diversifiering. Av aktierna i exempelportföljen FEM AKTIER har Skanska lägst volatilitet under Period -4, 0.27, medan Ericsson har högst, 0.49. (Se Tabell i Kap. 2.) Jämfört med att enbart inneha den trygga aktien Skanska kan man minska risken något genom att lägga till den riskabla aktien Ericsson: Antag att vi lägger vikten v i Ericsson och vikten v i Skanska. För denna portfölj gäller σ 2 P = 0.49 2 v 2 + 0.27 2 ( v) 2 + 2 0.30 0.49 0.27v( v) eftersom korrelationen är 0.30 enligt Tabell 6 i Kap. 2. Detta uttryck minimeras för v = 0.4 och den minimala volatiliteten är 0.26. Övning 2 Genomför detaljerna i ovanstående resonemang. AstraZeneca har högre volatilitet, 0.32, än Skanska. För att göra poängen tydligare ska vi inte använda korrelationen 0.20 under Period -4 utan ρ = 0.0 vilket är den lägsta korrelationen mellan AZN och LME under de fyra delporioderna. Den portfölj som har vikten 0.68 i AZN och 0.32 i LME har även den volatiliteten 0.26. Hög volatilitet kan alltså kompenseras av låg samvariation. För att få en uppfattning om hur antalet aktier, m, påverkar risken är det instruktivt att titta på fallet då alla vikter är lika, /m, alla aktier har samma volatilitet, σ, och alla korrelationer är desamma, ρ. (Detta är möljigt för alla m om och endast om ρ 0.) I detta fall är σ P = σ ρ + ρ m. Övning 3 Visa detta. Portföljrisken avtar alltså mot σ ρ då m. Om ρ > 0, vilket är det normala, så finns det alltså en gräns för vad som går att uppnå genom diversifiering av en aktieportfölj. Om man vill reducera risken ytterligare genom diversifiering kan man komplettera portföljen med andra tillgångar såsom obligationer och fastigheter eller helt enkelt lägga (en del) av pengarna i kassan. Ytterligare en diversifieringsmöjlighet är hedgefonder som kan vara okorrelerade eller negativt korrelerade med aktiemarknaden. I Figur är portföljvolatiliteten plottad som funktion av m i (det typiska) fallet ρ = 0.36 samt för ρ = 0. (Aktievolatiliteten är i figuren normerad till.) I det första fallet kan man genom diversifiering minska volatiliteten från σ till 0.6σ och redan vid m = 5 har man uppnått 3/4 av denna minskning, σ P = 0.7σ. 2 Minimivariansportföljen Vi ska bestämma de vikter som minimerar portföljrisken. Detta leder ibland till portföljer med negativa vikter. Ett negativt innehav erhålls om man lånar en aktie och säljer den (för att senare köpa tillbaka). Detta är normal praxis i vissa hedgefonder och kallas för blankning. Den portfölj som har minst volatilitet ges av de vikter v som minimerar

4 Finansmatematik II 0.9 0.8 0.7 corr=0.36 0.6 0.5 0.4 corr=0 0.3 0.2 0. 0 0 5 0 5 Figur : Portföljvolatilitet som funktion av antalet tillgångar 2 v Qv = 2 v i σ i,j v j under bivillkoret i v i =. Lagranges multiplikatormedtod ger ekvationerna σ i,j v j = λ, i =,..., m, j j i j v j =. Övning 4 Beräkna minimivariansportföljens vikter och varians då a) b) c) Q = σ2 0 0 0 σ 2 2 0 0 0 σ 2 3 0.2 0. 0. Q = 0. 0.2 0. 0. 0. 0.2 Q = 0.2 0 0 0 0.2 0. 0 0. 0.2 Ekvationssystemet kan även skrivas

Risk och diversifiering 5 Qv = λ, v =, där = (,..., ). (Här och i fortsättningen skriver vi vektorer som radvektorer men i matrisräkningar fungerar de som kolumnvektorer.) Vi får v = λq. Insättning av detta i bivillkoret ger λ Q =. Minimivariansen blir v Qv = λ 2 Q = / Q. Observera att Q > 0 eftersom Q och därmed Q är strikt positivt definit. Matrisen λq kommer att förekomma så ofta att vi ger den en egen bokstav, P. Sammanfattning: Minimivariansportföljen har variansen och vikterna där σ 2 = / Q v = P, P = σ 2 Q. Exempel Okorrelerade avkastningar I detta fall är σ i,i = σi 2 och σ i,j = 0 för i j. Q är alltså diagonalmatrisen med diagonalelementen /σi 2, i =,..., m och vi har därför σ 2 = H m, v i = σ2 σi 2, där H betecknar det harmoniska medelvärdet av σ 2,..., σ 2 m, m H = +... +. σ 2 σm 2 Man ser här att variansen kan göras godtyckligt liten genom att diversifiera portföljen (välja m stort) på så sätt att H hålls begränsad. Det framgår också att minimivariansportföljen har positiva vikter i detta fall. Genom att lägga en del pengar i kassan eller en fond som är negativt korrelerad med aktiemarknaden kan man minska risken ytterligare. Övning 5 Ett kapital är placerat i en aktieportfölj som har volatiliteten 0.27. För att minska risken överväger man två alternativ: Halva kapitalet flyttas från aktier till a) kassan (som har volatiliteten 0).

6 Finansmatematik II b) en viss hedgefond som har volatiliteten 0.6 och korrelationen -0.50 med aktieportföljen. Vilket alternativ ger lägst volatilitet? Övning 6 En aktieportfölj och en hedgefond har korrelationen ρ < 0 och volatiliteterna σ respektive τ. Betrakta den portfölj som har vikten p i aktieportföljen, vikten w i hedgefonden och resten, p w, i kassan. Här är p ett givet positivt tal. Bestäm w så att portföljens volatilitet minimeras samt beräkna denna minimala volatilitet. Svar w = pκ, där κ = σ τ ρ. Volatiliteten är pσ ρ 2. Lägg märke till att portföljens volatilitet inte beror på hedgefondens volatilitet även om vikterna gör det. Lägg också märke till att kontantinnehavet är negativt om p > +κ. Övning 7 Betrakta samma situation som i ovanstående övning med p = 0.5 och σ = 0.27. Beräkna vikterna och volatiliteten för minimivariansportföljen i följande två fall: a) τ = 0.6 och ρ = 0.50. b) τ = 0.04 och ρ = 0.75. I det senare fallet är kontantinnehavet negativt. Antag att du inte accepterar detta utan väljer vikten 0.5 för hedgefonden i b). c) Vilken volatilitet har dennas portfölj? I Figur 2 plottas volatiliteten av en portfölj som har vikten v i en aktieportfölj med volatiliteten 0.27 och vikten v i endera kassan eller i en av de två fonderna i Övning 7 a och b. Vikten v är på x-axeln. Det framgår att så länge som man har minst hälften av vikten i aktieportföljen och resten i en av dessa tillgångar, så uppnås störst minskning av volatiliteten genom att placera i den mest volatila tillgången. 3 Stabilitet hos skattningarna av vikterna För att beräkna minimivariansportföljen kan man göra så här: Skatta v med ˆv = ˆP, där ˆP = ˆσ 2 ˆQ och ˆσ 2 = / ˆQ. Skattningen baseras på historiska data om n observationer. Använd sedan dessa vikter för minimivariansportföljen under den följande perioden. För att denna portfölj ska likna minimivariansportföljen den följande perioden behöver n vara tillräckligt stort för att skattningen ska vara stabil. Vidare måste minimivariansportföljerna under de två perioderna vara snarlika. Exempel 2 FEM AKTIER. Hela tidsperioden 96007-0003 delades in i fyra lika långa tidsperioder om n = 256 dagar var. Varje period är alltså c:a ett år och en vecka lång. Kovariansmatrisen skattades från de dagliga slutkurserna. Minimivariansportföljens vikter ges i Tabell.

Risk och diversifiering 7 0.35 0.3 0.25 0.2 0.5 0. 0.05 0 0 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Figur 2: Volatilitet av den portfölj som består av aktier samt endera kassan eller en av de två fonderna i Övning 7 a och b. Tabell AZN LME HM SDIA SKA Period 0.20 0.06 0.6 0. 0.47 Period 2 0.42 0.0 0.9 0.4 0.53 Period 3 0.33 0.0 0.9 0.09 0.38 Period 4 0.3 0.09 0.07 0.02 0.5 Period -2 0.35 0.0 0.7 0.05 0.52 Period 3-4 0.32 0.07 0.0 0.04 0.47 Period -4 0.34 0.05 0.2 0 0.48 Här finns en viss stabilitet vilket blir tydligt om man rangordnar vikterna: Tabell 2 AZN LME HM SDIA SKA Period 2 5 3 4 Period 2 2 4 3 5 Period 3 2 5 3 4 Period 4 2 3 4 5 Period -2 2 4 3 5 Period 3-4 2 4 3 5 Period -4 2 4 3 5

8 Finansmatematik II I Tabell 3 ges minimivariansportföljernas volatiliteter och volatiliteterna, σ, hos de portföljer som har samma vikter som minimivariansportföljen den föregående perioden, vilket alltså är den volatilitet man får om man tillämpar ovanstående metod. För jämförelsens skull har även σ afgx, volatiliteten hos Affärsvärldens generalindex, samt σ lika, volatiliteten hos den portfölj som har lika vikter av de 5 aktierna, angivis. Tabell 3 σ σ σ lika σ afgx Period 0.8 0.20 0.5 Period 2 0.26 0.29 0.33 0.28 Period 3 0.2 0.22 0.23 0.9 Period 4 0.2 0.23 0.28 0.29 Period -4 0.22 0.26 0.23 Det framgår av tabellen att man inte behöver ha många aktier i en portfölj för att få ned risken på samma nivå som generalindex. Om man lägger till AFGX till portföljen och beräknar minimivariansportföljens vikter med data från Period -4, så får AFGX vikten 0.46 och de övriga 0.22, -0.05, 0.0, -0.03 respektive 0.40. Volatiliteten blir 0.8. Om man vill ta ned risken i en omfattande portfölj, så ska man naturligt nog vikta ned de stora och volatila bolagen Ericsson och Skandia relativt index. Observera att över halva portföljvärdet ligger i de två aktierna Skanska och AstraZeneca. För att få en uppfattning om vilka slumpvariationer i skattningarna man kan vänta sig ska vi använda följande resultat. Sats Antag att aktiepriserna utvecklas enligt Modell B i Kapitel 2. Skattningen ˆv = ˆP av vikterna i minimivariansportföljen är, då n, asymptotiskt normalfördelad med väntevärde och kovariansmatris v = P n (P v v T )/σ 2. Vi utelämnar beviset. Satsen stämmer nämligen dåligt med verkligheten. Jag är övertygad om att vikterna är asymptotiskt normalfördelade med ovanstående väntevärde och att variansen är av storleksordningen /n. Det är det exakta uttrycket för variansen som är fel. Som mått på den genomsnittliga avvikelsen ska vi använda d teor = m E ˆv v 2. Om vi antar att skattningarna har den asymptotiska fördelningen i ovanstående sats, så

Risk och diversifiering 9 d teor = nm trace(p v v T )/σ. 2 Här står trace för spåret av matrisen, d.v.s. summan av diagonalelementen. Vi ska skatta d teor med trace +... + trace A ˆd teor =, nm A där A är antalet perioder, n periodlängden och trace t är spåret av skattningen av kovariansmatrisen under period t, t =,..., A. Den observerade medelavvikelsen mellan vikterna på varandra följande perioder är d obs = A A t= m ˆv (t + ) ˆv (t) 2, där ˆv (t) är skattningen av vikterna under period t. Om skattningarna har den asymptotiska fördelningen i ovanstående sats så är Övning 8 Visa detta. E(d obs )2 = 2d 2 teor. För att få jämförbara storheter (som mäter avståndet mellan skattade och verkliga vikter) ska vi därför sätta d obs = d obs / 2. I nedanstående tabell ges dessa avstånd för ett antal olika periodlängder. Tabell 4 Periodlängd Antal perioder ˆdteor d obs d obs / ˆd teor 024 0.09 52 2 0.3 0.04 0.34 256 4 0.9 0.09 0.48 28 8 0.28 0. 0.39 64 6 0.4 0. 0.27 32 32 0.63 0.7 0.26 Det framgår att teorin är på den pessimistiska sidan. Man skulle kunna tänka sig att vikterna är en färskvara eftersom verkligheten ändrar sig med tiden och att man därför bör använda sig av förhållandevis korta observationsperioder. Detta framgå alltså inte av ovanstående tabell utan tvärtom är avvikelserna monotont avtagande funktioner av observationsperiodens längd. Om man jämför avvikelserna med medelvikten /m = 20%, så kommer man till följande: Slutsats Använd, om möjligt, observationer från flera år.

0 Finansmatematik II 4 Ombalansering av portföljen Om aktierna utvecklas på olika sätt, så kommer vikterna att ändras. För att bibehålla vikterna behöver portföljen därför balanseras om ibland. Övning 9 a) Tre aktier kostar idag 4.98, 68.50 respektive 2.0 SEK. Bilda en portfölj värd 00000 SEK och som har vikterna 0.20, 0.35 respektive 0.45 i de tre aktierna (avrundningsfelet läggs i kassan som antas ha räntan 0). Hur många ska du köpa av respektive aktie. b) Antag att portföljen lämnas orörd till en tidpunkt då aktieprisena är 3.40, 200.00 respektive 20.50. Vilka vikter har de olika aktierna i portföljen? Hur många ska du köpa eller sälja av de olika aktierna för att återställa de ursprungliga vikterna? Om portföljen balanseras om vid tidpunkterna t 0 < t <..., så blir portföljens värde vid t n där P (t n ) = P (t 0 )Π n k=( + RP (t k, t k ) ), R P (t k, t k ) = P (t k) P (t k ) P (t k ) och där = i= V i (t k ) V i (t k +) P (t k ) R i (t k, t k ) = S i(t k ) S i (t k ). S i (t k ) = v i R i (t k, t k ) På grund av omviktningen kommer aktieinnehaven att ha diskontinuiteter vid omviktningstidpunkterna, därav höger- och vänstergränsvärdena ovan. Övning 0 Genomför detaljerna i ovanstående resonemang. Det finns emellertid skäl (bl.a. transaktionskostnader) att inte balansera om portföljen utan anledning och anledningen i detta fall är att portföljens volatilitet blir alltför stor. Ett alternativ till dagliga ombalanseringar är alltså att vänta till den första tidpunkt, t, för vilken där σ(t) σ ( + ɛ), σ(t) = v(t) Qv(t) och där ɛ är ett lämpligt valt positivt tal. I Figur 3 är kvoten σ(t)/σ plottad för exempelportföljen. Tidsperioden är Period 4 och vikterna är skattade med data från perioderna -3. Vikterna blev AZN LME HM SDIA SKA 0.35 0.0 0.7 0.0 0.47. i=

Risk och diversifiering.02.0.008.006.004.002 0 50 00 50 200 250 300 Figur 3: Portföljvolatilitet relativt minimivariansportföljens volatilitet Som störst är kvoten.0. I detta fall har därför den portfölj som ombalanseras dagligen och den portfölj som aldrig ombalanseras snarlik volatilitet. Att skillnaden mellan de två portföljerna är liten i detta fall framgår också av Figur 4 där en plot av utvecklingen av de två portföljerna samt Affärsvärldens generalindex visas. Den dagligen omviktade är heldragen. Medelavvikelsen mellan de två portföljerna är 2%. 5 Portföljutvecklingen som funktion av aktiernas utveckling Låt v,..., v m vara givna vikter. Betrakta en portfölj som från början har dessa vikter och som balanseras om vid tidpunkterna 0, t, 2 t, 3 t,... så att vikterna återställs. Vi ska i detta avsnitt härleda ett uttryck för portföljens värde som funktion av aktiernas värden under förutsättning att de senare utvecklas enligt Modell B och att t är litet. Låt n t = t och låt P n (t) beteckna portföljens värde vid tiden t. Då gäller enligt identiteten som visas i Övning 0 och n P n (t) = P (0) i= j= v j S j (i t) S j ((i ) t) S j (i t) S j ((i ) t) = eνj t+ ixj,

2 Finansmatematik II.8.7.6 AFGX.5.4.3.2. 0.9 0 50 00 50 200 250 300 Figur 4: Utveckling av minimvariansportföljerna. där i X j = X j (i t) X j ((i ) t) = tz j (i) och där Z(i) = (Z (i),..., Z m (i)), i =,..., n är oberoende stokastiska variabler som alla är normalfördelade med väntevärde 0 och kovariansmatris Q. Därför e νj t+ ixj = + ν j t + tz j (i) + t 2 Z j(i) 2 + O( t 3 ) = där + (ν j + 2 σ j,j) t + tz j (i) + t 2 e j(i) + O( t 3 ), e j (i) = Z j (i) 2 σ j,j och e(i) = (e (i),..., e m (i)), i =,..., n är oberoende likafördelade stokastiska variabler med väntevärde 0 och E e(i) 2 <. Det följer att j= v j S j (i t) S j ((i ) t) = +(v ν + 2 v d) t+ tv Z(i)+ t 2 v e(i)+o( t 3 ) där ν = (ν,..., ν m ) och d = (σ,,..., σ m,m ). Därför även ln(p n (t)/p (0)) =

Risk och diversifiering 3 n i= ( (v ν + 2 v d) t + tv Z(i) + t 2 v e(i) 2 t(v Z(i))2 + O( t 3 ) ) = tv ν +v (X(t) X(0))+t t v d+ 2 2 Den stokastiska variabeln n v e(i) n 2 t (v Z(i)) 2 +O( t). i= i= har väntevärde 0 och varians t 2 n v e(i) i= ( t) 2 ne(v e()) 2 /4 = O( t) och går därför mot noll i sannolikhet då t 0. Variabeln har varians n 2 t (v Z(i)) 2 i= ( t) 2 nvar((v Z()) 2 )/4 = O( t) och konvergerar därför i sannolikhet mot sitt väntevärde t 2 v Qv. Vi har alltså visat första delen av följande sats. Sats 2 Om aktierna utvecklas enligt Modell B, så P n (t) P (t) i sannolikhet då t 0. Här är och P (t) = P (0)e tl ( S (t) S (0) )v... ( S m(t) S m (0) )vm L = m 2 ( v j σ j,j v Qv). j= Speciellt gäller att ln(p (t)/p (0)) är normalfördelad med väntevärde (v r 2 v Qv)t och varians v Qvt, där r j = σj,j 2 + ν j är de förväntade momentana avkastningarna. Fördelningspåståendet följer av att ln(p (t)/p (0)) = (v r v Qv)t + v X(t). 2

4 Finansmatematik II.3.25.2.5..05 0.95 0 50 00 50 200 250 300 Figur 5: Utveckling av kontinuerligt och dagligt ombalanserade portföljer Observera att satsen gäller för godtyckliga vikter (och inte endast för minimivariansportföljen) och även då Q är singulär. Genom att ombalansera portföljen styr man alltså dess värde mot det geometriska medelvärdet av aktievärdena multiplicerat med e tl. Detta portföljvärde kan jämföras med den orörda portföljens värde P (0) ( S (t) v S (0) +... + v S m (t) ) m S m (0) som är det aritmetiska medelvärdet. Utvecklingen av minimivariansportföljen med daglig ombalansering är plottad tillsammans med den kontinuerligt ombalanserade portföljen (heldragen) i Figur 5. Medelavståndet mellan de två portföljerna är 0.5%. Figur 6 visar plottar av den orörda portföljen och den kontinuerligt ombalanserade. Medelavståndet mellan portföljerna är 2%. HM föll 30% under dag 02 och den orörda portföljen var dag 0 överviktad i HM (0.24 i.st.f. 0.7). Detta är en väsentlig förklaring till att den orörda portföljen presterade sämre än de andra. 6 Gemensam korrelation I detta fall är σ i,i = σ 2 i och σ i,j = σ i σ j ρ för i j. Detta är i vissa fall en någorlunda realistisk modell för vilken man kan få explicita och överblickbara uttryck för bl.a. minimivariansportföljens vikter och varians. Förutsatt att inte alla korrelationer är lika har denna modell ett systematiskt fel. Å andra sidan tycks slumpfelet bli mindre. Vi ska se att för vår exempelportfölj FEM AKTIER gå det inte att avgöra vilken av de två metoderna

Risk och diversifiering 5.3.25 Kont.omb..2.5..05 0.95 0 50 00 50 200 250 300 Figur 6: Utveckling av orörd och kontinuerligt omviktad portfölj (gemensam respektive allmänn korrelation) som ger bäst skattningar av minimivariansportföljens vikter. Detsamma gäller betaportföljens vikter i Kapitel 5. Vi ska börja med fallet σ i = för i =,..., m och skriva Q 0 för kovariansmatrisen i detta fall. Låt I stå för identitetsmatrisen och J för den matris vars samtliga element är. Då gäller Q 0 = ( ρ)i + ρj och därför Q 0 = ( ρ) (I + ρ ρ J). Övning a) Visa att x Q 0 x = m( ρ)v(x) + m( + (m )ρ) x 2, där v(x) = m m i= (x i x) 2. b) Visa att Q 0 (och därmed Q) är strikt positiv definit om och endast om m < ρ <. Vi ska i fortsättningen förutsätta att villkoret i b) är uppfyllt. Övning 2 a) Visa att J 2 = mj. b) Verifiera att

6 Finansmatematik II Q 0 = ( ρ) ρ (I κj) där κ = + (m )ρ. Vi släpper nu restriktionen σ i = och betraktar allmänna standardavvikelser. Låt S beteckna diagonalmatrisen med elementen σ,..., σ m. Då gäller Övning 3 Visa att Q = SQ 0 S och därför Q = S Q 0 S. (Q x) i = (x i κ σ i ( ρ) σ i j= x j σ j ). Det följer att minimivariansportföljen har vikterna v i = σ 2 ( κ σ i ( ρ) σ i j= σ j ). Ett sätt att beräkna dessa vikter och volatiliteten ges i nästa övning. Övning 4 Sätt w i = σ i ( σ i κ j= σ j ). Visa att v i = w i / m j= w j och σ 2 = ( ρ)/ m j= w j. Vi ska nu använda denna modell till att skatta minimivariansportföljens vikter för FEM AKTIER med data från Period -4. Övning 5 Skatta den gemensamma korrelationen med medelvärdet av korrelationerna i Tabell 6 i Kapitel 2 och beräkna minimivariansportföljens vikter och volatilitet. Svar: ρ = 0.284. Vikter: 0.30, 0.04, 0.0, 0.05, 0.5. Volatilitet: 0.226. Skillnaden mellan dessa vikter och vikterna i understa raden i Tabell är -0.04, -0.0, -0.02, 0.05, 0.03. Den senare portföljen har volatiliteten 0.223. Medelavvikelsen mellan de två skattningarna av vikterna är d ( 0.04) = 2 +...+0.03 2 5 = 0.033. Att döma av Tabell 4 kan man vänta sig att skattningsfelet är ungefär 2 0.09/3 0.04. (Faktorn /3 eftersom det teoretiska värdet är c:a 3 gånger för stort.) Det följer att vi inte kan avgöra vilken av de två skattningarna som ligger närmast minimivariansportföljen. Modellen med gemensam korrelation ger alltså mycket bra resultat i detta fall. Om man förenklar modellen ytterligare och antar att ρ = 0, så får man vikterna (0.27, 0., 0.5, 0.2, 0.36) och d = 0.087. Denna skattning går alltså att skilja från de andra två. De tre portföljerna har dock liknande karaktär vilket framgår om man rangordnar portföljernas vikter.

Risk och diversifiering 7 Svar till övningarna 4 a) v i = σ 2 i /S, σ 2 = /S, där S = σ 2 + σ 2 2 + σ 2 3. b) (/3, /3, /3), σ 2 = 2/5. c) (3/7, 2/7, 2/7), σ 2 = 3/35. 5 Alternativ b. (volatiliteterna blir 3.5% respektive.8%) 7 a) (0.50, 0.42, 0.08),.7% b) (0.50, 2.53, -2.03), 8.9% c) 2.% 9 a) 406, 208, 233. b) 0.4, 0.42, 0.44. Köp 803, -35 respektive 39 aktier.