Diskussionsproblem för Statistik för ingenjörer Måns Thulin Rolf Larsson rolf.larsson@math.uu.se Jesper Rydén jesper.ryden@math.uu.se Senast uppdaterad 27 januari 2016 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretag ska undersöka vad företagets 20 medarbetare tycker om ett förslag till nya säkerhetsföreskrifter. Bland medarbetarna är 12 stycken positivt inställda till de nya föreskrifterna, medan 8 stycken är negativt inställda. Undersökningen genomförs genom att projektledaren väljer ut två medarbetare för intervju. (a) Vad är sannolikheten att båda är negativt inställda till föreskrifterna? (b) Vad är sannolikheten att en är negativt inställd och en är positivt inställd? Ledning: svaret är inte 0.253! 2. En grupp elektroingenjörer funderar på vilket av två olika system för att skicka digitala signaler som de ska använda. En signal består antingen av en 0:a eller en 1:a. På grund av slumpmässigt brus i kommunikationskanalen så tas den skickade siffran ibland emot fel, så att en skickad 0:a tas emot som en 1:a, och vice versa. Man vet att P( En skickad 0:a tas emot som en 1:a ) = P( En skickad 1:a tas emot som en 0:a ) = 0.05 samt att varje ny signal är oberoende av föregående signaler. Det ena systemet går ut på att man skickar en enda kopia av varje signal. Det andra systemet går ut på att man skickar tre kopior av varje signal (alltså antingen 111 eller 000) och sedan kontrollerar vilken siffra som mottagaren fick flest gånger. Om mottagaren tar emot någon av följderna 111, 011, 110 eller 101 så tolkas det alltså som att man tagit emot en 1:a. (a) Vad är sannolikheten att en skickad 1:a tolkas som en 1:a, för respektive system? (b) Ingenjörerna vill skicka ett ord bestående av tre signaler. Vad är sannolikheten att rätt ord kommer fram, för respektive system? (c) Vilka för- och nackdelar har de två systemen? 1
Diskussionsproblem till Lektion 4 3. Vid ett vindkraftverk så har man observerat att den genomsnittliga vindhastigheten under en timme beskrivs av fördelningsfunktionen F (x) = 1 e x2 /120, x 0. Något förenklat så antar vi att vindkraftverket producerar el en given timme om den genomsnittliga vindhastigheten under timmen ligger mellan 3 och 25 m/s. (a) Vad är sannolikheten att vindkraftverket producerar el en given timme? (b) Vad är sannolikheten att vindkraftverket kan producera el minst 22 timmar under ett givet dygn? Ledning: antag att den genomsnittliga vindhastigheten olika timmar är oberoende. Kan du lösa problemet utan det antagandet? 4. Längs en 13 m lång vägg på ett lager har ett släp av längden 5 m parkerats. (a) Låt X beteckna hur mycket plats som finns kvar längs väggen bakom släpet. Är X kontinuerlig eller diskret? Vilka är de möjliga värdena på X? För vilka värden på X får ytterligare ett släp av samma längd plats längs väggen (antingen bakom eller framför det första släpet)? Ledning: att rita en bild kan underlätta. (b) Om det första släpet har parkerats längs väggen helt på måfå, hur stor är sannolikheten att ytterligare ett släp av samma längd får plats? 2
Diskussionsproblem till Lektion 6 5. I hissarna på Ångströmlaboratoriet står högst 8 personer eller 630 kg. Personvikten i kg hos en slumpvis uttagen person är normalfördelad. Gör antaganden om väntevärde och varians för fördelningen och beräkna utifrån detta sannolikheten att 8 personer överbelastar hissen genom att tillsammans väga mer än 630 kg. 3
Diskussionsproblem till Lektion 8 6. Två frågor om att presentera och samla in data: (a) Ett större företag vill undersöka vad en genomsnittlig anställd har i lön. De har kommit på tre sätt att göra detta: antingen med medelvärdet av alla anställdas löner, med medianen eller med typvärdet (den vanligaste lönen). Vilket av dessa sätt skulle du välja? (b) Ingenjörerna Inga och Ingvar ska undersöka elasticiteten hos två olika konstfibrer, A och B. Först gör Inga 20 mätningar för fiber A. Hon skriver ner resultaten för hand och för sedan in dem i datorn. Så fort Inga är klar gör Ingvar 10 mätningar för fiber B, med samma mätinstrument som Inga. Han skriver inte ner dem för hand utan för in dem i datorn direkt. Slutligen jämför de medelvärdena för de båda fibrerna. Vilka dolda felkällor kan tänkas finnas i deras undersökning? Hur skulle de kunnat förbättra experimentet? Exempel på en möjlig felkälla: om de hade använt olika mätinstrument för sina mätningar kunde skillnader mellan mätinstrumenten, exempelvis systematiska mätfel, orsaka problem. 7. I en undersökning av bostadspriserna i Uppsala fann man att de genomsnittliga priserna (mätt med medelvärden) gått ner i alla stadsdelar jämfört med förra året. Samtidigt fann man att det genomsnittliga priset i hela Uppsala gått upp. Hur är det möjligt? 8. (a) Ingenjören Inge fann för ett datamaterial om 17 observationer av livslängder hos en ny typ av komponenter medelvärdet x = 3.2 tidsenheter. Två konfidensintervall för väntevärdet beräknades och han erhöll [2.4, 4.0] respektive [2.1, 4.3]. Vilket konfidensintervall motsvarar 95 % respektive 99 % konfidensgrad? (b) Ingenjören Ingrid försöker tolka Inges konfidensintervall. Målet med de nya komponenterna var att den genomsnittliga livslängden skulle överstiga 2.2 tidsenheter. Diskutera huruvida målet har uppnåtts. (c) Figurerna nedan illustrerar vikterna för 30 exemplar av den nya typen av komponenter. Ingenjören Inger tror att vikterna är N(µ, σ 2 )-fördelade. Vilket/vilka av värdena 5, 10, 20 och 50 är rimligt för σ? 4
Histogram Lådagram Antal 0 2 4 6 8 30 40 50 60 70 20 30 40 50 60 70 80 5