12.6 Heat equation, Wave equation

Relevanta dokument
MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

Solutions to exam in SF1811 Optimization, June 3, 2014

Isometries of the plane

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Module 1: Functions, Limits, Continuity

Tentamen i Matematik 2: M0030M.

Module 6: Integrals and applications

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Chapter 2: Random Variables

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Tentamen i Matematik 2: M0030M.

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Module 4 Applications of differentiation

Styrteknik: Binära tal, talsystem och koder D3:1

Pre-Test 1: M0030M - Linear Algebra.

Svar till Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). med V=0 ges lösningen av (efter lite räknande) ψ n (x) = 2

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Webbregistrering pa kurs och termin

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Boiler with heatpump / Värmepumpsberedare

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

FORTA M315. Installation. 218 mm.

Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325

Webbreg öppen: 26/ /

Examples on Analog Transmission

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Mekanik FK2002m. Kraft och rörelse I

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

2. For which values of the parameters α and β has the linear system. dy/dt x + y

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

Tentamen i Matematik 3: M0031M.

Sammanfattning hydraulik

Preschool Kindergarten

Strategisk optimering av transporter och lokalisering. Hur matematisk optimering kan användas för att lösa komplexa logistikproblem

Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.

2.1 Installation of driver using Internet Installation of driver from disk... 3

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

NP-fullständighetsbevis

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Beijer Electronics AB 2000, MA00336A,

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

Investeringsbedömning

- den bredaste guiden om Mallorca på svenska! -

Småprat Small talk (stressed vowels are underlined)

Vad kännetecknar en god klass. Vad kännetecknar en god klass. F12 Nested & Inner Classes

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

SF1625 Envariabelanalys Tentamen Fredag 17 mars 2017

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Workplan Food. Spring term 2016 Year 7. Name:

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

Eternal Employment Financial Feasibility Study

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Calculate check digits according to the modulus-11 method

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Support Manual HoistLocatel Electronic Locks

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

Writing with context. Att skriva med sammanhang

Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson

Rep MEK föreläsning 2

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A


1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1

sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.

S0005M, Föreläsning 2

Styrteknik : Programmering med IEC Styrteknik

Övningsexempel och labuppgifter, Lab 5-2D1242

IE1206 Embedded Electronics

2 Uppgifter. Uppgifter. Svaren börjar på sidan 35. Uppgift 1. Steg 1. Problem 1 : 2. Problem 1 : 3

Second handbook of research on mathematics teaching and learning (NCTM)

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Mönster. Ulf Cederling Växjö University Slide 1

1. Antag att g är en inverterbar funktion definierad på intervallet [0, 4] och att f(x) = g(2x).

The Finite Element Method, FHL064

S0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Provlektion Just Stuff B Textbook Just Stuff B Workbook

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

samhälle Susanna Öhman

Transkript:

12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1

Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2 + 2 u y 2, u t ( = c 2 2 ) u x 2 + 2 u y 2 + 2 u z 2 We study steady solutions (that does-not depend on time t). Then the equation becomes 2 u x 2 + 2 u y 2 = 0, 2 u x 2 + 2 u y 2 + 2 u z 2 Solutions are called harmonic functions ( u = 0), u = u xx + u yy + u zz, is called the Laplace operator. 2

Separation of variables for 2D Laplace We are looking for solutions of u xx + u yy = 0 on 0 x a, 0 y b of the form u(x, y) = F(x)G(y) then the equation becomes G G = F F = const Boundary condition for Laplace equation: Dirichlet, function is known on the boundary, u(0, y), u(a, y), u(x, 0), u(x, b) are given; Neumann, the normal derivative is known in the boundary u x (0, y), u x ((a, y), u y (x, 0), u y (x, b) are given Robin (mixed), function on a part of the boundary and normal derivative on the other part. 3

Example We assume that the boundary conditions are: u(0, y) = c 1, u(a, y) = c 2, u(x, 0) = u(x, b) = c 1 + (c 2 c 1 )(x/a) 2 1. Simplify the boundary condition (for example subtract some simple solution to get u(0, y) = u(a, y = 0) 2. Use separation of variables with the boundary condition in x 3. Combine solutions from separated variables to satisfy the other boundary condition 4

Simplification We can look at the function v(x, y) = u(x, y) c 1 (c 2 c 1 )(x/a) it is also harmonic (since k 1 + k 2 x is harmonic) and it satisfies v(0, y) = v(a, y) = 0 The other boundary condition for v will be v(x, 0) = v(x, b) = (c 2 c 1 )((x/a) 2 x/a) = cx(x a) 5

Separation of variables Now we are looking for solutions of the form F(x)G(y) that satisfy F (0) = F(a) = 0. We have G G = F F = k n Then F n (x) = sin(nπx/a), k n = n 2 π 2 /a 2 = p 2 n are solutions and the corresponding G n are G n (y) = A n cosh p n y + B n sinh p n y We get v n (x, y) = F n (x)g n (y) are solutions. 6

Combination of product solutions Then v(x, y) = v n (x, y) = n=1 (A n cosh p n y + B n sinh p n y) sin p n x n=1 is also a solution. We want to take a combination which satisfies additional boundary conditions. Boundary conditions on two other sides of the rectangle are We set inn y = 0 and y = b, cx(x a) = A n sin p n x = n=1 v(x, 0) = v(x, b) = cx(x a) (A n cosh p n b + B n sinh p n b) sin p n x n=1 We first find A n from the first equality (take the Fourier series of the function x(x a) and then find B n from the second equality: B n sinh p n b = A n (1 cosh p n b) 7

Fourier series Let f (x) = cx(x a) for 0 < x < a. We extend f to an odd 2a-periodic function and compute the Fourier coefficients: b n = 2c a a 0 x(x a) sin nπx a dx = { 8ca3, n 3 π 3 n is odd 0, n is even We take A n = b n and B n = b n tanh p n b/2. Then the solution is v(x, y) = 8ca3 π 3 k=1 sin w k x (2k 1) 3 ( cosh wk y tanh bw k 2 sinh w ky ), where w k = p 2k 1 = (2k 1)π a. Finally, the temperature distribution u(x, y) that we were looking for is given by u(x, y) = c 1 + (c 2 c 1 )x a + v(x, y) 8

Wave equation We model small vibrations of an elastic homogeneous string, assume that the string performs small motion in vertical direction only. Physical assumptions: The string is homogeneous and elastic. The gravitational force can be neglected. Each part of the string moves only vertically. We are looking for a function u(x, t) that describes the motion. The equation is 2 u t 2 = c2 2 u x 2, c2 = T ρ where T is the tension of the string and ρ is the density. The equation is called one-dimensional wave-equation. 9

Separation of variables As before, we are looking at solutions of the form u(x, t) = F(x)G(t). And we get coupled equations for F and G: F F = G c 2 G = k Suppose that two ends of the string are fixed, u(0, t) = u(l, t) = 0, then we want to find solutions with F(0) = F(L) = 0. As earlier we obtain F n (x) = sin nπx L, n is integer, k n = ( nπ L Then for G we obtain G n (t) = A n cos cp n t + B n sin cp n t ) 2 = p 2 n When n = 1 we obtain the fundamental mode of the string. 10

Initial conditions To describe the motion of the string we need to know its initial position f (x) = u(x, 0) and initial velocity g(x) = u t (x, 0). We look for a solution of the form u(x, t) = (A n cos cp n t + B n sin cp n t) sin cp n x n=1 The initial conditions give f (x) = A n sin cp n x, g(x) = n=1 cp n B n sin cp n x n=1 11

Method works for other equations Example a) Find all functions of the form u(x, t) = F(x)G(t) that satisfy the differential equation u t + (1 + t 2 )(2u u xx ) = 0, 0 x π/2, t > 0 and the boundary conditions u(0, t) = 0, u x (π/2, t) = 0. b) Find the solution of the above equation that also satisfies the initial condition u(x, 0) = sin 3x + sin 17x. 12

Solution (a), part 1 Separating variables in the equation, we obtain G (1 + t 2 )G + 2 = F F = const The boundary condition implies F(0) = 0 and F (π/2) = 0. We have from the equation F = cf then If c = 0 we get F(x) = ax + b and boundary conditions give a = b = 0 then F = 0. It gives only the trivial solution u = 0. If c = p 2 > 0 then F(x) = ae px + be px (or one can use F(x) = c 1 cosh px + c 2 sinh px). The boundary conditions give a + b = 0 and pae pπ/2 pbe pπ/2 = 0 then a = b = 0, only the trivial solution. If c = p 2 < 0 then F(x) = a cos px + b sin px and the boundary conditions give a = 0, pb cos pπ/2 = 0. We gat a non-trivial solution when p = (2k + 1) with integer k. F k (x) = sin(2k + 1)x 13

Solution (a), part 2 Then the equation for G is Integrating, we get G k G k = ((2k + 1) 2 + 2)(1 + t 2 ) = c k (1 + t 2 ) ln G k (t) = c k (t + t 3 /3) + C, G k (t) = C k e c k (t+t 3 /3) All solutions of the form F(x)G(t) are given by u k (x, t) = F k (x)g k (t) = C k sin(2k + 1)x e (4k 2 +4k+3)(t+t 3 /3) 14

Solution (b) If we have u(x, t) = k=0 u k(x, t) then the initial condition is u(x, 0) = C k sin(2k + 1)x k=0 We have u(x, 0) = sin 3x + sin 17x then C 1 = C 8 = 1 and all other coefficients are zeros, we get u(x, t) = sin 3x e 11t + sin 17x e 291t 15