Chapter 14: Förångning, g, Kokning; Evaporation, Boiling

Relevanta dokument
12.6 Heat equation, Wave equation

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Module 6: Integrals and applications

The Arctic boundary layer

Chapter 2: Random Variables

Räkneövningar / Classroom exercises (Ri) kurs-assistent / course assistent MSc ChemEng Evelina Koivisto

EXAM IN MMV031 HEAT TRANSFER, TENTAMEN I KURSEN MMV031 VÄRMEÖVERFÖRING tisdagen kl

Sammanfattning hydraulik

EXAM IN MMV031 HEAT TRANSFER, TENTAMEN I KURSEN MMV031 VÄRMEÖVERFÖRING torsdag kl

Termodynamik Föreläsning 8 Termodynamiska Potentialer och Relationer

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

Tentamen i Matematik 2: M0030M.

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

Isometries of the plane

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Turbulent Viskositet och Turbulent Diffusivitet - turbulent viscosity and turbulent

3.1 Gammal tentfråga/old exam question

Transportfenomen i människokroppen

Why Steam Engine again??

HYDRAULIK Grundläggande ekvationer III

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

Pre-Test 1: M0030M - Linear Algebra.

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Immersed Cooling of Electronics

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, English Version

Massöverföring och separationsteknik

KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs kl

The Finite Element Method, FHL064

Gradientbaserad strukturoptimering

Module 4 Applications of differentiation

Transportfenomen i människokroppen

Multiphase Flow Dynamics 3

Porösa medier Transvaskulär transport

HYDRAULIK Grundläggande ekvationer III

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Har Du frågor angående uppgifterna: kontakta någon av lärarna, vid lektionerna, via e-post eller på deras rum:

GOLD SD Fläkt 2/ Fan 2. Fläkt 1/ Fan 1. Fläkt/ Fan. Utan filter/ Without filter. Fläkt 1/ Fan 1. Fläkt 2/ Fan 2. Med filter/ With filter Filter

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Massöverföring och separationsteknik

Questionnaire for visa applicants Appendix A

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Företagsnamn: Grundfos Skapad av: Magnus Johansson Tel: +46(0) Datum:

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

GOLD SD Med styrenhet/with control unit. Fläkt/ Fan. Utan filter/ Without filter. Fläkt/Fan. Fläkt/ Fan. Med filter/ With filter.

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

Läcksökning som OFP-metod

HYDRAULIK Rörströmning I

The underlined four questions shall be discussed, for the other questions the answer is enclosed here.

Mass transfer and separation technology Massöverföring och separationsteknik ( MÖF-ST ) , 7 sp (~187 h)

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Kyltekniska Föreningen

Boiler with heatpump / Värmepumpsberedare

HYDRAULIK Grundläggande ekvationer III

3.1 Gammal tentfrågan/old exam question 388,376,364,352,328, 324,312

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

CompactAIR Center Ventilation - Filtrering - Uppvärmning CompactAIR Center Ventilation - Filtration - Heating

7!34% 7!34% !34% 52-53,/

Solutions to exam in SF1811 Optimization, June 3, 2014

Heavy Transport on Existing Lines: the Assessment of Bearing Capacity of Track-bed based on Track Stiffness Measurements and Theoretical Studies

Gradientbaserad Optimering,

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014

a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.

Gasstrålning Gas radiation (Participating

English Version. Number of sold cakes Number of days

Writing with context. Att skriva med sammanhang

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

HYDRAULIK Rörströmning IV

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Massöverföring och separationsteknik

IE1206 Embedded Electronics

S0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula

Modeling of pore pressure in a railway embankment

DAMPER EQAZ-12, EQAZ-13, STAZ-30, STBZ-30

B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter på 50 mm. Rörets ytråhet, e, är mm. Om tryckfallet i röret inte får

Chapter 8 Convective Duct Flow

Styrteknik: Binära tal, talsystem och koder D3:1

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

MOLECULAR SHAPES MOLECULAR SHAPES

En bild säger mer än tusen ord?

SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014

EVEH/V KBEH/V. Egenkonvektionselement Gravity Cooler

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Inkvarteringsstatistik. Göteborg & Co. Februari 2012

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Energy and Quality oriented modeling and control of REFiners

S0005M, Föreläsning 2

Övning 5 ETS052 Datorkommuniktion Routing och Networking

GERDA Cryostat Rn emanation

Storlek/ Size. Modell/ Model. Effekt/ Effect. Vattenmängd/ Water amount T30 63W T30 87W T30 67W T30 76W T30 108W T30 121W

Övningsexempel och labuppgifter, Lab 5-2D1242

Svenska()(Bruksanvisning(för(handdukstork()(1400(x(250(mm(

balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45

Transkript:

Chapter 14: Förånnin,, Koknin; Evaporation, Boilin vätska, liquid q 1) Lokal koknin eller underkyld koknin Local boilin or subcooled boilin 2) Koknin med nettoörånnin boilin with net evaporation kittelkoknin pool boilin, orcerad konvektiv koknin orced convective boilin

Evaporation Nukiyama s experiment boilin curve t s I E t s t tråd-wire - t värmande tråd, heatin wire q min q max q

Evaporation Boilin Curve 14 12 sinle bubbles nucleate boilin jets & colonns 3 transition reime ilm boilin q max Hea at lux, [10 5 W/m 2 ] 10 8 6 4 2b 4 5 Saturated water on a plane sur- ace at p 1bar 2 natural 2a convection 1 0 1.0 10 100 1000 q min Δt twall - t s

Förånnin - Evaporation (a) (b) (c) Principal sketch o nucleate boilin ((a) och (b)), and ilm boilin (c).

Evaporation; Kärnkoknin, Nucleate Boilin Reime 100 q μ h σ ρ ( ρ ) 10 1.0 Eq. (2-9) 1 atm 26 atm 52.4 atm 82 atm 109 atm 167.77 atm 0.1.001.01 0.1 1.0 c p ( t w t s ) h Pr

Nucleate Boilin; theory, empiricism Nu unction(re, Pr) u ρ q w h L k σ ( ) ρ ρ 1/ 2 Re ρu L μ k Nu α L λ k Nu 1 1 n m Re Pr C s

Nucleate Boilin Rohsenow s s ormula c p ( t h t ) q w s w C s sl Pr μ h ( ρ ρ ) σ 1/ 2 0.33 n 1/3, 1+m s Eq. (14-9) σ is the surace tension, σ c 1 + c 2 t

Evaporation- C sl and s in Rohsenow s equation sl Surace liquid C sl s Nickel water 0.006 1.0 Platinum water 0.013013 10 1.0 Copper water 0.013 1.0 Brass water 0.006 1.0 Chrome benzene 0.010 1.7 Chrome ethanol 0.0027 1.7

Evaporation, nucleate boilin: Cooper s ormula α A P (0.12 0.4343ln RP ) 0.55 0.5 067 0.67 R ( 0.4343ln PR ) M qw M is the molecular weiht P R p/ p is the reduced pressure critical RP is the surace rouhness in μm A 55

Evaporation, nucleate boilin; Gorenlo s method, b 0.133 q R w p 0 F PF q w0 Rp0 α α F (14-12) 0 F PF 1.2P 0.27 R + 2.5P R PR + 1 P R b 0.9 0.3P 0.3 R α valid a certain reerence state, namely P 0. 1 R 0. 4 0 q 4 w0 2 10 W/m 2. Reerence values or R0 α0 in Table 14-III. P0 μm,

Evaporation, nucleate boilin; Gorenlo s method or water, F PF 0.27 0.68 1.73PR + 6.1 + P 1 P R 2 R b 0.9 0.3P R 0. 15

Evaporation-temperature distribution in liquid phase or pool boilin 109 108 Tem mperature, o C 107 106 105 104 103 102 Water 101 100 0 1 2 3 4 5 6 7 8 Liquid sura ace100.4 o C Va apor 100 o C Distance rom the heatin surace, [cm]

Evaporation: equilibrium-orce balance σ σ Δp σ σ r π r 2 ( p p ) 2 π r σ bubble liquid r 2σ ( p p ) bubble liquid

Evaporation eects on the boilin curve Subcoolin A liquid enclosed in a heated container will not stay a temperature below the saturation temperature very lon. Beore the liquid reaches the saturation temperature or i the warm liquid is continuously replaced by cold liquid (e.., by orced low) the subcoolin will, aect the boilin curve. It has been ound that the nucleate boilin reime is not very much aected but the values o and increase linearly with the subcoolin. The inluence on the transition reime is less known. Gravity The inluence o the ravity or other body orces is o interest as the boilin process also appears in rotatin or accelerated systems. Reduction o the ravity is important or boilin processes in space applications. Because the ravity acceleration is included in most expressions its role is evident. Surace rouhness A heatin surace miht be treated in various ways to ind out the importance o the surace rouhness. Some studies indicate that is almost independent o the surace rouhness and whether the surace is clean or oxidized. The ilm boilin reime is not aected siniicantly by surace properties which is understandable as the liquid phase is not in direct contact with the solid surace. The nucleate boilin reime is however aected by the surace rouhness.

Evaporation transition reime

Evaporation Taylor instability humid air Honey cold water Honey (a) λ Τ (b) λ Τ λ T λ unction ( σ, ( ρ ρ ))

Evaporation Taylor instability, dimensional analysis a b c const σ ( ρ ρ ) λt [m] [N m 1 ] a [m s 2 ] b [k m 3 ] c a 1/2, b c 1/2 λ T constant σ ( ρ ρ ) 2π 3 or one-dimensional waves constant t 2π 6 or two-dimensional waves

Evaporation - arranement o vapor jets at q max λ T1 λt 1 λ T /4 1 λ T2

Evaporation Helmholtz instability U Fla movement λ Η /2 Η hih pressure low pressure

Evaporation Helmholtz instability Details o instability in the jet surace λ T1 σ ρ surroundin liquid T 1 vapor jet surroundin liquid tλt /4 vapor jet u ρ λ H heatin surace vapor jet σ u 2πσ ρ λ H

Evaporation- estimation o q max or a horizontal surace q max ρ h u A A j h A j π( λ T / A 1 h 2 λ T / 4) 1 2 π 16 q ( ( ρ ρ ) 1/ 4 1/2 max.149ρ h ) 0 σ λ λ T 1 H (14-25) q ( ( ρ ρ σ) 1/ 4 1/2 max 0.131ρ h ) z (14-26)

Evaporation-other eometries, pool boilin q unction( ρ, ρ ρ,, σ, L, h ) max Y 1 q q max Y 2 L σ max z ( ρ ρ ) ( see Table 14-IV

Evaporation immersed bodies q max unction(we L, ρ / ρ ) ρ hu We L ρ 2 U L σ

Evaporation immersed bodies Low velocities q ρ h 1 [ 1/ ] 3 1+ (4/ We max D) U π (14-34) Hih velocities q ρ h max U ( ρ / ρ ) 169π 3 / 4 + ( ρ / ρ ) 19.2πWe 1/ 2 1/ 3 D (14-35)

Evaporation immersed bodies q max ρ hu 0.275 ( 1/2 ρ / ρ ) 1 hih velocity < + π > + π 0.275 ( 1/2 ρ / ) 1 low velocity ρ

Evaporation-orced convection in tubes, low reimes-horizontal tubes Bubbly Slu Plu Annular Stratiied Annular ua with liquid qudspray Wavy

Evaporation-orced convection in tubes, low reimes-vertical tubes (a) homoeneous bubbles (b) inhomoeneous bubbles (c) slus o the as phase (d), (e) partial annular low () annular low () annular low with liquid droplets in the as phase (a) (b) (c) (d) (e) () ()

Evaporation-orced convection in tubes, determinin low reimes- horizontal tubes Baker plot (m 2 s)] G /λ [k/( 100 10 Wavy low Annular low Slu low Bubbly low G m /A cross, G m / A cross 1.0 Stratiied low Plu low 0.1 ρ ρ λ ρair ρ 2 H O 1/2 10 100 1000 10000 G 2 ψ [k/(m s)] σ ψ σ μ μ H H 2O H 2O 2 O ρ ρ 2 1/ 3

Evaporation-orced convection in tubes, determinin low reimes- vertical tubes 10000 G m /A cross, 2 G /ρ [k/(s 2 m)] 1000 100 10 Annular low Partial annular low Annular low with liquid droplets Bubbly low G m / A cross 10 1.0 Slu low 0.1 1.0 10 100 1000 10000 1.E+5 1.E+6 G 2 /ρ [k/(ms 2 )]

Two-phase low, deinitions and relations ε V V + + V V V Void raction X X F m& m& m& + m& m& m S m + m m m lowin mass quality static mass quality G m& / A m GAX F mass velocity m & m & GA( 1 X ) ( F u u / u phase velocity ratio R

Two-phase low deinitions and Two-phase low, deinitions and relations F S ) (1 ρ ρ X G A m u & F S ρ ρ GX A m u & Supericial velocities ρ ρ ) ) (1 F F X ε X ε u u (1 ρ ρ ) ) (1 S S X ε X ε (1 ρ ρ F F S S ) (1 ρ ρ X X u u F ρ (14-45) (14-46) (14-47)

Pressure drop or two-phase lows: Lockhardt-Martinelli method Re u D S G(1 X F ) ν Δ p μ D L ρu D 2 2 S Re u ν S D Δp p GX μ F D L ρ D 2 2 u S 1000 ε 1.0 (dp/dx) (dp/dx) TF / 100 φ t-t 10 φ v-v vv ε 1 ε φ v-t Index Liquid Gas t-t φ t-v v-t Turbulent Turbulent Laminar Turbulent t-v Turbulent Laminar v-v Laminar Laminar 0.1 1.0.01 0.1 1.0 10 100 (dp/dx) / (dp/dx)

Pressure drop or two-phase lows: Lockhardt-Martinelli method ( dp / dx) 2 X Martinelli parameter ( dp / dx) φ 2 ( dp / dx) ( dp / dx) TF two-phase multiplier 1 C X + 1 X φ 2 + 2 C20 i turbulent low prevails in the liquid as well as in the as (tt) C 12 i the liquid low is viscous (laminar) and the as low is turbulent (vt) C 10 i the liquid id low is turbulent t and the as low is laminar (tv) C 5 i laminar low prevails in the liquid as well as in the as (vv)

Pressure drop or two-phase lows: Friedel s method dp dx φ dp 2 LO TF dx LO LO means liquid only Formulas or 2 φlo see book.

Forced convective boilin heat transer and temperature distribution FLOW TYPE HEAT TRANSFER REGIMES TEMPERATURE PROFILE Outlet x 1 Sinle phase vapor H Convection to vapor Wall temperature Dryout Liquid drops in the vapor G Annular low F liquid drops in the vapor Annular low E Dry out Forced convection across a liquid ilm Slu low D Saturated nucleate boilin x 0 Bubble low B,C Subcooled boilin Saturation temperature Fluid temperature Inlet Sinle phase liquid A Convection to liquid

Chen s method or estimatin the heat transer durin orced convective boilin α TF Sα KK + Fα C X tt 1 X X F F 0.9 ρ ρ 0.5 μ μ 0.1 X tt ( dp / dx) ( dp / dx) 100 50 F (R Re TF /Re ) 0.8 10 5.0 Approximative rane o data points 1.0 0.1 1.0 10 100 1/X tt

Chen s method or estimatin the heat transer durin orced convective boilin, continued F Re Re TF 0.8 1 1 i 0.1 X tt F 0.736 1 1 2.35 + 0.213 i > 0.1 Xtt Xtt α C 0.023Re023Re Pr 0.8 Pr 0.4 λ D Re G(1 X F) D / μ

Chen s method or estimatin the heat transer durin orced convective boilin, continued 1 0.9 0.8 S 0.7 0.6 0.5 04 0.4 0.3 Aproximative area or all data points S 1 1+ 2.53 10 6 Re 1.17 TF 0.2 0.1 0 1.E+4 1.E+5 Re TF Re F 1.25 1.E+6 α KK λ c ρ 0.24 0.00122 Δts Δp σ 0.79 0.45 p 0.49 0.5 0.29 0.24 0.24 μ h ρ 0.75 s Δt s t w t s Δp s ps ( tw ) ps ( ts)

Chen s method or estimatin the heat transer durin orced convective boilin, continued Calculate α TF or a number o Δt m accordin to α TF Sα KK + Fα C Then create a raph q α TF Δt m vs Δt m At q q w ind the true Δt m

Alternative method or estimatin the heat transer durin orced convective boilin-gunor & Winterton α S α + E α TF KK C 4 1.16 E 1 + 2.4 10 Bo + 1.37(1/ X ) tt 0.86 Bo q /( G h w ) S 1 1+ 1.15 10 6 E 2 Re 1.17 Here α KK is taken rom Cooper s ormula, α C rom Dittus-Boelter s equation

Alternative method or estimatin the heat transer durin orced convective boilin-steiner & Taborek α TF ( n n ) α 1/ n KK + αc Here α KK is taken rom Gorenlo s method, KK, α C rom Gnielinski s ormula n 3