Tentamen kurs SF2719 Matematikens historia torsdagen den 23 maj 2013 klo Del ett utan hjälpmedel.
|
|
- Gunnar Hellström
- för 6 år sedan
- Visningar:
Transkript
1 Matematik KTH Tentamen kurs SF2719 Matematikens historia torsdagen den 23 maj 2013 klo Denna tentamen består av två delar. Del ett besvaras helt utan hjälpmedel. Det innebär att lärobok, miniräknare och föreläsningsanteckningar skall förvaras nedpackade i Din väska framme hos tentamensvakten medan Du besvarar del ett. Lämna sedan in Dina svar i ett tentamensomslag innan Du börjar med Del två nedan. Då får Du taga fram nämnda hjälpmedel. Gamla tentamina får ej medtagas. Se kursens hemsida för eventuell komplettering efter tentamen; skriv därför Din eadress på tentamenskonvolutet. Försök besvara alla frågor i del ett. Del ett utan hjälpmedel. Du får gärna skriva kortfattade och koncisa svar om inget annat anges. Du kanske bör använda drygt halva tiden till del ett. (Jag har nedan behållit den äldre stavningen av vissa grekiska ord, såsom Eukleides, Arkhimedes, method, logarithm, arithmetik, orthogonal, symptom, asymptot, liksom det latinska circa. Du behöver inte stava på detta arkaiserande sätt.) Förkortning: Nedan står K för Differential- och integralkalkylen. Rita gärna figurer och bilder så ofta det passar när Du besvarar frågorna. Försök placera varje person som Du nämner i rätt tid (århundrade) och i rätt land/länder/språkområde. Du bör också tillfoga något specifikt som vederbörande är känd för eller inom vilket område han arbetade. Inom ramen för del två får Du besvara högst två av frågorna från del ett en gång till. 1
2 1. a) Vad betyder ordet matematik? b) Från vilket språk kommer ordet? c) Om man nu visste att = 25 för en viss rätvinklig triangel ända sedan civilisationernas begynnelse, varför har ämnet matematik fått sitt namn på just detta språk: Vilka grundläggande byggstenar för ämnet matematik lades inom just detta språkområde? 2. TychoBrahevaringenmatematiker. Ändåpryderhanomslagettillvårtjockalärobok. Hur kan det komma sig? 3. a) Vad tyckte araberna om det verk de översatte till att heta Almagest? Vad betyder titeln egentligen (på ett ungefär)? b) Från vilket språk är detta verk översatt? När och var skedde det? c) Varför är detta verk så oerhört känt? d) När ruckades den auktoritet som verket tilldelats? Vilka var ansvariga för det? 4. a) Kan Du nämna några matematiker (eller matematik filosofer ) som verkade på orter som idag hör till Grekland? b) Var verkade de mest namnkunniga matematiker som skrev på grekiska? Kan Du nämna några? 5. Kvaternionerna lärs ej ut i vanliga grundkurser i matematik. Ändå har de lämnat flera spår efter sig i läroböckerna i mekanik och flervariabel. Vad åsyftas här? 6. a) Varför uppstod en stor prioritetsstrid om K? b) Vilka matematiker var inblandade och vilken ansedd vetenskaplig institution? c) När ungefär utspelade sig denna för de flesta inblandade verkligt olustiga och smått förnedrande skandalhistoria? 7. Beskriv (så långt Du orkar eller kan) i allmänna ordalag innehållet i Konika. Vilka centrala matematiska objekt fick här sina namn? 8. a) Vad har Bolyai János, Nikolaj Lobatjevskij och Carl Friedrich Gauss gemensamt? b) Vad har Wessel, Argand och Gauss gemensamt? c) Vad har Albert Girard och Gauss gemensamt? d) Vad har Abraham de Moivre, Pierre-Simon de Laplace och Gauss gemensamt? e) Vad har Gauss, Riemann och Einstein gemensamt? 9. a) Man kan hävda att K föregreps av både Eudoxos, Eukleides och Arkhimedes. Vad brukar man kalla den metod de använde? b) Arkhimedes skrev ett verk kallat Om methoden, där han använder en metod som bygger på att det finns en stödjepunkt (fulcrum). Vad var det för metod? c) Kan Du ge exempel på några problem han lyckades lösa med denna metod, även om han inte alltid verkar vara helt nöjd med den? 2
3 10. a) Vem upptäckte det vi idag kallar kalkylen först? b) Vem uppfann de beteckningar vi till dags dato använder? 11. Efter Antikens första trevande steg kunde K ej komma igång på allvar i Västerlandet innan ett par oundgängliga nymodigheter hade introducerats, som gick långt utöver vad som åstadkommits av de arabiska matematikerna. De är främst associerade med två eller tre franskspråkiga personer. Berätta! 12. Innan K hade fötts och införts med dagens beteckningar kunde dess (omedelbara) föregångare lösa ett antal smått klassiska problem och beräkna ett antal storheter, som vi idag lär ut medelst K i kurserna i EnVariabelAnalys och FlerVariabelAnalys. Berätta - vilka problem var det och vilka kunde taga åt sig äran av att hava lyckats göra detta utan hela det maskineri som utgör dagens K? 13. a) Kan Du definiera kordan för en vinkel α i en godtycklig cirkel? Rita gärna! b) När ungefär infördes den och i vilket sammanhang? c) Var och ungefär när ersattes kordan av vad då ja vad var det kordan ersattes av? 14. Medeltidens europeiska matematiker fick gradvis tillgång till översättningar av äldre matematiska texter.vilket språk var de företrädesvis översatta till? Vilka språk var de flesta översatta ifrån? 15. Man kan urskilja tre olika stora områden av matematik inom det klassiska arvet. Dessa tre områden finns kvar än idag. Vilka är de? Deras namn kommer från två klassiska språk - vilka? 16. Med visst fog kan man hävda att den europeiska matematiken började utvecklas väsentligt utöver alla tidigare seklers matematik först på 1500-talet. Kan Du nämna ett antal olika saker som hände inom matematiken då? 17. a) Vilken yrkesgrupp hade den största praktiska nyttan av de nyuppfunna logarithmerna under deras två första sekler? b) Vem kan ha varit en av de första av draga nytta av dem? c) När ungefär upprättades de mycket omfångsrika tabeller som var så oumbärliga på t ex 1800-talet och långt in i vår egen tid? d) Vilket praktiskt räknehjälpmedel grundades på logarithmerna? e) När ungefär blev detta hjälpmedel och de utförliga tabellerna förpassade till matematikhistoriens museum? 3
4 18. Kan Du para ihop dessa odödliga verk med deras lika odödliga författare? Konika Simon Stevin Ars Magna, sive de regulis algebraicis De revolutionibus orbium coelestium Liber abaci Stoikheia Diofantos Isaac Newton Robert Recorde John Napier Al-kitab al-muhtasar fi hisab al-jabr wa-l-muqabala Gerolamo Cardano De Thiende Philosophiae naturalis principia mathematica Arithmetika Almagest The whetstone of witte Mirifici logarithmorum canonis descriptio Nicolaus Copernicus Ptolemaios Leonardo från Pisa Eukleides al-khwarizmi Apollonios från Perga 19. Varför upptäcktes eller infördes inte de komplexa talen under alla de många sekler då matematikerna utvecklade metoderna att formulera och lösa det som skulle bli andragradsekvationerna? 20. Ett antal berömda matematiker sysslade också med fysik. Kan Du nämna t ex tre namn? 21. Berätta om en framstående matematiker som Du knappt nämnt i Dina svar ovan. 4
5 22. Cirkeln S har medelpunkt M och radie R. En punkt A speglas i cirkeln S genom en kanonisk konstruktion som innehåller två tangenter och en sekant (korda). Spegelpunkten kallas B. Rita figur. Visa också att MA MB = R Sök förhållandena U : S : V, där S är arean av ett parabelsegment, U är arean av den största triangel som ryms inuti parabelsegmentet (största inskrivna triangel), och V är arean av den omskrivna triangel, som tangerar parabelsegmentet i dess två hörn. Denna uppgift får lösas medelst koordinater. Det räcker om Du gör uppgiften för enklast tänkbara parabelsegment. Rita figur. 24. Givet en godtycklig parabel P i planet. Låt A vara en godtycklig punkt på P. Låt T vara tangenten till P i punkten A och låt L vara en ANNAN linje genom A som inte skär parabeln P i någon annan punkt. Låt nu T vara r-axel och L vara s-axel i ett (i allmänhet snett) koordinatsystem. Visa att ekvationen för parabeln P uti detta nya koordinatsystem blir utomordentligt enkel, nämligen av typ rr = bs, där b är en parameter. Rita figur. 25. Beräkna en approximation med TVÅ hexagesimaler till kordan för EN grad i en cirkel med radien sextio, genom att utgå från (det arithmetiska) medelvärdet av Arkhimedes två kända begränsningar för kvoten mellan perimetern och diametern i en godtycklig cirkel. Här slutar del ett, som skall lämnas in separat. För del två, se nästa sida. 5
6 Del två med hjälpmedel. Efter att svaren till del ett lämnats in, får tentanden använda lärobok om matematikens historia, miniräknare och sina egna anteckningar från årets föreläsningar och från litteraturstudiet. Del två lämnas sedan in i ett nytt tentamensomslag. Inom ramen för del två får Du besvara högst två av frågorna från del ett en gång till. Uppsatsen bör vara allra minst tre sidor lång, men hellre fyra fem sidor. För uppsatsen får Du att välja ett av följande ämnen: Heltalsarithmetikens historia. Den utdragna historien om heltalen i Pascals triangel och hur detta sedan ledde Newton till hans binomialserie med dess kopplingar till både logarithmen, arcus-tangens och arcus-sinus. Sannolikhetslärans historia inklusive normalfördelningens historia. De plana geometriska kurvornas historia. En historia över knappt två tusen år som började med Apollonios epicykler och som slutade med att epicyklerna fick ge vika för (den av Apollonios döpta) ellipsen. Den icke euklidiska geometrins historia. (Den spännande) historien om upptäckten och användningen av de komplexa talen med tonvikt på Euler och Gauss. Lycka till! Jockum Aniansson 6
Tentamen kurs SF2719 Matematikens historia torsdagen den 20 augusti 2013 klo
Matematik KTH Tentamen kurs SF2719 Matematikens historia torsdagen den 20 augusti 2013 klo 14 19. Denna tentamen består av två delar. Del ett besvaras helt utan hjälpmedel. Det innebär att lärobok, miniräknare
Tentamen kurs SF2719 Matematikens historia onsdagen den 12 april 2017 klo 8 13.
Matematik KTH Tentamen kurs SF2719 Matematikens historia onsdagen den 12 april 2017 klo 8 13. Denna tentamen består av två delar. Delettbesvarashelt utan hjälpmedelsånärsompålinjalochpassare. Detinnebär
Tentamen kurs SF2719 Matematikens historia måndagen den 19 december 2016 klo
Matematik KTH Tentamen kurs SF2719 Matematikens historia måndagen den 19 december 2016 klo 14 19. Denna tentamen består av två delar. Delettbesvarashelt utan hjälpmedelsånärsompålinjalochpassare. Detinnebär
Tentamen kurs SF2719 Matematikens historia torsdagen den 27 oktober 2016 klo Del ett utan hjälpmedel.
Matematik KTH Tentamen kurs SF2719 Matematikens historia torsdagen den 27 oktober 2016 klo 8 13. Denna tentamen består av två delar. Delettbesvarashelt utan hjälpmedelsånärsompålinjalochpassare. Detinnebär
Ellipsen. 1. Apollonius och ellipsen som kägelsnitt.
Ellipsen 1. Apollonius och ellipsen som kägelsnitt. Vi skall stifta bekantskap med, och ganska noga undersöka, den plana kurva som kallas ellips. Man kan närma sig kurvan på olika sätt men vi väljer som
Tentamen kurs SF2719 Matematikens historia måndagen den 31 maj 2010 klo 9 14. Del ett utan hjälpmedel.
Matematik KTH Tentamen kurs SF2719 Matematikens historia måndagen den 31 maj 2010 klo 9 14. Denna tentamen består av två delar. Del ett besvaras helt utan hjälpmedel. Lämna sedan in Dina svar i ett tentamensomslag
Om ellipsen och hyperbelns optiska egenskaper
Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer
π DAGENN A D att Pris nivå Du får tävla on av π vars fel DGE och Bakgrund: Priserna:
π DAGENN TÄVLING & PRISER Alla elever vid vår trevliga skola inbjuds att delta i årets stora PI tävling. Rikedom, ära och berömmelse, i måttlig grad, är vad som väntar de vinnande eleverna. Bakgrund: Den
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska
Enklare matematiska uppgifter
Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större
Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000
2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
MATEMATIK 5 veckotimmar
EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa
MVE365, Geometriproblem
Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..
Kompendium om. Mats Neymark
960L09 MATEMATIK FÖR SKOLAN, Lärarlftet 2009-02-24 Matematiska institutionen Linköpings universitet 1 Inledning Kompendium om KÄGELSNITT Mats Nemark Detta kompendium behandlar parabler, ellipser och hperbler
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
π-dagen TÄVLING & PRIS
π-dagen TÄVLING & PRIS Alla elever vid vår trevliga skola inbjuds att delta i årets stora π-tävling. Rikedom, ära och berömmelse, i måttlig grad, är vad som väntar de vinnande eleverna. Bakgrund: Den årliga
SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag
Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt
Matematikens historia
Matematikens historia 1500-1700 Joel Eliasson Dowland, John (1562-1626) What if I never speed Renässansen (1300-1600) Det råder lite olika bud om vilken tid denna epok omfattar. Detta beror på att man
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
Enklare matematiska uppgifter
Elementa Årgång 41, 1958 Årgång 41, 1958 Första häftet 143. I en given cirkel är inskriven en triangel ABC, i vilken b + c = ma, där m är ett givet tal > 1. Sök enveloppen för linjen BC, då hörnet A är
NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4
freeleaks NpMaB ht000 () Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 000 Del I, 0 kortsvarsuppgifter med miniräknare 4 Del II, 9 uppgifter med miniräknare, fullständiga lösningar 7 Del
Enklare matematiska uppgifter
Årgång 27, 1944 Första häftet 1316. I vilka serier äro t1 3 +t3 2 +t3 3 + +t3 n = (t 1 +t 2 +t 3 + +t n ) 2 för alla positiva heltalsvärden på n? 1317. Huru stora äro toppvinklarna i en regelbunden n-sidig
Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13
Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med
Enklare matematiska uppgifter
Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA
Enklare matematiska uppgifter
Elementa Årgång 45, 1962 Årgång 45, 1962 Första häftet 2353. Triangeln ABC och punkterna P 1 och P 2 ligger i samma plan. Om triangeln ABC symmetriseras med avseende på P 1 och P 2, uppstår trianglarna
i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n
Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså
Explorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
ALGEBRAISKT TÄNKANDE EN KORT HISTORISK EXPOSÉ ÖVER BEGREPP, UTTRYCKSSÄTT OCH ANVÄNDNINGSOMRÅDEN
ALGEBRAISKT TÄNKANDE EN KORT HISTORISK EXPOSÉ ÖVER BEGREPP, UTTRYCKSSÄTT OCH ANVÄNDNINGSOMRÅDEN MEN FÖRST något om kursens algebradel och den nya läroplanens mål angående algebra. SYFTE Syftet med kursens
Enklare matematiska uppgifter
Årgång 47, 1964 Första häftet 2457. ABC är en fix liksidig triangel. Linjerna AD och BE är parallella och skär linjerna BC och AC i D resp. E. Vidare är A 1, D 1, B 1 och E 1 mittpunkterna på sträckorna
Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?
Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
KUNSKAP OCH KOMMUNIKATION
KUNSKAP OCH KOMMUNIKATION SIFFERDJÄVULENS PERSPEKTIV JULIUSZ BRZEZINSKI MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA OCH GÖTEBORGS UNIVERSITET KOMMUNIKATION FORMELL : YRKESROLL, LÄRARROLL, MED- VERKAN
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
M0038M Differentialkalkyl, Lekt 16, H15
M0038M Differentialkalkyl, Lekt 16, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 25 Repetition Lekt 15 Femte och trettioförsta elementet i en aritmetisk talföljd är 7
Karta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår
Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard
Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard Sammanfattning Anders Källén MatematikCentrum LTH anderskallen@gmail.com Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs
Enklare matematiska uppgifter
Årgång 40, 1957 Första häftet 2082. I punkterna 0, v, 2v,... nv på enhetscirkeln placeras massorna ( n ( 0), n ) ( 1,..., n ) n resp. Hur långt från cirkelns medelpunkt ligger tyngdpunkten för detta massystem?
Enklare matematiska uppgifter
Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan
Kalkylens och analys historia. Vladimir Tkatjev ht2015
Kalkylens och analys historia Vladimir Tkatjev ht2015 Några motiveringar för framväxt 1. Beräkning av areor begränsade av kurvor, volymer begränsade av ytor, tyngdpunkters läge m.m. 2. Givet en funktion,
Enklare matematiska uppgifter
Elementa Årgång 5, 94 Årgång 5, 94 Första häftet 04. Toppen i en pyramid utgöres av ett regelbundet n-sidigt hörn. Tre på varandra följande sidokanter ha längderna a, b och c. Beräkna de övrigas längd.
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
MATEMATIK 5 veckotimmar
EUROPEISK STUDENTEXAMEN 007 MATEMATIK 5 veckotimmar DATUM : 11 Juni 007 (förmiddag) SKRIVNINGSTID : 4 timmar (40 minuter) TILLÅTNA HJÄLPMEDEL : Europaskolornas formelsamling En icke-programmerbar, icke-grafritande
1.1 René Descartes Cogito ergo sum - Je pense, donc je suis. - Jag tänker, därmed existerar jag.
1.1 René Descartes 1596-1650 Cogito ergo sum - Je pense, donc je suis. - Jag tänker, därmed existerar jag. Franske René Descartes var en av mången renässans människor som var begåvade och bildade i flera
SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009
KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
Enklare matematiska uppgifter
Årgång 35, 1952 Första häftet 1793. I en cirkel med centrum O och radien R är inskriven en spetsvinklig triangel ABC, vars höjder råkas i H. Bestäm maximum och minimum för summan av PO och PH, när punkten
Om Pythagoras hade varit taxichaufför
56 Om Pythagoras hade varit taichaufför i Luleå Andrejs Dunkels Högskolan i Luleå Fig 1. Om man vill ta sig från P-platsen i hörnet av Köpmangatan och Timmermansgatan till Vinbutiken (se fig 1) så går
Övningshäfte 2: Komplexa tal
LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet
Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
Lösningsförslag till problem 1
Lösningsförslag till problem Lisa Nicklasson november 0 Att beskriva trianglar Vi ska börja med att beskriva hur trianglar kan representeras i x, y)-planet Notera att varje triangel har minst två spetsiga
Extramaterial till Matematik Y
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik Y NIVÅ TVÅ Geometri ELEV Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och
Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden
Ordlista 5A:1 Öva orden Dessa ord ska du träna term Talen som du räknar med i en addition eller subtraktion kallas termer. faktor Talen som du räknar med i en multiplikation kallas faktorer. täljare Talet
Matematikens Historia 3000 f Kr 1500 e Kr
L0001M, Matematikens Historia 008-01-30 Matematikens Historia 3000 f Kr 1500 e Kr Av : Anna Pagourelia annpag-5@student.ltu.se Mikael Bergman imieba-5@student.ltu.se Institution för matematik Luleå Tekniska
Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK
Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.
Ma2c - Prövning nr. 3 (av 9) för betyget E - Geometri
Ma2c - Prövning nr. 3 (av 9) för betyget E - Geometri Hjälpmedel : P apper, penna, sudd, f ormelblad och kalkylator Obs! Minsta slarvfel kan ge underkänt. Nytt försök tidigast om en vecka. En kurva erhålls
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning
Enklare uppgifter, avsedda för skolstadiet
Första häftet 413. Eliminera x, y och z ur systemet x y + y z + z x = a x z + y x + z y =b ( x y + z )( x x y + y )( y z z + z ) =c x (A. H. P.) 414. Den konvexa fyrhörningen ABCD är omskriven kring en
HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng
Kursnummer: Moment: Program: Rättande lärare: Examinator: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTAMEN HF0021 Matematik för basår I TEN2 Tekniskt basår Marina Arakelyan, Jonass Stenholm
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Introduktion och kursens översikt Varför problemlösning? Problemlösning ur historiskt perspektiv Information om kursen på hemsida Flervariabelanalysen
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE vt2000 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E vt 2000 2 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
Historisk tidslinje & matematisk publikation
Historisk tidslinje & matematisk publikation Niels Chr. Overgaard 2016-11-07 N. Chr. Overgaard Historia 2016-11-07 logoonly 1 / 12 Översikt Vi ska idag behandla tre ämnen: Snabb överblick över matematikens
Enklare matematiska uppgifter
Elementa Årgång 30, 947 Årgång 30, 947 Första häftet 500. Om (x 0 ; y 0 ; z 0 ) är en lösning till systemet cos x + cos y + cos z = 0, sin x+sin y+sin z = 0, så äro (x 0 +y 0 ; y 0 +z 0 ; z 0 +x 0 ) och
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Student 016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till
Övningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
M0038M Differentialkalkyl, Lekt 8, H15
M0038M Differentialkalkyl, Lekt 8, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 29 Läsövning Summan av två tal Differensen mellan två tal a + b a b Produkten av två tal
Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.
Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att
NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5
freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast
Enklare matematiska uppgifter
Årgång 31, 1948 Första häftet 1559. Varje lösning till systemet (x a) 2 + (y b) 2 x 2 + y 2 = (x c)2 + (y d) 2 (x 1) 2 + y 2 = (a c) 2 + (b d) 2 är rationell i a, b, c, d. 1560. Om kurvan y = a 0 x 5 +
Möbiusgruppen och icke euklidisk geometri
94 Möbiusgruppen och icke euklidisk geometri Lars Gårding Lunds Universitet Meningen med detta förslag till enskilt arbete är att alla uppgifter U redovisas skriftligt med fulla motiveringar och att alla
Matematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Tentamen Matematisk grundkurs, MAGA60
MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast
Vi människor föds in i en tredimensionell värld som vi accepterar och
Güner Ahmet & Thomas Lingefjärd Symbolen π och tredimensionellt arbete med Geogebra I grundskolans geometriundervisning möter elever oftast tvådimensionella former trots att de har störst vardagserfarenhet
Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av. Fastställandedatum. Styrelsen för utbildningsvetenskap
DNR LIU-2009-00464 1(5) Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av Styrelsen för utbildningsvetenskap Fastställandedatum 2012-01-09 2(5) Huvudområde Matematik
Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Enklare uppgifter, avsedda för skolstadiet.
Årgång 11, 1927 Första häftet 265. Lös ekvationssystemet { x 3 5x + 2y = 0 y 3 + 2x 5y = 0 266. Visa att uttrycket na n+1 (n + 1)a n + 1 där a och n äro positiva hela tal och a > 2, alltid innehåller en
Enklare matematiska uppgifter
Elementa Årgång 6, 1943 Årgång 6, 1943 Första häftet 161 I en tresidig pyramid äro sidokanterna l cm, baskanterna a, b och c cm I topphörnet är kantvinklarnas summa 360 Visa, att a + b + c = 8l 16 Visa,
Trigonometri. Joakim Östlund Patrik Lindegrén 28 oktober 2003
Trigonometri Joakim Östlund Patrik Lindegrén 28 oktober 2003 1 Sammanfattning Trigonometrin är en mycket intressant och användbar del av matematiken. Med hjälp av dom samband och relationer som förklaras
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Problemlösning i undervisning Vad menas med rika problem? Heuristisk metod: geometriskt ort Problemlösning The question, what is problem solving,
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Det är lätt att hitta datorprogram som ritar kurvor av enkla funktionsuttryck,
Güner Ahmet & Thomas Lingefjärd Parametriska kurvor Geogebra är ett så kallad dynamiskt geometriprogram och uppfattas kanske som ett program för främst geometri. Men Geogebra kan användas för alla delområden
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Vektorgeometri och funktionslära
Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
Enklare matematiska uppgifter
Årgång 34, 1951 Första häftet 1739. I varje triangel är abc : r a 3 : r a + b 3 : r b + c 3 : r c. 1740. I varje triangel är (1 + cos A) 2 (1 cos A) (1 + cos A). 1741. Sidorna AC och BC i triangeln ABC
Poincarés modell för den hyperboliska geometrin
Poincarés modell för den hyperboliska geometrin Niklas Palmberg, matrikelnr 23604 Uppsats för kandidatexamen i naturvetenskaper Matematiska institutionen Åbo Akademi 12.2.2001 Innehåll 1 Presentation av
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN
freeleaks NpMaB vt000 1() Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 000 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B hör
Enklare matematiska uppgifter
Årgång 17, 1934 Första häftet 654. Lös ekvationen sin x + cos x + tan x + cot x = 2. (S. B.) 655. Tre av rötterna till ekvationen x 4 + ax 2 + bx + c = 0 äro x 1, x 2 och x 3. Beräkna x 2 1 + x2 2 + x2
Läsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson
Inociell Lösningsmanual Endimensionell analys E. Oscar A. Nilsson January 31, 018 Dan Brown "The path of light is laid, a secret test..." Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual