STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

Storlek: px
Starta visningen från sidan:

Download "STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år."

Transkript

1 STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar till pensionen! 2) Skriv ett program som läser in två heltal och skriver ut summan, differensen, produkten och kvoten (vid heltalsdivision) mellan dessa Tal 1: 11 Tal 2: = =8 11*3=33 11/3=3 3) Skriv ett program som tar emot en temperatur i Celsius och anger temperaturen i Fahrenheit, angiven med en decimal. Följande samband gäller: F = 1.8 C Ange temperaturen i C: 20.0 Det motsvarar 68.0 F 4) Skriv ett program som räknar ut hustomtens storlek. Tomten är rektangulär. Ange längden: 120 Ange bredden: 55 Tomten har arean 6600 kvadratmeter. 5) Skriv ett program som efterfrågar termperaturen. Om det är minusgrader skall texten Varning för frost. Rattmuff på! skrivas ut. I annat fall skrivs texten Varmt å skönt! Vad visar termometern? -3 Varning för frost. Rattmuff på! 6) Betygsättningen på en tentamen framgår av vidstående tabell. Poäng Betyg 0-7 U Skriv ett program som tar emot en poängsumma och skriver ut betyget. Ange poängsumman: 12 Då blir betyget 4. 7) En bank tillämpar följande räntesats på ett sparkonto.

2 För den del av beloppet som understiger kr är räntan 2.00% För den del av beloppet som ligger mellan och är räntan 2.50% För den del av beloppet som överstiger är räntan 4.00% Skriv ett program som räknar ut årsräntan om man har k kr på kontot under hela året. Ange kapitalet: Då blir räntan 2800 kr. 8) Niclas arbetar från 8:00 till 17:00, med lunch mellan 12:00 och 13:00. Skriv ett program som läser in ett klockslag och talar om var Niclas håller hus! Ange klockslag: Niclas har gått för dagen! Programmet skall svara med något av följande meddelanden: Niclas har inte kommit ännu! Niclas jobbar! Niclas är på lunch! Niclas har gått för dagen!. 9) Skriv ett program som läser in ett årtal och talar om huruvida det året är ett skottår eller ej. Regel 1: Ett år är ett skottår om årtalet är jämnt delbart med 4. Regel 2 är ett undantag från regel 1: Om årtalet är jämnt delbart med 100 är det inte ett skottår. Regel 3 är ett undantag från regel 2: Om årtalet är jämnt delbart med 400 är det trots allt ett skottår. Ange ett årtal: 2100 År 2100 är inte ett skottår. 10) Skriv ett program som efterfrågar ett födelsedatum och skriver ut i vilken månad personen är född. Ange födelsedatum: Aha, du fyller år i november! 11) Skriv ett program som frågar efter ett heltal n 0 och beräknar n!=1 2 3 n Ange n: 5 5! = ) Skriv ett program som tar emot n talpar och skriver ut medelvärdet av de största talen i varje par. Antal par: 3 Par 1 Tal 1: 42 Par 1 Tal 2: 10 Par 2 Tal 1: 40 Par 2 Tal 2: 18 Par 3 Tal 1: 25

3 Par 3 Tal 2: 41 Medel av de största är ) Skriv ett program som läser en rad med tal och skriver ut det största. Mata in en rad med tal: Det största talet är ) Skriv ett program som skriver ut multiplikationstabellen på 10 rader ) Fibonaccis talföljd börjar som 1, 1, 2, 3, 5, 8, 13, Varje tal fås alltså som summan av de två föregående. Skriv ett program som beräknar ett efterfrågat fibonaccital. Ordningsnumret på fibonaccitalet: 7 Talet är 13 16) En annan känd talföljd är följande: Man startar med ett positivt heltal. Man får ett nytt tal genom följande regler: Om talet är udda skall talet multipliceras med 3 och därefter adderas 1. Om talet är jämnt skall talet divideras med 2. Skriv ett program som tar emot ett startvärde och skriver ut talserien tills talet är 1 (detta inträffar förr eller senare). Ange startvärdet: 6 Talserien blir ) Läs in 10 domarsiffror (tal mellan 1.0 och 6.0 med gränserna inkluderade) i konståkning. Beräkna och skriv ut åkarens poäng, som beräknas som medelvärdet av de åtta som är kvar då det största och det minsta tagits bort. Ange domarsiffrorna: Detta ger poängen ) Ett tal a är ett primtal om de enda positiva tal som är jämnt delbara med a är talen 1 och a. Skriv ett program som avgör om ett tal är ett primtal. Ange talet: 15 Ej primtal! 19) Skriv ett program som tar reda på vilka heltal (<30000) som är sådana att de ger resten 1 vid division med 2, 3, 4, 5 och 6 men resten 0 vid division med 7. Programmet skall skriva ut samtliga sådana tal. 20) Burrleken går till på följande sätt. Man bestämmer ett burrtal mellan 2 och 9. Talen 1 t o m 100 skrivs ut, i tur och ordning, men de tal som är jämnt delbara med burrtalet eller innehåller burrtalet som en siffra ersätts med ordet burr.

4 Skriv ett program som leker burrleken. Talen skall skrivas ut med tio tal per rad. Varje tal skall ta upp fyra positioner (se utskriften nedan). Ange burrtalet: burr 4 5 burr 7 8 burr burr burr ) Skriv programmet Gissa ett tal. Datorn tänker på ett tal genom att slumpa ett tal i intervallet [1..100]. Du skall försöka gissa det hemliga talet. Datorn svarar på dina gissningar med Större, Mindre eller Rätt! Jag tänker nu på ett tal i intervallet [1..100]. Gissa talet! 37 Större! Gissa talet! 65 Mindre! Gissa talet! 52 Större! Gissa talet! 56 Rätt! Du gissade rätt på 4 gissningar. 22) Skriv ett program som summerar två bråk, och skriver ut svaret, förkortat så långt som möjligt. Täljare 1: 13 Nämnare 1: 4 Täljare 2: 23 Nämnare 2: 10 13/4 + 23/10 = 111/20 23) Piprökande Sven har alltid två tändsticksaskar i fickan. Varje gång pipan slocknar tar han på måfå upp en av dessa askar, tar ut en tändsticka och tänder pipan. Så småningom blir en av askarna tom och frågan är då hur många stickor det finns kvar i den andra asken. Skriv ett program som frågar efter antalet stickor i askarna från början (<100) och som sedan simulerar Svens beteende gånger. Programmet skall till sist skriva ut medelvärdet av antalet stickor i den icke-tomma asken efter samtliga försök. Antal stickor i ask 1: 25 Antal stickor i ask 2: 20 Antal kvar i medel 6.74 Resultatet skall ges med två decimaler. Programmet skall vid olika körningar kunna ge olika svar med samma indata. 24) Skriv ett program som simulerar 1000 kastserier med en vanlig tärning och räknar antalet kast som behövs för att passera den sammanlagda summan 100. Programmet skall presentera längden av den kortaste respektive den längsta serien. Olika körningar av programmet skall kunna ge olika resultat. Den längsta serien var på 39 kast. Den kortaste serien var på 23 kast

5 25) Den matematiska konstanten e kan beräknas med hjälp av den oändliga serien e = ! 2! 3! 4! där n! beräknas som produkten av alla tal från 1 till n. Ju fler termer som tas med i beräkningen, desto noggrannare värde. Skriv ett program som frågar efter antalet termer (<15) och beräknar den ovannämnda summan som ett närmevärde till e. Antal termer: 10 Ett närmevärde till e är

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 4 december 2015 kl

Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 4 december 2015 kl Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 4 december 2015 kl. 8.15-13.15 Ansvarig lärare: Maria Lindström 054-7002146, Kristina Wallin 054-7002316 På omslagsbladet står att ni måste använda

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

EXTRA UPPGIFTER I C++ PROGRAMMERING-A

EXTRA UPPGIFTER I C++ PROGRAMMERING-A EXTRA UPPGIFTER I C++ PROGRAMMERING-A Uppgifterna är ej sorterade efter svårighetsgrad 1. Gör ett program som kan beräkna arean och omkretsen av en cirkel om användaren (du) matar in cirkelns radie. Skapa

Läs mer

Vilka formler ska stå i cellerna D2 till D5? Hur får man tal skrivna med två decimaler?

Vilka formler ska stå i cellerna D2 till D5? Hur får man tal skrivna med två decimaler? Uppsala universitet Matematiska institutionen Anna-Lisa Dyrelius Skriva formler i Excel Ex ) Telefonräkning Fast avgift kr 5 Avgift per markering 0, Antal markeringar 000 Total kostnad kr =B+B*B Ex ) Beräkna

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4. Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två

Läs mer

Kapitel 2: De hela talen

Kapitel 2: De hela talen Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio

a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från

Läs mer

Tentamen består av 26 uppgifter fördelade på fem olika ämnesområden. Del 2 5 ger maximalt 11 poäng/del.

Tentamen består av 26 uppgifter fördelade på fem olika ämnesområden. Del 2 5 ger maximalt 11 poäng/del. Skolmatematiktenta LPGG05 Kreativ Matematik 23 augusti 2016 8.15 13.15 Hjälpmedel: - Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283 På omslagsbladet står att ni måste använda ett blad per

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

Delbarhet och primtal

Delbarhet och primtal Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 65, 982 Årgång 65, 982 Första häftet 3260. På var och en av rutorna på ett schackbräde (med 8 rutor) ligger en papperslapp. Kan man flytta papperslapparna så att samtliga kommer att ligga

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

b) Hur stor andel av den första månadens återbetalning utgör räntekostnad?

b) Hur stor andel av den första månadens återbetalning utgör räntekostnad? Del III 15. sin v = 0,5 a) Bestäm värdet av: 2 sin v (1/0/0) b) Bestäm värdet av: sin 2v 16. I ett reklamblad fanns följande information. I återbetalning ingår amortering, ränta m.m. Renée funderar på

Läs mer

UPPGIFT 1 V75 FIGUR 1.

UPPGIFT 1 V75 FIGUR 1. UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp

Läs mer

TAL OCH RÄKNING HELTAL

TAL OCH RÄKNING HELTAL 1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3

UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3 UPPGIFT 1 EURO Harry ska åka till Portugal och behöver växla till sig 500 Euro från svenska kronor. När han kommer tillbaka från Portugal kommer han att ha 200 Euro över som han vill växla tillbaka till

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

Känguru 2019 Student gymnasiet

Känguru 2019 Student gymnasiet sida 0 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Kod (läraren fyller): Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt

Läs mer

Programexempel: tärningsspel. Programexempel: tärningsspel Kasta tärning tills etta. Klassen Die Specifikation. Slumptalsgenerator Klassen Random

Programexempel: tärningsspel. Programexempel: tärningsspel Kasta tärning tills etta. Klassen Die Specifikation. Slumptalsgenerator Klassen Random Kasta tärning tills etta Skriv ett program som låter en användare spela detta tärningsspel: Spelaren gör första tärningsslaget och får samma poäng som tärningen visar. Sedan fortsätter spelet enligt följande

Läs mer

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller = n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

Lite om räkning med rationella uttryck, 23/10

Lite om räkning med rationella uttryck, 23/10 Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen

Läs mer

REPETITION 3 A. en femma eller en sexa?

REPETITION 3 A. en femma eller en sexa? REPETITION 3 A 1 Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sexa? 2 Eleverna i klass 8C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

Kompilera och exekvera Javakod

Kompilera och exekvera Javakod Kompilera och exekvera Javakod Förberedelser För att kunna göra dessa övningar måste du ha installerat Java Development Kit, JDK, som bland annat innehåller Java kompilatorn, javac. Hur du installerar

Läs mer

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km Test, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också

Läs mer

Anteckningar propp SMT2

Anteckningar propp SMT2 Anteckningar propp SMT2 Lars Åström 11 december 2015 Under proppen ska följande gås igenom: Induktion - dominoeffekten Falluppdelning Extremprincipen Invarians Andra knep som används Induktion Vi använder

Läs mer

Student. a: 5 b: 6 c: 7 d: 8 e: 3

Student. a: 5 b: 6 c: 7 d: 8 e: 3 Student Avdelning. Trepoängsproblem. Talen 3 och 4 samt två okända tal skrivs in i de fyra rutorna. Summan av talen i raderna blir 5 och 0 och summan av talen i den ena kolumnen blir 9. Vilket är det största

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt

Läs mer

Ansvarig lärare: Maria Lindström eller , Camilla Sjölander Nordin eller

Ansvarig lärare: Maria Lindström eller , Camilla Sjölander Nordin eller Skolmatematiktenta LPGG05 Kreativ Matematik 21 april 2016 8.15 13.15 Hjälpmedel: - Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283, Camilla Sjölander Nordin 054-7002313 eller 070-2907171

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

C++ Slumptalsfunktioner + switch-satsen

C++ Slumptalsfunktioner + switch-satsen C++ Slumptalsfunktioner + switch-satsen Veckans avsnitt består av ett antal lite udda funktioner man kan ha nytta av när man skriver program. Det är en slumptalsgenerator och lite annat smått och gott.

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

2-2: Talförståelse, faktoruppdelning Namn:

2-2: Talförståelse, faktoruppdelning Namn: 2-2: Talförståelse, faktoruppdelning Namn: Inledning I det här delmomentet skall du öva upp din talförståelse, dvs hur tal är uppbyggda. Hur då uppbyggda? frågar du säkert. Man startar väl med talet ett

Läs mer

NMCC Semifinal

NMCC Semifinal Semifinal Sigma 8 2016/2017 Uppgift 1 Hur många procent Material: Inget Medelvärdet av ett matematiktest med 80 deltagare var 80 poäng. Medelvärdet för flickorna var 83 poäng och medelvärdet för pojkarna

Läs mer

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period.

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period. 2 Resultat Innehållsförteckning Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period Screeningmoment Talserier Jämnt - udda Tal och obekanta

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

Repetera snabbt vad du lärde dig förra veckan. Du är nu redo att kasta dig in i nästa fas, teorin om villkor.

Repetera snabbt vad du lärde dig förra veckan. Du är nu redo att kasta dig in i nästa fas, teorin om villkor. Lektion C2 Villkor Repetera snabbt vad du lärde dig förra veckan. Du är nu redo att kasta dig in i nästa fas, teorin om villkor. Du gör ofta val i livet, och valet du gör får olika konsekvenser och följder.

Läs mer

PROGRAMMERING-JAVA TENTAMINA

PROGRAMMERING-JAVA TENTAMINA PROGRAMMERING-JAVA TENTAMINA Nicolina Månsson 2010-08-16 (Kontaktperson Nicolina Månsson, tel. 0768-530640) Tentamensinstruktioner Poängsättning Hela tentamen omfattar 42 poäng. Poäng för varje uppgift

Läs mer

Manual. till. Cantor 2000. Madison Medri

Manual. till. Cantor 2000. Madison Medri Manual till Cantor 2000 Madison Medri 2 InnehÄllsfÅrteckning Installation Inledning Pedagogisk bakgrund Anpassning fär funktionshindrade Arbeta med Cantor 2000 InstÅllningar Namn Ljud Tangentbord Resultat

Läs mer

Programmeringsolympiaden 2011 Kvalificering

Programmeringsolympiaden 2011 Kvalificering Programmeringsolympiaden 2011 Kvalificering TÄVLINGSREGLER Tävlingen äger rum på ett av skolan bestämt datum under sex timmar effektiv tid. Tävlingen består av sex uppgifter som samtliga ska lösas genom

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

8-4 Ekvationer. Namn:..

8-4 Ekvationer. Namn:.. 8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar

Läs mer

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om kombinatorik Mikael Hindgren 24 september 2018 Vad är kombinatorik? Huvudfråga: På hur många sätt kan en viss operation utföras? Några exempel: Hur många gånger

Läs mer

Blandat. Föreläsning 5

Blandat. Föreläsning 5 Blandat Föreläsning 5 Blandat switch break, continue, goto Kommentarer Problemlösning switch int weekday; printf("mata in veckodagnummer 1-7: "); scanf("%d", &weekday); switch(weekday) { case 1: printf("monday\n");

Läs mer

L04.1 Marodören. Inledning. Mål. Genomförande. Uppgift 1 Hello World. Moment I

L04.1 Marodören. Inledning. Mål. Genomförande. Uppgift 1 Hello World. Moment I L04.1 Marodören Inledning Genom att öva sig på de grundläggande koncepten i JavaScript öppnas vägen allteftersom till de mer avancerade funktionerna. Man måste lära sig krypa innan man kan gå, även i JavaScript!

Läs mer

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4

DOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4 Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000

Läs mer

Programmering Grundkurs Laboration 1

Programmering Grundkurs Laboration 1 Programmering Grundkurs Laboration 1 Till kursen Programmering Grundkurs hör fyra obligatoriska laborationer. Detta är Laboration 1 given i period 1, HT 2010 vid KTH STH. Mål: I början av en programmeringskurs

Läs mer

Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,

Läs mer

Uppgifter att lösa 1,1,2,3,5,8,13,21...

Uppgifter att lösa 1,1,2,3,5,8,13,21... Detta arbetspass innehåller loopar, for, while och do. Du kan läsa mer om det på sidorna 61 69 och 102 105 Läs också avsnitt 4.7 på sidan 106 och 4.10 på sidan 109 Uppgifter att lösa Uppgift 1. Fibonacci

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Student sid 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

med huvudräkning fortsätter du med papper och penna eller miniräknare. Kontrollera sedan dina svar i facit och beräkna poängsumman.

med huvudräkning fortsätter du med papper och penna eller miniräknare. Kontrollera sedan dina svar i facit och beräkna poängsumman. PEDER CLAESSON Uppslaget handlar denna gång om huvudräkningsknep. Peder Claesson har valt att utgå från två huvudräkningsblad Testa dig själv I och II. Testa dig själv I är enkelt och kan ges till eleverna

Läs mer

OBJEKTORIENTERAD PROGRAMVARUUTVECKLING

OBJEKTORIENTERAD PROGRAMVARUUTVECKLING Institutionen för Data- och informationsteknik TENTAMEN OBJEKTORIENTERAD PROGRAMVARUUTVECKLING OBS! Det kan finnas kurser med samma eller liknande namn på olika utbildningslinjer. Denna tentamen gäller

Läs mer

1 Talteori. Det här kapitlet inleder vi med att ta

1 Talteori. Det här kapitlet inleder vi med att ta 1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

TALSYSTEMET. Syfte Lgr 11

TALSYSTEMET. Syfte Lgr 11 TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,

Läs mer

Övningsuppgifter till föreläsning 2 Variabler och uttryck

Övningsuppgifter till föreläsning 2 Variabler och uttryck Sid 1 (5) Övningsuppgifter till föreläsning 2 Variabler och uttryck Syfte Syftet med övningsuppgifterna är att träna på: Aritmetik, variabler, tilldelning, scanf och printf Generellt Diskutera gärna uppgifterna

Läs mer

KW ht-17. Övningsuppgifter

KW ht-17. Övningsuppgifter Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

matematik Programmering SANOMA UTBILDNING Daniel Dufåker Attila Szabo Niclas Larson

matematik Programmering SANOMA UTBILDNING Daniel Dufåker Attila Szabo Niclas Larson matematik Daniel Dufåker Attila Szabo Niclas Larson Programmering SANOMA UTBILDNING I Innehåll Aktivitet Kurs Beskrivning Gissa ett tal 1c I den här aktiviteten får eleverna via gissningar försöka finna

Läs mer

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram Mål Lab 2: Underprogram Följande laboration introducerar underprogram; procedurer, funktioner och operatorer. I denna laboration kommer du att lära dig: Hur man skriver underprogram och hur dessa anropas.

Läs mer

Övningsuppgift 2 Datalogi I 2I1027/2I1035/2I1046

Övningsuppgift 2 Datalogi I 2I1027/2I1035/2I1046 Övningsuppgift 2 Datalogi I 2I1027/2I1035/2I1046 Beatrice Åkerblom 14 oktober 2003 Övningarnas innehåll Övningsuppgifterna i detta dokument är lämpliga att göra före lektion 3, det vill säga att alla uppgifterna

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

FACIT. Kapitel 1. Version

FACIT. Kapitel 1. Version FACIT Kapitel Vi repeterar talen 0 till 0 000. Titta på bilden. Skriv de tal som fattas. Räkna. är ett fyrsiffrigt tal a. 000 + 00 + 0 + T H T E 0 0 000 Tal skrivs med siffror. Siffrorna är 0,,,,,,,,,

Läs mer

TDP Regler

TDP Regler Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt

Läs mer

PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 1 Tal och räkning Kapitel : 2 Stort, smått och enheter. Elevens namn: Datum för prov

PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 1 Tal och räkning Kapitel : 2 Stort, smått och enheter. Elevens namn: Datum för prov PLANERING MATEMATIK - ÅK 7 HÄLLEBERGSSKOLAN Bok: X (fjärde upplagan) Kapitel : 1 Tal och räkning Kapitel : 2 Stort, smått och enheter Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor

Läs mer

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012)

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) T4.4-T4.7, 4.3, 4.7,T4.13-T4.14 S: Jag har svårt för visa-uppgifter. i kapitel 4 Talteori. Kan du

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1 Matematik klass 3 Vårterminen Anneli Weiland Matematik åk 3 VT 1 Minns du från höstens bok? Räkna. Se upp med likhetstecknet, var finns det? 17-5= 16+ =19 18-2= 15-4= 19=12+ 19-3= 15+4= 20-9= 18=20- +16=20

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

Data, typ, selektion, iteration

Data, typ, selektion, iteration Data, typ, selektion, iteration En programmeringkurs på halvfart IDT, MDH ttp://www.negative-g.com/nolimits/no%20limits%20defunct%20coasters.htm 1 Dagens agenda Talrepresentation Typkonvertering Sekvens

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 8906 BESKRIVNING AV GODA SVAR Examensämnets censorsmöte har godkänt följande beskrivningar av goda svar Av en god prestation framgår det hur examinanden har kommit fram till

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 Institutionen för matematik, KTH Mats Boij Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 1. Ange kvot och rest vid division av 5BE med 1F där båda talen är angivna i hexadecimal

Läs mer

DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7

DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7 Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift

Läs mer

Arbeta vidare med aritmetik 2018

Arbeta vidare med aritmetik 2018 Arbeta vidare med aritmetik 2018 I det här materialet har vi samlat problem inom aritmetik från flera olika tävlingsklasser, från Ecolier till Student. Årtal Varje år förekommer det problem som utgår från

Läs mer

Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1

Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 22 augusti 2016 kl. 8.15-13.15 Ansvarig lärare: Maria Lindström 054-7002146, 070-5699283 På omslagsbladet står att ni måste använda ett blad per

Läs mer

FACIT. Kapitel 1. Version

FACIT. Kapitel 1. Version FACIT Kapitel Version -0- Version -0- Vi repeterar talen 0 till 0 000 Öva begreppen.. Titta på bilden. Skriv de tal som fattas. Räkn är ett fyrsiffrigt tal 000 + 00 + 0 + 0 0 000 Tal skrivs med siffror.

Läs mer

Följande, ur problemsynpunkt enkla uppgifter, är till för att nöta in dagens teori.

Följande, ur problemsynpunkt enkla uppgifter, är till för att nöta in dagens teori. Problem Nivå 1 Följande, ur problemsynpunkt enkla uppgifter, är till för att nöta in dagens teori. Problem 1 Skriv ett program som tar reda på hur många termer man måste ta med i serien för att summa ska

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Arbetsblad 5:1. Tolka diagram. 1 a) Vilket var kilopriset år 2003? 2 a) Vad kallas den här typen av

Arbetsblad 5:1. Tolka diagram. 1 a) Vilket var kilopriset år 2003? 2 a) Vad kallas den här typen av Arbetsblad 5:1 Tolka diagram Besvara frågorna med hjälp av diagrammen 1 a) Vilket var kilopriset år 2003? b) Hur mycket ökade priset mellan 1991 och 2001? c) Mellan vilka år var ökningen st? Pris (kr/kg)

Läs mer