Analys och simulering av en cerebellär krets
|
|
- Malin Sandström
- för 8 år sedan
- Visningar:
Transkript
1 Analys och simulering av en cerebellär krets Populärvetenskaplig sammanfattnng Cerebellum, eller lillhjärnan, är en del av hjärnan som aktivt deltar i utförandet och koordineringen av rörelser. Genom att bidra till regleringen av en rörelse som kommenderas från en högre nivå i hjärnan, exempelvis vid en viljestyrd rörelse, ser lillhjärnan till att rörelsen kan utföras på ett välkoordinerat sätt [5]. Utöver detta finns det dessutom även indikationer på att lillhjärnan aktivt deltar i regleringen av flertalet kognitiva funktioner i hjärnan [6]. Vad som också är speciellt för lillhjärnan är dess unika förmåga att genom inlärning bättre bidra till rörelseregleringen om regleringen ursprungligen ej är tillräckligt god. Historiskt sett har dock det exakta förfarandet som lillhjärnan utför regleringen och inlärningen på varit okänt av flera anledningar. Svårigheter med att göra detaljerade datainsamlingar från nervceller under naturliga förhållanden har exempelvis krävt att insamlingen istället sker under strikt kontrollerade förhållanden, där möjligtvis värdefull information kan gås till spillo. Därutöver har det exakta utseendet på den interna kretsstrukturen i lillhjärnan ej heller varit fullständigt känd. Detta har lett till att det idag existerar en stor mängd förslag, baserade på experimentella fynd och matematisk analys, till vad den exakta funktionen hos lillhjärnan är (se exempelvis [3] och [11]). Figuren nedan visar ett exempel på en förenklad kretsstruktur som lillhjärnan kan vara en del av. e C 1/s uc + y P + - Figur 1: Figuren visar en förenklad reglerstruktur för hur lillhjärnan, C, kan bidra till reglering av processen P. Målet är att få P att följa referenssignalen u c, mätt genom avvikelsen e = y u c där y är utsignalen från P. Lillhjärnan tar emot u c och dess integral u c 1/s och ställer ut en signal som går vidare till P. Avvikelsen e används för inlärning av C för att bättre kunna reglera processen. Idag sker en stor del av tolkningen av lillhjärnans funktionalitet genom införandet av koncept ursprungligen utvecklade inom reglertekniken, vilket har lett till möjligheterna att utveckla komplexa matematiska modeller av lillhjärnan, men som ändå är solitt förankrade i biologin. Dock är skillnaderna mellan klassiska, rent tekniska reglerproblem och biologiska reglerproblem för rörel- 1
2 ser stora. Bland ett antal skillnader kan nämnas att man i den klassiska reglertekniken ofta kan förutsätta att eventuellt förekommande återkopplingskretsar har en kort svarstid, vilket man sällan kan förutsätta för biologiska rörelsereglersystem. Långa svarstider i en återkopplingskrets kan leda till stabilitetsproblem i regleringen av en process, eftersom regulatorn tvingas agera på processinformation, som när den når regulatorn, kan vara inaktuell Probability density functions ISI histogram Gamma Lognormal Distribution functions ISI length [msec] ISI length [msec] Figur 2: Vänster: resulterande histogram och anpassade täthetsfunktioner för mätdata från cerebellärt interneuron. Höger: empirisk fördelningsfunktion för mätdata och anpassade fördelningsfunktioner. Inledningsvis i det här arbetet har insamlad mätdata från ett antal cerebellära nervcellstyper betraktats (för experimentbeskrivning, se [4], [8], [9], [1] och [2]), med målet att ge en grundläggande statistisk karakterisering av deras spontanaktivitet. Stationära segment i dataserien isolerades och studerades närmare. Fördelningen för spikintervallstider skattades med ett vanligt histogram, kompletterat med den empiriska fördelningsfunktionen, eftersom histogrammet ej är väntevärdesriktigt. Då de flesta histogram över spikintervallstider från olika nervcellstyper uppvisar en skev form anpassades till varje mätserie en gammafördeling och en lognormalfördelning, två vanliga skeva fördelningar. Huruvida statistiskt signifikant skillnad mellan mätserien och de anpassade fördelningarna kunde påvisas testades med ett Kolmogorov- Smirnovtest. För att ge en mer fullständig karakterisering av spontanaktiviteten undersöktes även beroendet mellan i mätserien intilliggande spiktidsintervall med en skattning av det betingade väntevärdet av spiktidsintervall i, τ i, betingat föregående spiktidsintervall τ i 1 : E [τ i τ i 1 ]. I de fall där inget beroende kan påvisas innebär det att de individuella spiktidsintervallen är dragna oberoende av varandra ur den underliggande fördelningen. Detta innebär att mätserien kan betraktas som realiseringen av en statistisk förnyelseprocess [7]. I de fall där beroende finns måste mer komplexa modeller tas till för att till fullo 2
3 7 1-order conditional mean 55 Short-term average 6 5 Conditional ISI length [msec] Time [msec] Previous ISI length [msec] group of 1 intervals Figur 3: Vänster: tjocka linjen indikerar det skattade betingade väntevärdet för längden av spiktidsintervallet för intilliggande spiktidsintervall. De streckade linjerna utgör konfidensintervall med konfidensgrad.95. Om skattningen ligger konsekvent innanför konfidensintervallet kan inget beroende påvisas och mätdatan kan betraktas som realiseringen av en förnyelseprocess, vilket är fallet här. Höger: Tjocka linjen indikerar att medelvärdet för konsekutiva grupper av 1 spiktidsintervall ligger i stort samlat innanför konfidensintervallen (streckade linjer). Därmed kan mätserien betraktas som stationär. kunna beskriva mätseriens beteende, och resultatet från analysen här kan tjäna som grund för sådana modeller. I figur 2 och figur 3 visas resultatet av denna analys för mätdata från ett cerebellärt interneuron. Kolmogorov-Smirnovtestet indikerade att fördelningen av spiktidsintervall rimligen kan förklaras med en lognormalfördelning, och vänstra bilden i figur 3 indikerar att mätserien kan ses som realiseringen av en förnyelseprocess eftersom inget beroende mellan intilliggande spiktidsintervall kan påvisas. Det ska dock påpekas att för flertalet undersökta nervcellstyper kunde inte sådana slutsatser dras, utan där behövs mer komplexa modeller. Vidare undersöktes även, genom simulering, en möjlig struktur för cerebellärt bidrag i regleringen av den vestibulo-okulära reflexen (VOR), [1]. Denna reflex, som är en av flera reflexer kopplade till synen, ser till att kompensera små huvudrörelser med motsvarande och motsatta ögonrörelser, för att på så sätt bibehålla en stabil bild på näthinnan. Avkänningen av huvudrörelser görs av balansorganen, vars signal, efter att ha passerat genom hjärnstammen, kopplas till de nervceller som driver aktiviteten i de muskler som styr ögonglobens rörelser. Vidare går de huvudrörelserelaterade signalerna även till lillhjärnan, där de behandlas. Slutligen används utsignalen från lillhjärnan för att modulera aktiviteten i hjärnstammen, och på så vis får den även påverkan på ögonrörelsen. I de fall där den kompenserade ögonrörelsen ej fullt ut motsvarar huvudrörelsen uppstår en glidning av näthinnebilden. Denna glidning, 3
4 som tjänar som fel- eller inlärningssignal, vidarebefordras till lillhjärnan genom klättertrådar. Genom ett upprepat utförande av rörelsen kommer lillhjärnan tack vare träningssignalen att adapteras till att bättre bidra till regleringen av ögonrörelsen, för att till slut kunna fullständigt kompensera för huvudrörelserna. Med kännedom om de långa svarstiderna hos återkopplingskretsarna i hjärnan måste således lillhjärnan kunna aktivt bidra till regleringen genom framkoppling. I det här arbetet har en simulering gjorts där en population av cerebellära nervceller mottar huvudrörelserelaterade signaler (huvudhastighet och huvudposition). Den cerebellära utsignalen utgjordes sedan av deras sammanvägda aktivitet, och adderades till insignalen till en linjär modell av ögonmuskulaturen och ögondynamiken. Utsignalen från denna modell jämfördes med huvudets hastighet, och skillnaden däremellan användes för att modifiera de relativa vikterna av de individuella nervcellerna i simuleringen. Resultatet för den simulerade ögonhastigheten före och efter träning visas nedan i figur 4 och figur 5. Det syns tydligt hur inlärningen gör det möjligt för lillhjärnan att bättre reglera ögonrörelsen för att kompensera för huvudrörelsen, även om resultatet inte är perfekt. Det ska nämnas att totala antalet nervceller som bidrar till regleringen i verkligheten är mångfaldigt fler än som utnyttjats här (248 stycken), vilket till en viss del skulle kunna förklara det brusiga utseendet hos ögats utsignal. Output signal 1 5 Plant output and reference Error signal Purkinje cell output Granule cell outputs Figur 4: Simuleringsresultat före inlärning. Översta figuren visar ögonhastighet (blå linje) och huvudhastighet (röd linje). Det finns en stor skilnad mellan dem, vilket indikeras av figuren nedanför, som visar felsignalen som skillnaden mellan signalerna i översta figuren. Tredje figuren visar lillhjärnans utsignal, medan nedersta figuren visar aktiviteten hos de individuella nervcellerna som ingick i simuleringen. Totala antalet nervceller i simuleringen var
5 Plant output and reference Output signal Error signal Purkinje cell output Granule cell outputs Figur 5: Simuleringsresultat efter inlärning. I översta figuren är det nu tydligt att efter den initiala uppgången följer ögonhastigheten huvudhastigheten betydligt bättre än i föregående fall. Detta syns även i figuren direkt nedanför, där felsignalen befinner sig närmare noll-strecket än i föregående fall. Referenser [1] Vestibulo-ocular reflex. wiki/vestibulo-ocular_reflex, Last checked: June 24th 21. [2] F. Bengtsson and H. Jörntell. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proceedings of the National Academy of Sciences of the United States of America, Vol. 16: , 29. [3] P. Dean, J. Porrill, C.-F. Ekerot, and H. Jörntell. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature Reviews Neuroscience, Vol. 11:3 44, 21. [4] C.-F. Ekerot and H. Jörntell. Parallel fibre receptive fields of purkinje cells and interneurons are climbing fibre-specific. European Journal of Neuroscience, 13(7): , 21. [5] M. Ito. Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, Vol. 78:272 33, 26. [6] M. Ito. Control of mental activities by internal models in the cerebellum. Nature reviews. Neuroscience, Vol. 9:34 313, 28. 5
6 [7] D. H. Johnson. Point process models of single-neuron discharges. Journal of Computational Neuroscience, Vol. 3: , [8] H. Jörntell and C.-F. Ekerot. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar purkinje cells and their afferent interneurons. Neuron, Vol. 34:797 86, 22. [9] H. Jörntell and C.-F. Ekerot. Receptive Field Plasticity Profoundly Alters the Cutaneous Parallel Fiber Synaptic Input to Cerebellar Interneurons In Vivo. J. Neurosci., Vol. 23: , 23. [1] H. Jörntell and C.-F. Ekerot. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. Journal of Neuroscience, Vol. 26:24 25, 26. [11] R.C. Miall, D.J. Weir, D.M. Wolpert, and J.F. Stein. Is the cerebellum a smith predictor? Journal of Motor Behavior, Vol. 25:
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Välkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Diskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ
Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll
Välkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Neurovetenskap 30/08/2013. Kognitiv neurovetenskap. Lober. Olika färg, olika vävnadsstruktur. Hjärnbarken
729G01 Kognitionsvetenskaplig introduktionskurs: Kognitiv neurovetenskap och kognitiv modellering Rita Kovordanyi, Institutionen för datavetenskap (IDA) rita.kovordanyi@liu.se Kognitiv neurovetenskap Baseras
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Blandade problem från elektro- och datateknik
Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna
Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
En introduktion till och första övning i @Risk5 for Excel
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab
Stokastiska processer och simulering I 24 augusti
STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016
Regressionsmodellering inom sjukförsäkring
Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.
TDDB96 Projekt: Object priming med visuell stimuli
TDDB96 Projekt: Object priming med visuell stimuli Daniel Johansson danjo133@student.liu.se Rickard Jonsson ricjo400@student.liu.se 1. Sammanfattning Vad vi ville komma fram till i denna studie var huruvida
TSIU61: Reglerteknik. Sammanfattning av föreläsning 8 (2/2) Andra reglerstrukturer. ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från störsignalen
TSIU61 Föreläsning 9 HT1 2016 1 / 26 Innehåll föreläsning 9 TSIU61: Reglerteknik Föreläsning 9 Andra reglerstrukturer hendeby@isy.liu.se ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från referenssignalen
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Analys av egen tidsserie
Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta
Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):
EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer
träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula
Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system
Industriell reglerteknik: Föreläsning 6
Föreläsningar 1 / 15 Industriell reglerteknik: Föreläsning 6 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars
TSRT91 Reglerteknik: Föreläsning 9
TSRT91 Reglerteknik: Föreläsning 9 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 20 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Simulering och reglerteknik för kemister
Simulering och reglerteknik för kemister Gå till http://techteach.no/kybsim/index_eng.htm och gå igenom några av följande exempel. http://techteach.no/kybsim/index_eng.htm Följ gärna de beskrivningarna
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
Kort introduktion till Reglerteknik I
Kort introduktion till Reglerteknik I Vad är reglerteknik? Läran om dynamiska system och deras styrning. 1 / 12 alexander.medvedev@it.uu.se Intro Kort introduktion till Reglerteknik I Vad är reglerteknik?
Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät
Artificiella Neuronnät 1 Karaktäristiska egenskaper Användningsområden Klassiska exempel Biologisk bakgrund 2 Begränsningar Träning av enlagersnät 3 Möjliga avbildningar Backprop algoritmen Praktiska problem
Reglerteknik I: F10. Tillståndsåterkoppling med observatörer. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F10 Tillståndsåterkoppling med observatörer Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 2 / 14 F9: Frågestund F9: Frågestund 1) När ett system är observerbart då
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 2 Matematiska modeller Laplacetransformen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 2 Gustaf Hendeby HT1 2017 1 / 21 Innehåll föreläsning 2 ˆ Sammanfattning
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
FACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Carl-Fredrik Lindberg, ABB Corporate Research. Automation Scandinavia, Trådlös kommunikation i industrin - ett PiiA-projekt
Carl-Fredrik Lindberg, ABB Corporate Research. Automation Scandinavia, 2016-04-12 Trådlös kommunikation i industrin - ett PiiA-projekt Trådlös reglering Tidigare och nuvarande PiiA-projekt Control & Communications
LKT325/LMA521: Faktorförsök
Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
Statistiska metoder för säkerhetsanalys
F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts
I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Välkomna till TSRT19 Reglerteknik M Föreläsning 7. Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet
Välkomna till TSRT19 Reglerteknik M Föreläsning 7 Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet Framkoppling 2 Anledningen till att vi pratar om framkoppling
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2011 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel
A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.
Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner
. Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Lösningar till tentamen i Industriell reglerteknik TSRT07 Tentamensdatum: Martin Enqvist
ösningar till tentamen i Industriell reglerteknik TSRT7 Tentamensdatum: 28-3-2 Martin Enqvist a) Z-transformering av sambanden som beskriver den tidsdiskreta regulatorn ger Iz) = KT Sz T i z ) Ez) = Kz
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2013 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel
Introduktion och laboration : Minitab
Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt
Datorövningar i systemidentifiering Del 2
Datorövningar i systemidentifiering Del 2 Denna version: 24 augusti 2015 REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING 1 Parametrisk identifiering av konfektionsmodeller Parametriska konfektionsmodeller (black-box-modeller)
Systemteknik/Processreglering F2
Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med
Obligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Välkomna till TSRT15 Reglerteknik Föreläsning 12
Välkomna till TSRT15 Reglerteknik Föreläsning 12 Sammanfattning av föreläsning 11 Återkoppling av skattade tillstånd Integralverkan Återblick på kursen Sammanfattning föreläsning 11 2 Tillstånden innehåller
REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN
REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Metod för beräkning av potentiella variabler
Promemoria 2017-09-20 Finansdepartementet Ekonomiska avdelningen Metod för beräkning av potentiella variabler Potentiell BNP definieras som den produktionsnivå som kan upprätthållas vid ett balanserat
Artificiella Neuronnät
Artificiella Neuronnät 2 3 4 2 (ANN) Inspirerade av hur nervsystemet fungerar Parallell bearbetning Vi begränsar oss här till en typ av ANN: Framåtkopplade nät med lagerstruktur 3 4 Fungerar i princip
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag
Reglerteori. Föreläsning 4. Torkel Glad
Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =
Datorövning 6 Extremvärden och Peak over Threshold
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 6 Extremvärden och Peak over Threshold I denna datorövning ska vi använda mätningarna
Uppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
Datorbaserad mätteknik
Datorbaserad mätteknik Introduktion till mätsystem inom processindustri :44 Kursplanering Lärare Benny Thörnberg Email: benny.thornberg@miun.se Web: http://apachepersonal.miun.se/~bentho Kurswebb http://apachepersonal.miun.se/~bentho/dmt/inde.htm
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
ANN fk. Örjan Ekeberg. Framåtkopplade Nät. återkopplade nät. Olika arkitekturer. BackPropagation through Time. Kalman-Filter tekniker
Hantering av Tid Återkopplade Återkopplade Återkopplade t Återkopplade Återkopplade Temporala signaler är svåra Gör om temporal signal till spatial t 1 t 2 t 3 t 4 Återkopplade t Enklaste formen Neuronal
Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare.
STOCKHOLMS UNIVERSITET Statistiska institutionen VT 2009 Tatjana Pavlenko och Bertil Wegmann OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, VT 2009 Den obligatoriska inlämningsuppgiften,
Industriell reglerteknik: Föreläsning 4
Föreläsningar / 25 Industriell reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
dametric GMS-SD1 Gap Control Beskrivning GMS-SD1 GapControl SE.docx 2014-04-15 / BL Sida 1 (5)
dametric GMS-SD1 Gap Control Beskrivning GMS-SD1 GapControl SE.docx 2014-04-15 / BL Sida 1 (5) 1 Allmänt Detta dokument beskriver hur en malspaltsregulator kan tillämpas för ett GMS mätsystem med AGSgivare.
LABORATION 1. Syfte: Syftet med laborationen är att
LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2012 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel
Skottarevet, Kattegatt Provtagningsredskap: Ponar och Boxcorer Beställare: Triventus Consulting AB Littera: 210417 Koncentrationer av metaller, PAHer, PCBer, alifatiska och aromatiska kolväten Datum: 2005-12-15
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Klinisk testning. Tony Pansell Universitetslektor, Med dr
Klinisk testning av ögonrörelserrelser Tony Pansell Universitetslektor, Med dr Ögonrörelserrelser Vi testar motilitet har alla ögonmuskler normal funktion eller finns det inskränkningar (skelningar)? Vi
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Föreläsning 6: Hypotestester (forts.)
Föreläsning 6: Hpotestester (forts.) Johan Thim (johan.thim@liu.se) 4 november 018 Vi fortsätter nu ekursionen i hpotesernas förlovade land. Fokus kommer vara på den vanligaste tpen av hpotestester, nämligen
Avd. Matematisk statistik
ANVISNINGAR TILL INLÄMNINGSUPPGIFTER I MATEMATISK STATISTIK, HT 007 På inlämningsuppgiften ska alltid namn och elevnummer finnas med. Ett automatiskt web-baserat kontrollsystem för numeriska svar kommer