MATEMATIKDIDAKTIK. Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium
|
|
- Ulla-Britt Lindström
- för 8 år sedan
- Visningar:
Transkript
1 MATEMATIKDIDAKTIK Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium
2 SEMINARIUM 7 Vad är en funktion? Hur bildas begrepp? Exempel på funktioner 2 2
3 FUNKTIONER HISTORIK Funktion, vad är det? Functio= förättning, fungor=utföra Redan de gamla babylonierna (4000år sedan) kartlade hur himlakroppar förflyttades Det gamla grekerna med Ptolemaios (100-talet) gjorde även beskrivningar hur man kunde räkna fram funktions värdet (Katz 1993) Galileo Galilei ( ) Rene Descartes ( ) och Pierre de Fermat ( ) tar fram koordinatsystemet 3 3
4 FUNKTIONER HISTORIK Gottfrid Wilhelm Leibnitz ( ) var först med att introducera begreppet (Vilenkin, 1995) för att beskriva ett samband mellan olika sträckor som beskriver punkter på en kurva Daniel Bernoulli ( )..en formel eller ett uttryck Leonhard Euler ( ) introducerade f(x) i Introductio att en funktion av en varierande storhet är ett analytiskt uttryck. Leibnitz 4 4
5 FUNKTIONER HISTORIK Gottfrid Wilhelm Leibnitz ( ) var först med att introducera begreppet (Vilenkin, 1995) för att beskriva ett samband mellan olika sträckor som beskriver punkter på en kurva Daniel Bernoulli ( )..en formel eller ett uttryck Leonhard Euler ( ) introducerade f(x) i Introductio att en funktion av en varierande storhet är ett analytiskt uttryck. Bernoulli 5 5
6 FUNKTIONER HISTORIK Gottfrid Wilhelm Leibnitz ( ) var först med att introducera begreppet (Vilenkin, 1995) för att beskriva ett samband mellan olika sträckor som beskriver punkter på en kurva Daniel Bernoulli ( )..en formel eller ett uttryck Leonhard Euler ( ) introducerade f(x) i Introductio att en funktion av en varierande storhet är ett analytiskt uttryck. Euler 6 6
7 FUNKTIONER HISTORIK Euler 1755 a quantity should be called a function only if it depends on another quantity in such a way that if the latter is changed, the former undergoes change itself (Sfard, 1992, p.62). Lejeune Dirichlet ( ) if a variable y is so related to a variable x that whatever a numerical value is assigned to x there is a rule according to a unique value of y is determined, then y is said to be a function of the independent variable x (Sierpinska, 1992, p46) Dirichlet 7 7
8 FUNKTIONER HISTORIK En defintion från mängdläran. En avbildning (funktion) från en mängd A till en mängd B är en delmängd av AxB sådant att varje x ЄA är det första elementet i precis ett par i delmängden. 8 8
9 FUNKTIONER HISTORIK Från intuitiva idéer till exakta definitioner Från dynamiska procedurer till statiska strukturer Från fysikaliska samband till abstrakta matematiska begrepp. 9 9
10 HUR BILDAS BEGREPP? Funktionsbegreppet introduceras i grundskolan och i början på gymnasiet eleverna kanske förknippar en funktion till en feberkurva eller grafen till en linjär funktion. Hur skulle du själv vilja förklara för elever vad som menas med en funktion? 10 10
11 HUR BILDAS BEGREPP? Anderberg (1992), beskriver två vanliga sätt som används i läroböcker på grundskolan. 1. Man leker med en funktions maskin som kan programmeras på olika sätt. 2. Man inför ett koordinatsystem och ritar linjer och kurvor
12 HUR BILDAS BEGREPP? Ett annat sätt att introducera funktioner är att starta med en definition. T.ex. En funktion är en mängd av tal par, vilkas första element är olika F = {(1,5), (4,2), (7,1), (3,6), } F = {(1,3), (4,2), (1,5), (2,6), } 12 12
13 HUR BILDAS BEGREPP? Carleson (1968) skriver Man erkänner behovet av en precis definition först då man mot bakgrunden av sitt erfarenhetsmaterial inser att saken är så komplicerad att missförstånd eller fel kan uppstå utan precisa begrepp Carleson (1968) Man lär sig att förstå komplexa tal genom att man blir van vid dem, inte genom att man på något djupare sätt förstår vad de innebär. Hans Freudenthal (1973, sid 126) Man behöver inga särskilda definitioner för parallellogram etc. Man ställer problem där figurerna ingår och låter eleverna upptäcka vad de har för egenskaper 13 13
14 HUR BILDAS BEGREPP? Hur förstår eleverna nu vad en funktion är för något? man blir van vid det rör sig om (på ett mer eller mindre tillfredsställande sätt) Exempel och mot exempel Svit av exempel Omedvetet bildande BYGGS UPP VIA ERFARENHETER 14 14
15 - Är det sant att din hund kan räkna? - Ja, han är väldigt förtjust i matte.
16 HUR SKA MAN ÖKA ELEVERNAS BEGREPPSUTVECKLING? Bergsten (2009) Olika representationsformer Verbal Tabell Graf Formel Verbal Mätning Skiss Skapa Modeller Tabell Läsning Plottning Anpassning Graf Tolkning Avläsning Kurvpassnin g Formel Tolkning av variabler Beräkning Skissering 16 16
17 HUR SKA MAN ÖKA ELEVERNAS BEGREPPSUTVECKLING? Bergsten (2009) Tekniska hjälpmedel Laborativa material (väga, mäta, ta tid o.s.v) Analysera grafer. Analysera mönster och andra samband (omkrets,area,volym) 17 17
18 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Kurvkatalog Linjära funktioner y = kx + m Exponentialfunktioner y = Ae kx y=a x Polynomfunktioner y= ax 2 + bx + c, y = x 3 o.s.v Funktioner såsom y = k/x y = k/x 2 y = sqr(x) Trigonometriska funktioner y = A sin(kx+φ) Inversa funktioner Rationella funktioner t.ex. y = e x y = lnx f(x)=p(x)/q(x) 18 18
19 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Linjära funktioner y = kx + m Ex. Mobilabonnemang, hyra bil, kg priser, o.s.v
20 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Exponentialfunktioner y = Ae kx y=a x Ex. Pengar på banken, skuldfällan, Minskning av värdet på en bil, befolkningsutveckling o.s.v. Talet e (1+1/n)^n då n->oo 20 20
21 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Polynomfunktioner y= ax 2 + bx + c o.s.v 21 21
22 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Funktioner såsom y = k/x y = k/x 2 y = sqr(x) 22 22
23 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Trigonometriska funktioner y = A sin(kx+φ) 23 23
24 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Inversa funktioner t.ex. y = e x y = lnx 24 24
25 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Rationella funktioner f(x)=p(x)/q(x) 25 25
26 GYMNASIETS OCH HÖGSTADIET FUNKTIONSLÄRA? Diskontinuerliga funktioner och funktioner med två variabler 26 26
27 FUNKTIONER
28
Sidor i boken KB 6, 66
Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en
Begreppet funktion i historisk belysning
82 Normat 53:2, 82 92 (2005) Begreppet funktion i historisk belysning Johan Häggström Institutionen för pedagogik och didaktik Göteborgs universitet Box 300 SE 405 30 Göteborg johan.haggstrom@ped.gu.se
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1
För elever i gymnasieskolan är det inte uppenbart hur derivata relaterar
Thomas Lingefjärd, Djamshid Farahani & Güner Ahmet En motorcykels färd kopplad till derivata Gymnasieelevers erfarenhet av upplevda hastighetsförändringar ligger till grund för arbete med begreppet derivata.
Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
MATEMATIKDIDAKTIK. Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium
MATEMATIKDIDAKTIK Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium 1 2011-03-22 1 SEMINARIUM 1 Uppföljning av senaste seminariet Kursmål, Kursupplägg, mm Några frågor som
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Träningsprov funktioner
Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer
S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och
Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4
Funktion Vad är det?
Malmö högskola Lärarutbildningen Natur Miljö Samhälle Examensarbete 10 poäng Funktion Vad är det? Kan eleverna se de matematiska sambanden? A function - What is that? Are the students able to see the mathematical
Fler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Introduktion till funktioner
Introduktion till funktioner Mikael Forsberg 5 februari 010 1 Introduktion Ordet funktion kommer från latinets functio som har samma betydelse som det svenska ordet. Ordet har använts i Sverige åtminstone
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
SF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
Introduktion till funktioner
Introduktion till funktioner Mikael Forsberg 27 mars 2012 1 Introduktion Ordet funktion kommer från latinets functio som har samma betydelse som det svenska ordet. Ordet har använts i Sverige åtminstone
M0038M Differentialkalkyl, Lekt 4, H15
M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.
Räknare och datorer i funktion
Räknare och datorer i funktion Gunnar Gjone Datorer och grafiska räknare är användbara hjälpmedel i undervisningen. Här ges exempel på de möjligheter som enkla räknare och kalkylprogram kan erbjuda vid
Elevers tolkningar av övergången mellan vissa representationer av funktionsbegreppet
Lärarutbildningen Natur, Miljö, Samhälle Examensarbete 15 högskolepoäng Elevers tolkningar av övergången mellan vissa representationer av funktionsbegreppet Pupils interpretations of the transition between
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Modul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 005. Anvisningar NATIONELLT
Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59
Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde
Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
En matematiklärarkollega hade tillsammans med sin klass noterat att talet
Anders Johansson Ekvationen x y = y x Exempel på problemlösning med hjälp av programmering Ekvationen x y = y x kan studeras med hjälp av algebra, numerisk analys och programmering. Författaren demonstrerar
Övningshäfte 3: Funktioner och relationer
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har
Matematik 2b (Typ) E-uppgifter på hela kursen
Matematik 2b (Typ) E-uppgifter på hela kursen I Räta linjens ekvation och linjära modeller (1 6) II Ekvationssystem (7 11) III Algebra (12 14) IV Andragradsfunktioner ( inklusive funktioner med komplexa
Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik
Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik Fredrik Berntsson (fredrik.berntsson@liu.se) 5 oktober 2016 Frame 1 / 23 Bakgrund och Syfte Inom kursen Fysik3 finns material som
polynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,
Räta linjer. Ekvationssystem. Att hitta räta linjens ekvation ifrån olika förutsättningar. 1.1 Hitta en rät linjes ekvation utifrån en ritad graf.
Översikt inför provet om räta linjer och ekvationssystem Denna finns digitalt med tillhörande länkar på http://www.thelberg.com/ma2b/prov1 eller via QR-koden nedan: Räta linjer Att hitta räta linjens ekvation
Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.
Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean
6. a) Visa att följande vektorer är egenvektorer till matrisen A = 0 2 0 0 0 0 1 1, och ange motsvarande
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA5 Vektoralgebra TEN2 Datum: juni 25 Skrivtid: 3
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Elevers uppfattningar av funktioner
Elevers uppfattningar av funktioner Liv Sissel Grønmo och Bo Rosén I förra numret av Nämnaren diskuterades olika representationer av funktioner och presenterades diagnoser från det norska KIM-projektet.
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Funktioner Exempel på uppgifter från nationella prov, Kurs A E
Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden
24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,
Lennart Carleson. KTH och Uppsala universitet
46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna
Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000
2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng
Läsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
Vad menas med en funktion? Om vi
CECILIA KILHAMN Funktionslådor Med funktionslådor kan elever tidigt möta funktionsbegreppet på ett praktiskt och laborativt sätt. Artikeln bygger på ett arbete i en matematikdidaktisk magisterutbildning
Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd
Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Jag tror att alla lärare introducerar bråk
RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.
TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.
TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
10.2. Underrum Underrum 89
10.2 Underrum 89 10.2. Underrum Definition 10.12. En icke-tom delmängd U i ett linjärt rum V kallas ett underrum i V om för arje u, U och arje reellt tal λ gäller att 1. u + U. 2. λu U. Anmärkning 10.13.
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Ma3bc. Komvux, Lund. Prov kap
Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du
Flera digitala verktyg och räta linjens ekvation
Matematik Grundskola årskurs 7-9 Modul: Matematikundervisning med digitala verktyg I Del 8: Matematikundervisning och utveckling med digitala verktyg Flera digitala verktyg och räta linjens ekvation Håkan
Matematik i Gy11. 110912 Susanne Gennow
Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
Planering Matematik åk 8 Samband, vecka
Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med
NMCC Sigma 8. Täby Friskola 8 Spets
NMCC Sigma 8 Täby Friskola 8 Spets Sverige 2016 1 Innehållsförteckning Innehållsförteckning... 1 Inledning... 2 Sambandet mellan figurens nummer och antalet små kuber... 3 Metod 1... 3 Metod 2... 4 Metod
Grafisk och algebraisk representation
Grafisk och algebraisk representation Gymnasieelevers förståelse av linjära funktioner Annika Pettersson Fakulteten för hälsa, natur- och teknikvetenskap Matematik LICENTIATUPPSATS Karlstad University
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Välkommen till MVE340 Matematik B för Sjöingenjörer. Kursinnehåll i stora drag. Kurslitteratur MVE Carl-Henrik Fant MV, Chalmers 1
Välkommen till MVE340 Matematik B för Sjöingenjörer Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 35 57 Kontor: L3037 i matematikhuset, Johanneberg Kursinnehåll i stora drag Funktioner
1 Föreläsning Implikationer, om och endast om
1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras
25 november, 2015, Föreläsning 20. Tillämpad linjär algebra
25 november, 205, Föreläsning 20 Tillämpad linjär algebra Innehåll: Minsta-kvadratmetoden. Minsta kvadratmetoden - motivation Inom teknik och vetenskap arbetar man ofta med modellering av data, dvs att
En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare.
Matematik b, repetition Kan du det här? Primitiva funktioner och integraler o o o Vad menas med primitiv funktion? Kan du hitta en primitiv funktion? Vad menas med en integral? Kan du beräkna en integral?
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).
BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.
En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Explorativ övning 9 RELATIONER OCH FUNKTIONER
Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
9-1 Koordinatsystem och funktioner. Namn:
9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner
LMA222a. Fredrik Lindgren. 17 februari 2014
LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.
MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens
Kapitel 7. Kontinuitet. 7.1 Definitioner
Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.
1 Euklidisk geometri.
1 Euklidisk geometri. Pythagoras (ca 570 497 f. kr.) grundade i Kroton i nuvarande södra Italien en skola vars motto var Allt är tal. Skolans medlemmar, pytagoreerna, försökte visa att allt i deras omvärld
NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Samband och förändring en översikt med exempel på uppgifter
Modul: Samband och förändring Del 1: Öppna uppgifter Samband och förändring en översikt med exempel på uppgifter Örjan Hansson, Högskolan Kristianstad Problem om samband och förändring spänner över stora
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren
Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.
4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth
Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Np MaA vt Innehåll
Innehåll Bedömningsanvisningar Tidsbunden del... 3 Allmänna bedömningsanvisningar... 3 Positiv bedömning... 3 Uppgifter där endast svar fordras... 3 Uppgifter där fullständig redovisning fordras... 3 Bedömning
Trösklar i matematiklärandet
Matematik, Specialpedagogik Grundskola åk 1 3 Modul: Inkludering och delaktighet lärande i matematik Del 7: Trösklar i matematiklärandet Trösklar i matematiklärandet Ingemar Holgersson, Högskolan Kristianstad
Planering Funktioner och algebra år 9
Planering Funktioner och algebra år 9 Innehåll Övergripande planering... 2 Begrepp... 3 Metoder... 4 Bedömning... 4 Kommer du ihåg dessa begrepp från årskurs 8?... 5 Facit till Diagnos... 6 Arbetsblad...
Matematik C (MA1203)
Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0