Elevers kommunikation i grupp kring matematiska begrepp

Storlek: px
Starta visningen från sidan:

Download "Elevers kommunikation i grupp kring matematiska begrepp"

Transkript

1 Malmö högskola Lärarutbildningen Natur Miljö Samhälle Examensarbete 10 poäng Elevers kommunikation i grupp kring matematiska begrepp Pupils communication in group about mathematical concepts Nina Alsenfelt Pamp Janicke Hallkvist Lärarexamen 140 poäng Matematik och lärande Höstterminen 2005 Handledare: Eva Davidsson Examinator: Mats Areskoug

2 2

3 SAMMANFATTNING Syftet med arbetet var att undersöka hur elever i skolår fyra interagerar och kommunicerar under problemlösning kring en öppen fråga i grupp, genom att uppmärksamma och göra en granskning av innehållet i kommunikationen. I arbetet användes ostrukturerad observation som metod. Dessutom användes enkät för att ta del av elevernas attityder till grupparbetet. Resultatet visade att 99 %, 637 av totalt 643 kommentarer, av kommunikationen handlade om själva uppgiften. Vidare visade resultatet även på vilka sätt eleverna bidrog till att lösa problemet. Några generella slutsatser gick inte att dra angående elevers kommunikation, eftersom underlaget inte var tillräckligt omfattande. I stort sett hade samtliga elever en positiv attityd till uppgiften och samarbetet i gruppen. Deras attityder till grupparbetet färgades troligtvis av vår inställning och medverkan, som skapade positiva effekter. Nyckelord: begreppsbildning, grupparbete, interaktion, kommunikation, matematik, problemlösning, språk, öppna frågor 3

4 INNEHÅLLSFÖRTECKNING 1 INLEDNING SYFTE FRÅGESTÄLLNINGAR TEORETISK BAKGRUND Språk och kommunikation Begreppsbildning Problemlösning Arbete i grupp Lärarens roll vid grupparbete Begreppsdefinitioner METOD Urval Datainsamlingsmetoder Procedur Validitet och reliabilitet Databearbetning RESULTAT Hur kommunicerar elever under ett grupparbete kring problemlösning i matematik? Vad talar eleverna om? På vilka sätt bidrar eleverna till lösningen av problemet? Hur använder eleverna de matematiska begreppen? Vilka attityder och uppfattningar har elever om grupparbete kring ett matematiskt problem? Anser eleverna att de lär sig någonting genom problemlösning i grupp och i så fall vad? Vilka uppfattningar har eleverna om samarbetet i gruppen? DISKUSSION OCH SLUTSATSER Sammanfattning och analys av resultaten Diskussion AVSLUTNING KÄLLFÖRTECKNING BILAGOR 4

5 5

6 6

7 1 INLEDNING Idag finns en levande debatt i media och en utbredd internationell och nationell forskning kring matematikdidaktiken i skolan. Löwing (2004) redogör i sin forskning att svensk matematikundervisning sedan en tid tillbaka haft flera svagheter. Elever möter många svårigheter kring matematiken i skolan och dessa måste förebyggas på ett tidigt stadium. Författaren menar att lärarutbildare och fortbildare i framtiden måste satsa på den elementära didaktiken som utgör grunden för exempelvis användandet av en korrekt och lämplig terminologi och en meningsfull kommunikation i ämnet. Hagland (2005) riktar i sin aktuella forskning, RIMA-projektet - Rika problem i matematikundervisningen, fokus mot att utreda hur elever tänker om lektioner kring problemlösning, vilka tillfällen till lärande som uppstår under sådana lektioner samt hur dessa tillfällen utnyttjas. I PISAs internationella kunskapsmätningar (Skolverket 2001) kartläggs bland annat elevers kunnande i matematik i 32 olika länder. I undersökningen framgår att Sverige tillhör de länder där elever har sämst självuppfattning i samband med matematik, vilket är alarmerande med tanke på det nära sambandet mellan elevers självuppfattning och prestationer i ämnet. Totalt är det svenska resultatet på en medelnivå i jämförelse med övriga OECD-länder när det gäller att lösa uppgifter i matematik. Elever skall i uppgifterna i kunskapsmätningarna kunna matematisera och formulera problem för att kunna lösa dem. Vidare analyseras deras språkliga förmåga i samband med matematiska uppgifter och det visar tydligt hur språket och matematiken har en nära och oskiljaktig förbindelse. I de styrdokument som stadgar hur grundskolan skall utformas finns stöd för att rikta fokus mot språk och kommunikation i samtliga skolämnen och även att arbeta med grupparbeten, problemlösning och öppna uppgifter i undervisningen i matematik. Dessa stadgar består av Läroplanen för det obligatoriska skolväsendet, förskoleklassen och fritidshemmet, Lpo 94, kursplaner i varje enskilt skolämne och skollagen. I Lpo 94 (Lärarförbundet 2001) fastställs att skolan skall sträva efter att vara en levande social gemenskap där elever upplever lust att lära, känner trygghet och kan visa hänsyn och 7

8 respekt i samspel med andra. Elever skall få möjlighet att utforska, lära och arbeta såväl på egen hand som tillsammans med andra samt befästa en vana att självständigt formulera sina ståndpunkter. Ytterligare ett mål att sträva mot i Lpo 94 (Lärarförbundet 2001) är att elever lär sig lyssna, diskutera, argumentera och använda sina kunskaper som redskap för att formulera och pröva antaganden och lösa problem, reflektera över erfarenheter och kritiskt granska och värdera påståenden och förhållanden (s 15). Vidare säger kursplanen i matematik (Skolverket 2000) att ämnet syftar till att utveckla elevers möjligheter att kommunicera med matematikens språk och uttrycksformer. Utifrån styrdokumenten och aktuell forskning arbetar PRIM-Gruppen ( med att bland annat utveckla och forma de nationella proven. Förutom individuella delar förekommer par- och gruppuppgifter, med anledning av att elevers muntliga prestationer framhålls som viktiga i läroplanen. Dessa gruppuppgifter ger lärare underlag när elevers kunskapsnivå skall kartläggas. I de senaste proven har gruppuppgifterna varit gemensamma i matematik och svenska, vilket är förenligt med vad kursplanen i matematik (Skolverket 2000) säger om att elever skall ges möjligheter att kommunicera med matematikens språk och uttrycksformer samt att ämnet har ett nära samband med andra skolämnen. Eftersom matematik och språk är beroende av varandra i ett ömsesidigt samspel är samverkan mellan de båda ämnena nödvändig enligt Skolverket (2003/2004). Det behövs både ett matematiskt tänkande och en språklig förmåga för att lösa problem och kunna samarbeta och interagera kring detta. Dessutom är det positivt att elever genom ämnesintegreringen blir medvetna om att det är svårt att klassificera kunskap till ett specifikt skolämne. Det centrala i gruppuppgiften i detta arbete är att elever i samspel med andra skall använda sig av gruppens gemensamma kunskap för att lösa det öppna problemet, genom samtal och användning av språket. Skolverket (2003/2004) påpekar att lärare vid gruppuppgiften kan observera elevers förmåga att argumentera för sin lösning, tilltro till det egna tänkandet och förmåga att behärska det matematiska språk som krävs. Utifrån detta är frågeställningarna i arbetet formulerade. 8

9 Examensarbetet är i det följande utarbetat inom ramen av den avslutande kursen Examensarbete. Det bygger på kunskaper och erfarenheter vi förvärvat under hela utbildningen och som vikarierande lärare samt praktik på partnerskola i skolåren F-6 under lärarutbildningen. Vårt huvudämne är Matematik och lärande och i tidigare kurser under lärarutbildningen har vi av såväl föreläsare och lärare som i litteratur mött en positiv inställning till grupparbete, problemlösning och öppna frågor i matematikämnet. Samtliga har förespråkat samarbete, interaktion och kommunikation i skolämnet matematik. Vi förstår därigenom vilken väsentlig roll detta har för elevers lärande och utveckling i samtliga ämnen i skolan. Utifrån utbildningen i vårt huvudämne, har vi fått kunskap om hur betydelsefull den språkliga dimensionen är för matematiken. Detta har inspirerat oss till att göra en fördjupning i ämnet och vårt problemområde innefattar kommunikation och begreppsutveckling i matematik samt hur detta kan utvecklas genom problemlösning kring öppna uppgifter i grupp. I detta arbete uppmärksammas, identifieras och granskas förekomsten av det matematiska innehållet i kommunikationen hos elever i skolår fyra. Eleverna interagerar i grupp kring ett öppet matematiskt problem och kommunikationen sammanställs och klassificeras i en metodisk analys. Förhoppningen är att i detta arbete få svar på frågeställningarna och få en uppfattning om elevernas attityder till problemlösning kring öppna uppgifter i grupp. Vi vill även se om vi kan upptäcka någonting som verkar utvecklande för deras matematiska begreppsbildning. Därutöver får arbetet gärna väcka nya frågor och funderingar. Målet med arbetet är att bygga vidare på tidigare forskning inom området och att vi skall kunna använda oss av de nyförvärvade kunskaperna i vår framtida yrkesroll. 9

10 2 SYFTE Syftet med studien är att undersöka hur elever i skolår fyra kommunicerar kring en öppen uppgift i grupp, genom att uppmärksamma och göra en granskning av innehållet i kommunikationen. Under observation av ett grupparbete i matematik riktas därför fokus mot hur elever agerar och vad de talar om. I detta arbete undersöks därutöver hur elever uttrycker sina tankar under en gruppuppgift genom observation av hur de formulerar dessa. Vidare är avsikten att få en uppfattning om elevers attityder och uppfattningar till arbetssättet. Ett personligt syfte med examensarbetet är att utveckla och fördjupa våra kunskaper om elevers kommunikation och interaktion vid lösning av öppna uppgifter i grupp. 3 FRÅGESTÄLLNINGAR I denna studie behandlas två huvudfrågor som är indelade i delfrågor: 1. Hur kommunicerar eleverna i undersökningen under ett grupparbete kring ett öppet matematiskt problem? Vad talar eleverna om? På vilka sätt bidrar eleverna till lösningen av det öppna problemet? Hur använder eleverna de matematiska begreppen? 2. Vilka attityder har eleverna i undersökningen till ett öppet problem i matematik? Anser eleverna att de lär sig någonting genom att lösa öppna uppgifter i grupp och i så fall vad? Vilka uppfattningar har eleverna om samarbetet i gruppen? 10

11 4 TEORETISK BAKGRUND 4.1 Språk och kommunikation Wistedt (2001) skriver att begreppet kommunikation kommer från latinets communicare, som innebär att skapa gemensam förståelse. Således innebär kommunikation att i samspel med andra skapa och utbyta innebörder att samtala. Kommunikation och interaktion mellan människor kräver användning av tecken och koder, för att individer skall förstå varandra. Dessa tecken är i form av gester, symboler, ord och uttryck genom språk och koderna är i form av regelsystem och konventioner för hur tecknen och uttrycken skall sättas samman. Författaren beskriver hur det för varje mänskligt samtalsområde gäller särskilda tecken och kodsystem. Barn lär sig vilka kommunikativa regler som gäller för olika sociala sammanhang långt innan de börjar skolan. Där möter de mänskliga kulturyttringar som de oftast inte stött på tidigare, till exempel det matematiska språket. Elever måste därför lära sig hur kommunikationen ter sig i nya kulturella sammanhang när de kommer till skolan. Wistedt poängterar att elever ofta har svårigheter med att överbrygga avståndet mellan sina vardagskunskaper och vardagsspråk och den kunskap och det språk de möter inom skolans ämnesundervisning samt mellan praktisk erfarenhet och teori. Elever måste själv, i samtal och interaktion med andra, skapa bryggor mellan ny och redan förvärvad kunskap och då ta stöd i sina tidigare erfarenheter. Även Ahlberg (1995) diskuterar begreppet kommunikation och påpekar att elevers tankar skall utgöra grunden för undervisningen och att det då är viktigt att de får möjlighet att i samtalet verbalisera tankarna. Det matematiska språket kan vara okänt för elever och då är det lärarens ansvar att göra dem medvetna om matematiska begrepp och termer. Genom kommunikation kan de få tillfälle att diskutera och reflektera kring begrepp, vilket leder till en ökad förståelse och en grundläggande förankring av dessa. Vygotskij (1934) menar att det sociokulturella sammanhang elever befinner sig i är av avgörande betydelse för lärandet och den kognitiva utvecklingen. Säljö (2000) framhäver att i det sociokulturella sammanhanget sker kommunikation genom språk mellan 11

12 människor och den är avgörande för individens utveckling på alla plan. Han utgår från det sociokulturella perspektivet när han analyserar utveckling och lärande av kunskaper och färdigheter. En av utgångspunkterna för det sociokulturella perspektivet på lärande och mänskligt tänkande är hur individer och grupper tillägnar sig och utnyttjar kognitiva resurser såsom språket. Begrepp och färdigheter är kommunikativa företeelser och byggs således upp av interaktion mellan individer. Säljö poängterar att i alla processer där lärande är involverat är kommunikation och interaktion avgörande för att en utveckling skall ske. Kronqvist och Malmer (1993) menar att det är avgörande att elever får möjlighet att formulera sina tankar i ord genom det matematiska språket för att kunna utveckla matematisk kunskap och för att kunna definiera olika begrepp. Dysthe (1995) stödjer resonemanget och framhåller att pedagogen på ett medvetet sätt skall planera undervisningen så att interaktion sker i ett socialt rum. Vidare är Dysthes huvudargument för det dialogiska klassrummet att språket har en central betydelse för inlärningsprocessen. Maher (1998) instämmer i resonemanget och menar att klassrumskommunikation är ett effektivt instrument för att väcka elevers intresse för arbete med matematik. För att kommunikationen skall vara framgångsrik krävs att alla inbjuds i diskussionen och att elever lyssnar på andras idéer. Vygotskij (1934) ger ytterligare tyngd åt språkets betydelse, när han framhåller att det är ett kommunikationsmedel och bärare av den kunskap och de erfarenheter som mänskligheten utvecklat. Målet är att elever skall se språket som ett redskap för tanke och för att kunna uttrycka sig i ett livslångt lärande. Vygotskij betonar att den språkliga utvecklingen sker i ett gemensamt samspel och en ömsesidig kommunikation med den sociala omgivningen. Han menar att det finns en proximal utvecklingszon, som innebär att elever på egen hand inte kan stärkas i sin kognitiva utveckling, utan behöver stöd och hjälp från sin omgivning. Därigenom kan de uppnå ny och fördjupad kunskap. Inom denna utvecklingszon betonar författaren att det är avgörande att låta elever samarbeta aktivt med såväl andra elever som vuxna, eftersom det både stimulerar och stödjer deras sociala och kognitiva utveckling samt de processer som ännu inte är förankrade hos dem. 12

13 Ett av skolans mål att sträva mot i undervisningen i matematik (Skolverket 2000) är att elever utvecklar sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande (s 26). Kronqvists och Malmers (1993) resonemang kring arbete med problemlösning i grupp överensstämmer med innehållet i kursplanen. Författarna menar att genom ett sådant arbete kan en meningsfull och relevant kontext skapas, på ett naturligt och holistiskt sätt, där elever blir bemötta på sin individuella nivå. De får möjlighet att reflektera, formulera sina tankar i ord och dra logiska resonemang och slutsatser utifrån sina egna strategier tillsammans med andra strategier som synliggörs i diskussion och interaktion. Författarna poängterar att språkets enormt stora roll för utvecklandet av begrepp och föreställningar inom matematiken inte nog kan framhållas. Vidare understryker Kronqvist och Malmer att det är nödvändigt för såväl begreppsbildning som kommunikation med både det muntliga och skriftliga matematiska innehållet. Tanken är nära förbunden med språket. Således har språket en avgörande funktion för begreppsbildningen. Vygotskij (1934) resonerar kring ordets betydelse som ett fenomen som hör ihop med tänkandet. Språkets och ordets betydelse ändras och utvecklas och är alltså inte statiska. Individers utveckling av såväl tanke som språk sker i interaktion med andra och för att detta skall vara möjligt krävs ett flerstämmigt klassrum. Dysthe (1995) förespråkar det flerstämmiga klassrummet där alla kommer till tals och framhåller att språket och dialogen i klassrummet har en central betydelse för inlärningsprocessen. Förståelse uppstår i samtalet mellan pedagog och elever samt mellan elever och elever. Elever får i det flerstämmiga klassrummet pröva sina tankar och idéer och känna att de blir lyssnade på i alla sammanhang. Pedagoger får dessutom möjlighet att ta del av elevers förförståelse, vilket är avgörande för deras begreppsbildning och språkutveckling. Pedagoger har då möjlighet att ta elevers verklighet som utgångspunkt i undervisningen. I det flerstämmiga klassrummet får elever möjlighet att kunna sätta sig in i andra personers perspektiv, vilket är en förutsättning för utveckling av den empatiska förmågan. Det bidrar även till att utveckla ett tillåtande klassrumsklimat, där alla känner att de kan 13

14 komma till tals och möter tolerans och förståelse, vilket i sin tur främjar en god självbild hos elever. Lindö (2002) menar att skolan skall skapa en trygg miljö där elevers grundläggande behov, såsom en god självbild, kan tillfredsställas och detta är intimt förknippat med en positiv språkutveckling i alla skolämnen. I Lpo 94 (Lärarförbundet 2001) betonas att skolan skall sträva efter att samtliga elever utvecklar tillit till sin egen förmåga. Med andra ord är en av pedagogers viktigaste uppgifter att stärka och öka deras självförtroende och självkänsla. För att elever skall kunna utveckla tillit till den egna förmågan och en god självbild skall de få möjlighet att utveckla sin förmåga att kommunicera och interagera med omgivningen. Pedagoger skall fungera som en vägledande förebild och stödja och främja alla elevers språkliga utveckling. Deras språk skall kunna användas som ett fritt tankeredskap och verktyg för kommunikation med omgivningen. Vidare framhåller Myndigheten för skolutveckling (2003) att elever kommunicerar för att skapa mening, förstå omvärlden och uttrycka sina tankar och känslor. Meningsskapandet är en social process som sker i ett socialt rum i mötet med andra människor. Lpo 94 (Lärarförbundet 2001) ger ytterligare underlag för sambandet mellan språk, lärande, identitetsutveckling och tilltro till den egna förmågan och framhåller att elever skall erbjudas rika möjligheter att samtala och kommunicera i skolan. 4.2 Begreppsbildning Kronqvist och Malmer (1993) definierar begreppsbildning som utveckling av matematiska kunskaper. För att de matematiska begreppen skall förankras hos elever skall de själva få undersöka, upptäcka och uppleva matematiken och därigenom bli medvetna om de matematiska processerna. Lärare skall skapa inlärningstillfällen och arrangera situationer där det blir naturligt och angeläget för elever att genom samtal och kommunikation reflektera, formulera sina egna tankar i ord, ta del av andra strategier än de egna samt dra logiska slutsatser. Malmer (2002) menar att begreppsutveckling i 14

15 matematik innebär att elever tillägnar sig de begrepp och ord som ingår i den matematiska terminologin, såsom addition, subtraktion, multiplikation och division. I det sammanhanget påpekar författaren hur avgörande det är att lärare själv frekvent använder de ord och begrepp som är adekvata. För att det skall ske en god begreppsutveckling skall elever vara språkmedvetna och erbjudas många tillfällen då de i grupp kan formulera sig, interagera med andra och aktivt använda sitt matematiska språk. Vidare framhåller Malmer vikten av att tala matematik genom samtal, diskussion och argumentation. Då prövas hållfastheten i tänkandet och ett fördjupat lärande sker genom att andras reaktioner och åsikter tvingar elever att förtydliga det egna ställningstagandet och därmed utvecklas tänkandet och språket. Riesbeck (2000) skriver att begreppsbildning hos elever utvecklas när det i klassrummet sker ett möte mellan två olika språk, det vill säga två olika diskurser. Den ena kategorin av språk är den vardagliga diskursen och den andra kategorin är den vetenskapliga eller vetenskapsliknande diskursen. Det vardagliga språket är det språk elever naturligt använder sig av i samspel med sin omgivning. I matematikundervisningen möter elever det vetenskapliga språket i form av matematiska begrepp. För att kunna utveckla sitt matematiska tänkande behöver de bygga upp en förståelse för de vetenskapliga begreppen. Vygotskij (1934) behandlar i sina teorier elevers språkliga utveckling och förhållandet mellan vardagliga och vetenskapliga begrepp. Han skriver att den vardagliga språkanvändningen har sitt ursprung i talspråket och i ett pragmatiskt förhållningssätt där elevers begreppsanvändning bygger på empirisk erfarenhet. Den vetenskapsliknande språkanvändningen har sitt ursprung i en skriftspråkskultur och de vetenskapliga begreppen är teoretiska. De vetenskapliga begreppens betydelse utvecklas hos elever när de blir äldre och de är beroende av att de har utvecklat sitt vardagliga språk. Under inlärningen och utvecklingen av vetenskapliga begrepp stödjer sig elever på redan välkända begrepp, vilka de använder i sin vardag. Vygotskij betonar att för att de vetenskapliga begreppen skall kunna utvecklas krävs även att elever utvecklar abstraktion, logiskt minne samt jämförelse- och särskiljningsförmåga. Riesbeck (2000) utvecklar resonemanget kring hur elever utvecklar och tillägnar sig förståelse för matematiska begrepp. Författaren menar att för att elever skall utvecklas krävs att de 15

16 tillsammans med lärare och andra elever utreder och samtalar om innehållet i de vetenskapliga och matematiska begreppen samt hur dessa skiljer sig från de begrepp som används i en vardaglig diskurs. De nya matematiska begreppen kontextualiseras genom det vardagliga samtalet och elever skolas efterhand in i ett veteskapligt tänkande och talande. 4.3 Problemlösning och öppna uppgifter Björkkvist (2001) definierar ett matematiskt problem som en matematisk uppgift för vilken lösningsmetoden inledningsvis är oklar för elever. Det innebär att definitionen är individrelaterad, det vill säga att den uppgift som är ett problem för en elev inte behöver vara det för en annan elev. För att så många elever som möjligt skall uppleva en uppgift som ett problem kan lärare använda sig av öppna uppgifter. Dessa uppgifter fastställer inte hur elever skall lösa dem, utan erbjuder många möjligheter och tankegångar. Användningen av öppna uppgifter är utvecklande för den matematiska kommunikationen inom undervisningsgruppen, eftersom elever i samspel med andra synliggör sina egna tankar och får ta del av andra strategier. Kursplanen i matematik (Skolverket 2000) uttrycker en strävan om att elever skall förstå och kunna lösa problem med hjälp av matematik. I förhållande till det ursprungliga problemet skall elever även kunna tolka och värdera lösningen. Vidare betonar kursplanen att problemlösning är ett medel för att nå matematiskt tänkande. Jaworski (2000) ger ytterligare tyngd åt resonemanget när hon uttrycker att ett av de viktigaste målen för all matematikundervisning är att utveckla elevers lust och förmåga att lösa problem. Författaren menar att samtidigt som problemlösning är ett mål är det även ett medel att stimulera elevers intresse och tänkande. Lpo 94 (Lärarförbundet 2001) uttrycker att elever skall kunna förhålla sig till olika alternativ vid bildandet av kunskap och inse konsekvenserna av dessa. Ahlberg (1991) framhåller att hur ett problem ser ut och är uppbyggt är av betydelse för hur elever kan 16

17 lösa uppgiften. För att få ett gott samarbete vid problemlösning i grupp, menar författaren att det krävs att uppgiften är formulerad på ett sätt som inbjuder till samarbete. Ju mer öppet ett problem är, desto bättre kommunikation och samarbete kan ske i gruppen. Det bör dock tilläggas att elever behöver inskolning och vana vid att lösa öppna problem, för att arbetet skall fungera optimalt. Genom problemlösning och öppna uppgifter utvecklar elever tankar, idéer, självförtroende, analysförmåga och kreativitet. Dessutom lär de sig att planera, upptäcka samband och skaffa sig beredskap för att klara situationer i livet (Emanuelsson 2000). Björkqvist (2001) utvecklar resonemanget när han menar att problemlösning är ett sätt att lära för framtiden, då individer förväntas kunna lösa problem inom många olika områden med hjälp av skolkunskaperna. Emanuelsson (2000) framhåller att för att elever skall kunna förstå och påverka omvärlden som fullvärdig medlem av det demokratiska samhället behöver de kunna hantera den ökande användningen av problemlösning i matematik. Björkqvist (2001) påpekar att problemlösning ofta är förknippat med möjligheter till förnyade utmaningar i form av nya problem genom till exempel variation och generalisering, vilka i sin tur leder vidare till fler frågeställningar. Problemlösning i form av öppna uppgifter bör därför vara en ofta återkommande del av det matematiska innehållet i undervisningen, när kommande generationer bygger upp sin egen matematiska kunskap. Fördelar med att kunna lösa problem beskriver Olsson (2000), som menar att problemlösning kan vara ett medel för elever att vid arbete i grupp utveckla social kompetens och sitt språk. Dessutom är problemlösning i grupp ett sätt att få elever att kommunicera och reflektera genom att berätta om och argumentera för sina lösningar samt lyssna till och tolka andras lösningar. Lester (1996) skriver att förmågan att lösa problem och öppna uppgifter i matematik är en process som utvecklas långsamt och under lång tid, vilket beror på att det krävs mycket mer än endast direkta tillämpningar av matematiska operationer. Författaren menar att en vanlig orsak till att elever har svårigheter med problemlösning är att de tolkar och 17

18 använder de matematiska begreppen på ett felaktigt sätt. Malmer (1984) betonar i sammanhanget att när elever skall inskolas i problemlösningsprocesser, är det avgörande att problemets omfattning när det gäller matematiska uträkningar begränsas. Problemet skall till en början, enligt författaren, endast uppmana elever att kommunicera med varandra och inte att utföra några räkneoperationer eller formella redovisningar. För att elever skall utveckla sin förmåga att lösa problem krävs att de möter olika sorters uppgifter vid återkommande tillfällen och att undervisningen utgår från elevers eget sätt att lösa dessa (Emanuelsson 2000). När elever löser matematiska problem utvecklas deras tankeprocesser, vilka krävs för en framgångsrik problemlösning. Polya (1990) utvecklar resonemanget kring tankeprocessen när han beskriver den i fyra steg. Det första steget innebär att elever måste förstå innehållet i problemet och i det andra steget gör de upp en plan för hur det skall lösas. Vidare använder elever sin valda strategi i det tredje steget och slutligen tittar de tillbaka på problemet samt reflekterar över lösningen i förhållande till ursprungssituationen. Unenge (1988) beskriver olika strategier för hur elever kan lösa ett problem. En vanlig lösningsstrategi är att utifrån sin erfarenhet gissa, vilket följs av prövning och kontroll av denna. En annan strategi är att elever frågar någon som de tror klarar av att lösa problemet. Ytterligare en strategi går ut på att de härleder problemet, genom att de upptäcker likheter med ett annat känt problem eller fenomen. 4.4 Arbete i grupp Riesbeck (2000) nämner att elever utvecklar kunskap när de samtalar och förklarar för andra hur de tänker. Eftersom yngre elever ofta saknar språk för att klargöra vad de gör och tänker, är det viktigt med arbete i grupp där de matematiska begreppen kan användas i ett naturligt sammanhang och på så sätt förankras hos dem. Författaren betonar att den önskvärda samtalsformen, det vill säga användandet av matematiska begrepp i rätt sammanhang, förmodligen förverkligas först efter en tids inskolning. Arbete i grupp och interaktion utvecklar dessutom, enligt Wahlström (1993), en ökad förståelse och acceptans för olika åsikter och tankesätt. Elever tränar genom interaktion och samspel sin 18

19 förmåga att stå för sin egen åsikt, även om den inte delas av någon annan. Detta leder i sin tur till en ökad tilltro till sig själv och sin förmåga. Jaworski (1998) utvecklar vikten av interaktion och grupparbete i matematikundervisningen. Hon menar att grupparbete är ett relevant medel för inlärning av matematik, och interaktion i grupp främjar den individuella utvecklingen hos elever. När de konverserar och interagerar med andra, leder samspelet till att de klarar av att ta sig an ett problem, uttrycka det matematiskt, leta efter en lösning samt pröva om den är hållbar i förhållande till ursprungsproblemet. Gruppens samspel inspirerar dessutom ofta elever att överskrida det ursprungliga problemet för att undersöka vidare frågor och nya problemställningar. Således växer elevers kunskaper genom interaktion. Vidare kan de genom arbete i grupp utvecklas så att de på olika sätt klarar av att bidra till lösningar av problem. Ahlberg (1991) menar att hur många medlemmar som skall ingå i en grupp beror på uppgiftens omfång. När en uppgift är tämligen omfattande menar hon att fyra elever är ett lämpligt antal. Fler än fyra gruppmedlemmar kan ge sämre kvalitet på kommunikationen, eftersom det då blir färre tillfällen för var och en att uttrycka sig. Det kan även uppstå svårigheter för elever att lyssna och behålla koncentrationen. Dessutom ställs högre krav på den sociala organisationen, vilken innebär vem som skall tala och när det skall ske. Alfwedson (2002) utvecklar resonemanget och anser att det finns två faktorer som bör tas hänsyn till vid val av gruppstorlek, nämligen kommunikation och resurser i form av kunskap i gruppen. När gruppen är för stor uppstår kontakt- och kommunikationsproblem genom att eleverna inte hör och ser varandra samt en risk att aktiviteten blir ojämnt fördelad mellan medlemmarna i gruppen. Samtidigt kan alltför små grupper råka ut för problemet att medlemmarna tillsammans inte har tillräckliga kunskaper och resurser för att lösa uppgiften. Wahlström (1993) anser att en grupps kompetens är större än den sammanlagda kapaciteten hos var och en av gruppmedlemmarna. Problem löses sällan av en enda person utan genom tankeutbyte och diskussioner med andra. 19

20 Wahlström (1993) framhåller att gruppen skall vara heterogen, det vill säga hög- och lågpresterande elever arbetar tillsammans. Författaren menar att den skall vara lika oenhetlig som klassen i övrigt är. Såväl ledare som de som behöver ledas bör fördelas jämnt i gruppen samtidigt som det i gruppen bör vara en jämn fördelning mellan könen. Ahlberg (1991) anser att gruppens sammansättning skall ske utifrån såväl inlärningsmässiga som sociala faktorer och den skall till en början vara heterogen. Så småningom är det dock lämpligt att låta grupperna vara homogena eftersom lågpresterande elever kan ha svårt att inta ledarrollen när de arbetar med högpresterande elever. Samtidigt kan inte högpresterande elever i samma utsträckning bli tillräckligt utmanade när de arbetar tillsammans med lågpresterande elever. 4.5 Lärarens roll vid grupparbete Alfwedson (2002) skriver att lärares roll vid grupparbete skiljer sig åt i några avseenden från rollen hon har vid traditionell undervisning, beroende på elevers erfarenhet och kunskap av grupparbete. När elever är ovana vid att arbeta i grupp behöver lärare i större utsträckning strukturera och styra verksamheten. Däremot är lärares roll vid de grupparbeten där elever har en viss vana av arbete i grupp, av mer handledande karaktär. Att som lärare finnas till hands för att vägleda och motivera vid grupparbete är viktigt, menar Alfwedson. Ahlberg (1991) påpekar att för att samarbetet i gruppen skall kunna fungera bör elever känna att läraren är intresserad av deras tankar och respekterar deras synpunkter. Lärare skall vara ett stöd för sina elever, uppmuntra dem att lyssna på andra och framför allt inspirera dem att våga framföra sina idéer och tankar. Pehkonen (2001) menar att lärares inställningar och attityder till matematik påverkar elevers inställning och attityder, vilket har en betydande roll vid arbete i grupp. Vidare framhåller han att uppfattningar och lärande interagerar och påverkar varandra i ett ständigt samspel. Enligt Malmer (2002) måste lärare som undervisar i matematik vara medvetna om språkets och tänkandets betydelse för begreppsbildningen. Det handlar både om språket som elever möter i uppgifter och språket läraren använder i undervisningen. Malmer 20

21 anser att elevers ordförråd betyder oerhört mycket, eftersom orden ger uttryck för den kompetens de besitter. Genom att utnyttja naturliga och autentiska situationer där elever kan bearbeta ett matematiskt innehåll, genom exempelvis gruppuppgifter eller sällskapsspel, kan lärare få information om deras språkliga utgångsläge. Riesbeck (2000) skriver att elever i ett självstyrt arbete i grupp inte klarar av att ta till sig ett vetenskapligt matematiskt språkbruk och tänkande. Det är sällan gruppen på egen hand reder ut och uppmärksammar innebördsskillnader mellan olika uttryck och begrepp. Begreppsförståelsen som elever utvecklar vid ett självstyrt arbete är i första hand grundad i ett vardagligt språk. Även när elever använder matematiska termer är innebörden grundad i en vardaglig diskurs, menar Riesbeck, och påpekar att de inte inser begreppens innebörd i en matematisk och vetenskaplig diskurs. Ett exempel på detta kan vara när elever nämner begreppet triangel, men inom sig tänker på trekant. Lärares uppgift är i sammanhanget att förstå vad de säger och handleda dem så att de kan tydliggöra och fördjupa sina tankar. Lärare bör dessutom ingripa i diskussionen för att hjälpa dem att, inte bara i sitt språk utan även i sitt tänkande, kunna gå från en vardaglig diskurs till en matematisk och vetenskaplig diskurs. För att den vetenskapliga diskursen skall befästas hos elever, förutsätts att deras lärare hjälper dem att kontextualisera denna. 4.6 Begreppsdefinitioner Begreppsdefinitionerna är en utveckling av vad vi åsyftar när vi använder oss av olika begrepp i detta examensarbete. Begreppsdefinitionerna är vår egen tolkning av begreppen och stöd för tolkningen finns i den teoretiska bakgrunden. Kommunikation avser i detta arbete främst den muntliga interaktion som sker mellan elever. Detta finner vi stöd för hos Wistedt (2001) som uttrycker att kommunikation innebär att i samspel med andra skapa och utbyta innebörder att samtala. 21

22 Begreppsbildning betyder i detta arbete att elever får ökad och fördjupad förståelse för väsentliga begrepp inom matematiken. Begreppsbildning innebär utveckling av matematiska kunskaper (Kronqvist & Malmer 1993). När elever förankrar de matematiska begreppen och kunskaperna blir de medvetna om de matematiska processerna som begreppsutvecklingen i sin tur innebär. Interaktion syftar på det samspel som sker inom gruppen. Samspelet innebär att elever samtalar och förklarar för varandra (Riesbeck 2000). I begreppet interaktion innefattas även att kommunicera med kroppsspråk genom gester, symboler och ansiktsuttryck, vilket vi finner stöd för hos Wistedt (2001). Problemlösning avser det arbete elever utför när de löser ett matematiskt problem. Hur problemet skall lösas är till en början oklart (Björkqvist 2001) och de måste själv uppfatta och förstå innehållet i problemet. För att så många elever som möjligt skall uppleva en uppgift som ett problem kan lärare använda sig av öppna uppgifter. Vidare måste de finna en strategi, lösa problemet, reflektera över lösningen samt pröva den i förhållande till ursprungsproblemet (Riesbeck 2000). Öppen uppgift innebär i detta arbete ett problem, vilket inte har ett givet och korrekt svar. Björkqvist (2001) ger underlag åt definitionen när han menar att dessa problem inte fastställer hur elever skall lösa dem, utan erbjuder möjlighet till många lösningar och tankegångar. Problemet som skall lösas under grupparbetet i denna studie är av öppen karaktär och omfattar kommunikation kring matematiska begrepp. 22

23 5 METOD Syftet med studien var att undersöka hur elever i skolår fyra kommunicerade under problemlösning kring en öppen uppgift i grupp, genom att uppmärksamma och göra en granskning av innehållet i kommunikationen. För att kunna granska innehållet i kommunikationen och få insyn i vad eleverna talade om under arbetet observerades dem medan de genomförde uppgiften. Enligt Patel & Davidsson (2003) är observationer framförallt användbara när information skall erhållas inom områden som berör beteenden och skeenden i naturliga förhållanden samt inom laborativa situationer. En av fördelarna med observation är att den är relativt oberoende av individers villighet att lämna information. Den kräver mindre av de utvalda individerna än de flesta andra metoder i form av aktivitet och samarbete. En nackdel med observation är att det är svårt att veta om beteenden som observeras är representativa (Patel & Davidsson 2003) och dessutom är det omöjligt att vara objektiv vid analys av det insamlade materialet (Ely 1993). I detta arbete användes ostrukturerad observation för att samla in underlag till undersökningen. En ostrukturerad observation har en låg grad av struktur, vilket innebär att den används när det inte är givet vilka specifika situationer och beteenden som skall observeras (Patel & Davidsson 2003). Den används således för att inhämta så mycket information som möjligt kring ett visst problemområde. I detta arbete dokumenterades elevernas samspel och diskussion kring ett matematiskt öppet problem, genom bandinspelning, för att på ett enkelt sätt identifiera sådana aspekter i deras beteende som var relevanta för undersökningen. I denna studie användes förutom observation även enkät (bilaga 3) för att få svar på frågeställningarna. Användandet av enkät ökar reliabiliteten för en undersökning enligt Lundström (050809) genom att samma frågor ställs till samtliga deltagare och samma förutsättningar ges till alla. Enkäten var anonym och bestod av varierande frågor, vilka var formulerade för att ge en övergripande beskrivning av elevernas attityder. De flesta frågor i enkäten var så kallade alternativfrågor, där eleverna fick välja ett eller flera svarsalternativ på frågorna. I detta arbete fick eleverna i alternativfrågorna fyra 23

24 svarsmöjligheter, vilket bidrog till spetsning av frågorna samt att de i större utsträckning tvingades att ta ställning än om det funnits ett udda antal alternativ (Bell 2000). Enligt Lundström (050809) är enkätens fördelar att det på ett förhållandevis snabbt och enkelt sätt går att samla in en större mängd data, det är lättare att dra slutsatser och generalisera, genom anonymitet kan känsliga frågor bli besvarade samt korta och fasta svarsalternativ accepteras. Nackdelar med enkäten kan å andra sidan vara att svaren är korta och ytliga, det är svårt med uppföljning på grund av anonymiteten, svårigheter kan uppstå med att tolka ärligheten hos de svarande och öppna frågors svar kan vara svårbearbetade. 5.1 Urval För att få svar på frågeställningarna genomfördes empiriska undersökningar på våra båda partnerskolor. Valet att genomföra undersökningen på partnerskolorna grundades på att vi redan var bekanta med skolor och personal, dock kände vi inte eleverna sedan tidigare. Skolorna var belägna på mindre orter med ett enligt lärarna förhållandevis bra upptagningsområde, där elevernas socioekonomiska bakgrund var stabil. Lärarna ingick i arbetslag, uppdelade efter varje skolår på ett horisontellt plan och undervisningen bedrevs på ett traditionellt sätt. Uppgiften genomfördes med totalt fyra grupper med elever i skolår fyra. Varje grupp bestod av fyra elever och i samtliga grupper ingick både pojkar och flickor. Med lärarnas hjälp valde vi ut grupper som var heterogena när det hos eleverna gällde personliga egenskaper, kön och kunskap. Valen grundades på Ahlbergs (1991) teorier om att gruppen bör vara heterogen och att fyra elever är ett lämpligt antal vid större gruppuppgifter. 5.2 Datainsamlingsmetoder För att få svar på frågeställningarna kring elevernas kommunikation observerades denna. Uppgiften var ett öppet matematiskt problem, som genomfördes i grupp. Medan gruppen arbetade med uppgiften, spelades kommunikationen in på bandspelare och anteckningar fördes. Vi hade tidigare frågat lärarna vilken erfarenhet eleverna hade av att arbeta på 24

25 detta sätt och det visade sig att de inte var särskilt vana vid arbetssättet. Därför valde vi att delta i observationen, genom att handleda och stötta gruppen i form av en deltagande observation (Bell 2000). Valet att delta i grupparbetet baserades på Alfwedsons (2002) och Riesbecks (2000) hypoteser om elevers behov av lärares närvaro och vägledning vid grupparbete. Deltagandet skedde sparsamt i form av frågor eller kommentarer vid behov, men i så liten utsträckning som möjligt och endast då gruppen tystnade eller då det verkade som om eleverna inte klarade av att utveckla och uttrycka sina tankar på egen hand eller för att uppmärksamma dem på att lyssna och ta del av hur de andra i gruppen tänkte. Vår roll var för övrigt opartisk och vi bidrog inte med någon information för att lösa problemet. Jakobsson (2001) skriver att fördelen med att vara deltagande observatör är att elevers strategier vid problemlösningen kan studeras samtidigt som den sker. En nackdel med att delta i en observation kan dock vara att observatören stör gruppens naturliga beteende och hämmar diskussionen. Bell (2000) definierar deltagande observation som en kreativ och emotionell erfarenhet där den observerande lever sig in i och förstår omgivningen, där iakttagande och lyssnande sammanvävs med betraktande och frågande. Efter gruppuppgiften fick eleverna genom en enkät utvärdera sitt arbete, hur samarbetet i gruppen hade fungerat och sin eventuella kunskapsutveckling. Enkäten användes i denna undersökning för att få en övergripande beskrivning av elevernas attityder. 5.3 Procedur Arbetet inleddes i de två klasserna med en presentation av oss själva och anledningen till att vi var där. Ett missiv skickades till målsman för eleverna (bilaga 1), i vilket vi åter presenterade oss själva samt undersökningens metoder och syfte. I brevet kunde målsman välja om eleverna skulle få delta i undersökningen samt möjlighet att kontakta oss för att ställa frågor kring vårt arbete. Samtliga involverade fick även reda på att de när som helst kunde avbryta sin medverkan. I brevet garanterades anonymitet av såväl skola som elever och lärare. Brevet skulle undertecknas av målsman och skickas tillbaka till skolan. 25

26 Undersökningen genomfördes i ett mindre rum som var avskilt från klassrummet. Vi satt tillsammans med gruppen kring ett bord och bandspelaren stod synlig mitt på bordet. Gruppen informerades om att uppgiften gick ut på en observation av hur och vad de tänkte och resonerade kring, när problemet löstes. Grupperna hade obegränsat med tid till sitt förfogande för att utföra uppgiften. Eleverna fick lyssna på en del av inspelningen efteråt. Eleverna i undersökningen mötte ett problem i form av en öppen uppgift, som i första hand gick ut på kommunikation och utveckling av den matematiska begreppsbildningen. Enligt författarna i den teoretiska bakgrunden lägger kommunikation och begreppsbildning grund för elevers fortsatta problemlösningsförmåga och utifrån detta valdes ett problem som riktade fokus mot kommunikation och matematiska begrepp. Valet av uppgift grundades även på Lesters (1996) och Malmers (1984) tankegångar kring elevers utveckling av problemlösningsförmågan. Författarna framhåller att elever till en början inte skall möta problem som innehåller krav på matematiska uträkningar. Eftersom eleverna i undersökningen enligt lärarna hade begränsad vana vid att lösa matematiska problem i grupp valdes ett sådant problem. Uppgiften som eleverna genomförde i grupp var av öppen karaktär, det vill säga det fanns inget givet korrekt svar. På bordet som eleverna satt runt, placerades fyra stora röda kort på vilka det stod addition, subtraktion, multiplikation och division (bilaga 2). Vi gav en beskrivning av vad uppgiften gick ut på och eleverna fick möjlighet att ställa frågor. Därefter delades 20 små gula kort (bilaga 2) ut till gruppen så att samtliga fick fem kort var med olika matematiska begrepp. Vissa begrepp var direkt kopplade till de fyra räknesätten, medan andra inte hade någon uppenbar anknytning till något av dem. Eleverna fick i uppgift att i turordning placera ett av sina små kort vid något av de större korten, med de fyra räknesätten, samt motivera varför de valde den placeringen. Sedan skulle de även motivera sitt val genom att berätta hur de hade tänkt. Övriga i gruppen fick även möjlighet att förklara sina tankar och idéer kring begreppet. Det fanns utrymme för flera olika sätt att tänka, eftersom inte något specifikt svar var rätt eller fel. Då eleverna 26

27 behövde hjälp med att placera kortet, resonerade gruppen tillsammans fram ett gemensamt svar som samtliga var överens om. Eleverna fick i samma lokal, efter gruppuppgiften, svara på frågor i en enkät (bilaga 3). Dessa frågor berörde deras synsätt på matematik och gruppuppgiften. Frågorna handlade även om deras insats i uppgiften och en eventuell kunskapsutveckling. Efter observationen och elevenkäten sammanställdes data inför analysen. I resultatet redovisas de enkätfrågor som är relevanta för undersökningen. 5.4 Validitet och reliabilitet Bell (2000) framhåller att reliabilitet kan översättas med tillförlitlighet och i detta arbete stärktes denna genom att undersökningen genomfördes av två personer och på två olika skolor. Validitet som innebär giltighet är ett betydligt mer komplicerat begrepp (Bell 2000). Validitet är ett mått på om en viss fråga mäter eller beskriver det man vill att den ska mäta eller beskriva. Att konkret mäta detta i en undersökning kan innebära svårigheter (Bell 2000) och därför var det i sammanhanget avgörande att kritiskt granska såväl frågeställningarna i studien som frågorna i enkäten. Vid analys av insamlat material är det omöjligt att vara objektiv och helt fri från förutfattade meningar (Ely 1993). Vi som författare till detta examensarbete insåg att det fanns flera olika tolkningar av de företeelser som förekom i grupparbetena och att det var viktigt att sträva efter att vara så objektiv som möjligt. Jakobsson (2001) påpekar att det är avgörande att sträva efter att öka sin medvetenhet kring de egna erfarenheterna och referensramarna, vilka i stor omfattning påverkar tolkningen. I analysen i detta arbete togs, genom en strävan efter ökad medvetenhet, hänsyn till att tolkningen till viss del var subjektiv. Denna medvetenhet skulle kunna bidra till en ökning av slutsatsernas giltighet. 27

28 5.5 Databearbetning För att bearbeta materialet transkriberades bandinspelningarna från observationerna. Texterna lästes flertalet gånger och anteckningar fördes vid dessa tillfällen. Under läsningen försökte vi se mönster och teman i elevernas kommunikation. Intentionen under analysen av materielen var att försöka förstå helheten av elevernas kommunikation och interaktion. För att få en överblick av vad eleverna talade om under gruppuppgiften delades deras kommunikation in i två huvudkategorier. Den första kategorin (A) behandlar kommunikation som berör problemlösningsuppgiften. Denna kategori innefattar inte bara kommunikation som innehåller matematik eller annan viktig information för lösningen av problemet, utan även kommentarer som på annat sätt för arbetet framåt. Det var av vikt att eleverna i denna kategori fokuserade på uppgiften. Den andra kategorin (B) är kommunikation kring innehåll som inte på något sätt berör problemlösningsuppgiften eller dess lösning. Den första kategorin har vidare delats in i underrubriker, vilka behandlar hur eleverna på olika sätt kommunicerade kring problemet. Samtliga kategorier handlar om att bidra till lösningen av problemet. För att bilda dessa kategorier utgick vi från Unenges (1988) antaganden kring elevers strategier för lösning av problem, vilka är gissa, fråga, och härleda. Även Polyas (1990) beskrivning av hur elever i fyra steg löser ett problem utgör underlag för kategorierna. De fyra stegen är att förstå innehållet i problemet, göra upp en plan för hur det skall lösas, använda sin valda strategi och slutligen titta tillbaka på problemet och reflektera över lösningen i förhållande till ursprungssituationen. Dessutom beaktades Kronqvist och Malmers (1993) teser kring vilka egenskaper läraren bör se till att elever utvecklar genom samtal och kommunikation. Dessa egenskaper är att kunna reflektera, formulera sina egna tankar i ord, ta del av andra strategier än de egna och dra logiska slutsatser. Genom dessa antaganden och genom mönster som framkommit under analys av materialet utarbetades sju kategorier som behandlar hur eleverna på olika sätt kommunicerade kring problemet. 28

29 Kategorier av elevernas kommunikation och hur de bidrar till att lösa problemet i detta arbete: 1. Ger förslag till lösning av problemet och förklarar hur de har tänkt, även härledning. 2. Ger förslag till lösning av problemet utan att förklara hur de har tänkt, även gissning. 3. Stödjer eller instämmer i andra elevers uttalanden. 4. Tar avstånd från andra elevers uttalanden. 5. Söker information av andra eller inom sig själv, det vill säga tänker högt. 6. Bidrar med information och fakta som de tycker är relevant för uppgiften, även ger svar då någon annan elev ställer en fråga. 7. Driver på andra sätt arbetet framåt. Efter genomgången av det transkriberade materialet skapades kategorier för hur eleverna använde de matematiska begreppen. För att analysera deras begreppsanvändning tolkades Vygotskijs (1934) och Riesbecks (2000) resonemang kring elevers utveckling av förståelsen för de vetenskapliga begreppen som en trappa med tre steg. A. Eleverna använder vardagliga begrepp. B. Eleverna använder vetenskapliga begrepp men stödjer sig på en vardaglig diskurs. C. Eleverna har utvecklat en vetenskaplig diskurs. 29

Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden.

Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden. Författningsstöd Övergripande författningsstöd 1 kap. 4 skollagen Utbildningen inom skolväsendet syftar till att barn och elever ska inhämta och utveckla kunskaper och värden. Den ska främja alla barns

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

ÖSTERMALM BARN OCH UNGDOM

ÖSTERMALM BARN OCH UNGDOM ÖSTERMALM BARN OCH UNGDOM Handläggare: Jacky Cohen TJÄNSTEUTLÅTANDE DNR 2009-907-400 1 (7) 2009-11-30 BILAGA 2. MÅL - INDIKATORER - ARBETSSÄTT - AKTIVITETER... 2 1. NÄMNDMÅL:... 2 A. NORMER OCH VÄRDEN...

Läs mer

Kursbeskrivning utbud grundläggande kurser hösten Engelska

Kursbeskrivning utbud grundläggande kurser hösten Engelska Kursbeskrivning utbud grundläggande kurser hösten 2016 E Engelska Undervisningen i kursen engelska inom kommunal vuxenutbildning på grundläggande nivå syftar till att eleven utvecklar kunskaper i engelska,

Läs mer

Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå.

Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Läroplanens mål Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Mål att sträva mot är det som styr planeringen av undervisningen och gäller för alla årskurser.

Läs mer

Broskolans röda tråd i Svenska

Broskolans röda tråd i Svenska Broskolans röda tråd i Svenska Regering och riksdag har fastställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.

Läs mer

ENGELSKA. Ämnets syfte. Kurser i ämnet

ENGELSKA. Ämnets syfte. Kurser i ämnet ENGELSKA Det engelska språket omger oss i vardagen och används inom skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska ökar individens möjligheter att ingå i olika sociala

Läs mer

Ämne - Engelska. Ämnets syfte

Ämne - Engelska. Ämnets syfte Ämne - Engelska Det engelska språket omger oss i vardagen och används inom skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska ökar individens möjligheter att ingå i olika

Läs mer

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun Bilaga 1 Verksam hetsrapport 2015-02-18 Dnr 400-2014:2725 efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun 1 (8) Innehåll Inledning Bakgrundsuppgifter

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Undervisningen i ämnet modersmål ska ge eleverna förutsättningar att utveckla följande:

Undervisningen i ämnet modersmål ska ge eleverna förutsättningar att utveckla följande: MODERSMÅL Goda kunskaper i modersmålet gagnar lärandet av svenska, andra språk och andra ämnen i och utanför skolan. Ett rikt och varierat modersmål är betydelsefullt för att reflektera över, förstå, värdera

Läs mer

MODERSMÅL. Ämnets syfte. Undervisningen i ämnet modersmål ska ge eleverna förutsättningar att utveckla följande: Kurser i ämnet

MODERSMÅL. Ämnets syfte. Undervisningen i ämnet modersmål ska ge eleverna förutsättningar att utveckla följande: Kurser i ämnet MODERSMÅL Goda kunskaper i modersmålet gagnar lärandet av svenska, andra språk och andra ämnen i och utanför skolan. Ett rikt och varierat modersmål är betydelsefullt för att reflektera över, förstå, värdera

Läs mer

1. Skolans värdegrund och uppdrag

1. Skolans värdegrund och uppdrag 1. Skolans värdegrund och uppdrag Grundläggande värden Skolväsendet vilar på demokratins grund. Skollagen (2010:800) slår fast att utbildningen inom skolväsendet syftar till att elever ska inhämta och

Läs mer

Funktionell kvalitet VERKTYG FÖR BEDÖMNING AV FÖRSKOLANS MÅLUPPFYLLELSE OCH PEDAGOGISKA PROCESSER

Funktionell kvalitet VERKTYG FÖR BEDÖMNING AV FÖRSKOLANS MÅLUPPFYLLELSE OCH PEDAGOGISKA PROCESSER Funktionell kvalitet VERKTYG FÖR BEDÖMNING AV FÖRSKOLANS MÅLUPPFYLLELSE OCH PEDAGOGISKA PROCESSER GENERELL KARAKTÄR FÖRSKOLANS MÅLUPPFYLLELSE MÅL Målen anger inriktningen på förskolans arbete och därmed

Läs mer

Ämnesblock matematik 112,5 hp

Ämnesblock matematik 112,5 hp 2011-12-15 Ämnesblock matematik 112,5 hp för undervisning i grundskolans år 7-9 Ämnesblocket omfattar ämnesstudier inklusive ämnesdidaktik om 90 hp, utbildningsvetenskaplig kärna 7,5 hp och VFU 15 hp.

Läs mer

Förslag den 25 september Engelska

Förslag den 25 september Engelska Engelska Det engelska språket omger oss i vardagen och används inom skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska ökar individens möjligheter att ingå i olika sociala

Läs mer

Lpfö98/rev2016 och Spana på mellanmål!

Lpfö98/rev2016 och Spana på mellanmål! 1 Innehåll Lpfö98/rev2016 och Spana på mellanmål!... 3 Ur 1. Förskolans värdegrund och uppdrag... 3 Grundläggande värden... 3 Saklighet och allsidighet... 3 Förskolans uppdrag... 3 Ur 2. Mål och riktlinjer...

Läs mer

UTVECKLINGSGUIDE FÖRSKOLLÄRARPROGRAMMET

UTVECKLINGSGUIDE FÖRSKOLLÄRARPROGRAMMET UTVECKLINGSGUIDE FÖRSKOLLÄRARPROGRAMMET För studenter antagna fr.o.m. H 11 Version augusti 2015 1 2 Utvecklingsguide och utvecklingsplan som redskap för lärande Utvecklingsguidens huvudsyfte är att erbjuda

Läs mer

Undervisningen i ämnet engelska ska ge eleverna förutsättningar att utveckla följande:

Undervisningen i ämnet engelska ska ge eleverna förutsättningar att utveckla följande: ENGELSKA Det engelska språket omger oss i vardagen och används inom skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska ökar individens möjligheter att ingå i olika sociala

Läs mer

Förskoleavdelningen. Lokal Arbetsplan för Kotten

Förskoleavdelningen. Lokal Arbetsplan för Kotten Förskoleavdelningen Lokal Arbetsplan för Kotten 2016-2017 Innehållsförteckning: 1. Förskolans värdegrund 3 2. Mål och riktlinjer 4 2.1 Normer och värden 4 2.2 Utveckling och lärande 5-6 2.3 Barns inflytande

Läs mer

ENGELSKA FÖR DÖVA. Ämnets syfte

ENGELSKA FÖR DÖVA. Ämnets syfte ENGELSKA FÖR DÖVA Det engelska språket omger oss i vardagen och används inom skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska ökar individens möjligheter att ingå i olika

Läs mer

Avdelning Blå. Handlingsplan för Markhedens Förskola 2015/ Sid 1 (17) V A L B O F Ö R S K O L E E N H E T. Tfn (vx),

Avdelning Blå. Handlingsplan för Markhedens Förskola 2015/ Sid 1 (17) V A L B O F Ö R S K O L E E N H E T. Tfn (vx), 2011-10-17 Sid 1 (17) Handlingsplan för Markhedens Förskola Avdelning Blå 2015/2016 V A L B O F Ö R S K O L E E N H E T Tfn 026-178000 (vx), 026-17 (dir) www.gavle.se Sid 2 (17) 2.1 NORMER OCH VÄRDEN Mål

Läs mer

Örgryte-Härlanda. Förskoleklass en lekfull övergång till skolan.

Örgryte-Härlanda. Förskoleklass en lekfull övergång till skolan. Örgryte-Härlanda Förskoleklass en lekfull övergång till skolan www.goteborg.se Förskoleklassens viktigaste pedagogiska redskap är lek, skapande och elevens eget utforskande. Genom leken stimuleras elevens

Läs mer

UTVECKLINGSGUIDE & Utvecklingsplan. GRUNDLÄRARPROGRAMMET FRITIDSHEM För studenter antagna fr.o.m. H 11 (reviderad )

UTVECKLINGSGUIDE & Utvecklingsplan. GRUNDLÄRARPROGRAMMET FRITIDSHEM För studenter antagna fr.o.m. H 11 (reviderad ) UTVECKLINGSGUIDE & Utvecklingsplan GRUNDLÄRARPROGRAMMET FRITIDSHEM För studenter antagna fr.o.m. H 11 (reviderad 161206) 1 2 Utvecklingsguide och utvecklingsplan som redskap för lärande Utvecklingsguidens

Läs mer

Handlingsplan GEM förskola

Handlingsplan GEM förskola 1 (12) Handlingsplan förskola Dokumenttyp: Handlingsplan Beslutad av: BU-förvaltningens ledningsgrupp (2013-08-29) Gäller för: Förskolorna i Vetlanda kommun Giltig fr.o.m.: 2013-08-29 Dokumentansvarig:

Läs mer

KOPPLING TILL SKOLANS STYRDOKUMENT

KOPPLING TILL SKOLANS STYRDOKUMENT SIDA 1/5 FÖR LÄRARE UPPDRAG: DEMOKRATI vänder sig till lärare som undervisar om demokrati, tolerans och mänskliga rättigheter i åk nio och i gymnasieskolan. Här finns stöd och inspiration i form av ett

Läs mer

MSPR 3.6 MODERNA SPRÅK. Syfte

MSPR 3.6 MODERNA SPRÅK. Syfte 3.6 MODERNA SPRÅK Språk är människans främsta redskap för att tänka, kommunicera och lära. Att ha kunskaper i flera språk kan ge nya perspektiv på omvärlden, ökade möjligheter till kontakter och större

Läs mer

3 Förskoleklassen. Förskoleklassens syfte och centrala innehåll

3 Förskoleklassen. Förskoleklassens syfte och centrala innehåll 3 Förskoleklassen Förskoleklassens syfte och centrala innehåll Undervisningen i en förskoleklass som anordnas vid en skolenhet med specialskola ska utgå från den värdegrund och det uppdrag samt de övergripande

Läs mer

HANDLINGSPLAN. Språkutveckling. För Skinnskattebergs kommuns förskolor SPRÅKLIG MEDVETENHET LYSSNA, SAMTALA, KOMMUNICERA

HANDLINGSPLAN. Språkutveckling. För Skinnskattebergs kommuns förskolor SPRÅKLIG MEDVETENHET LYSSNA, SAMTALA, KOMMUNICERA HANDLINGSPLAN Språkutveckling SPRÅKLIG MEDVETENHET LYSSNA, SAMTALA, KOMMUNICERA REFLEKTERA UPPTÄCKA OCH FÖRSTÅ SIN OMGIVNING För Skinnskattebergs kommuns förskolor 2018-2019 Innehållsförteckning 1. INLEDNING...

Läs mer

Verksamhetsrapport. Skoitnst.. 7.1,ktion.en

Verksamhetsrapport. Skoitnst.. 7.1,ktion.en Skoitnst.. 7.1,ktion.en Bilaga 1 Verksamhetsrapport Verksamhetsrapport efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid den fristående gymnasieskolan JENSEN gymnasium Uppsala i Uppsala

Läs mer

KOPPLING TILL LÄROPLANEN

KOPPLING TILL LÄROPLANEN KOPPLING TILL LÄROPLANEN Arbetet med de frågor som tas upp i MIK för mig kan kopplas till flera delar av de styrdokument som ligger till grund för skolans arbete. Det handlar om kunskaper och värden som

Läs mer

NATURVETENSKAPLIG SPETS INOM FÖRSÖKSVERKSAMHET MED RIKSREKRYTERANDE GYMNASIAL SPETSUTBILDNING

NATURVETENSKAPLIG SPETS INOM FÖRSÖKSVERKSAMHET MED RIKSREKRYTERANDE GYMNASIAL SPETSUTBILDNING NATURVETENSKAPLIG SPETS INOM FÖRSÖKSVERKSAMHET MED RIKSREKRYTERANDE GYMNASIAL SPETSUTBILDNING Ämnet naturvetenskaplig spets inom försöksverksamhet med riksrekryterande gymnasial spetsutbildning förbereder

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

Skolverkets förslag till reviderade kursplaner i svenska och svenska som andraspråk (arbetsmaterial 25 september 2019).

Skolverkets förslag till reviderade kursplaner i svenska och svenska som andraspråk (arbetsmaterial 25 september 2019). Skolverkets förslag till reviderade kursplaner i svenska och svenska som andraspråk (arbetsmaterial 25 september 2019). I detta dokument synliggörs föreslagna likheter och skillnader mellan kursplanerna.

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

Rektorernas roll i förskolans förändrade uppdrag

Rektorernas roll i förskolans förändrade uppdrag Rektorernas roll i förskolans förändrade uppdrag Naturvetenskap och teknik i förskolan Susanne Thulin & Ann Zetterqvist 2010 01-18 Innehåll Skolverkets förslag till förtydliganden i Lpfö när det gäller

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

VISÄTTRASKOLANS SPRÅKUTVECKLINGSPLAN

VISÄTTRASKOLANS SPRÅKUTVECKLINGSPLAN VISÄTTRASKOLANS SPRÅKUTVECKLINGSPLAN Syftet med den här utvecklingsplanen är att synliggöra hur vi på Visättraskolan ska arbeta för att all undervisning på vår skola ska vara språk-och kunskapsutvecklande.

Läs mer

Författningsstöd Förskolans arbete med matematik, naturvetenskap och teknik

Författningsstöd Förskolans arbete med matematik, naturvetenskap och teknik Författningsstöd Förskolans arbete med matematik, Behörighetskrav: Lärare och förskollärare: Vilka som får undervisa i skolväsendet Endast den som har legitimation som lärare eller förskollärare och är

Läs mer

Matematikundervisning genom problemlösning

Matematikundervisning genom problemlösning Matematikundervisning genom problemlösning En studie om lärares möjligheter att förändra sin undervisning Varför problemlösning i undervisningen? Matematikinlärning har setts traditionell som en successiv

Läs mer

KVALITETSINDIKATOR FÖR FÖRSKOLANS VERKSAMHET 2013

KVALITETSINDIKATOR FÖR FÖRSKOLANS VERKSAMHET 2013 UTBILDNINGSFÖRVALTNINGEN TILLHANDAHÅLLARAVDEL NINGEN SID 1 (8) 2012-10-12 KVALITETSINDIKATOR FÖR FÖRSKOLANS VERKSAMHET 2013 Självvärdering av hur förskolan utifrån läroplanen skapar förutsättningar för

Läs mer

Statens skolverks författningssamling

Statens skolverks författningssamling Statens skolverks författningssamling ISSN 1102-1950 Förordning om ändring i förordningen (SKOLFS 2010:250) om läroplan för specialskolan samt för förskoleklassen och fritidshemmet i vissa fall; SKOLFS

Läs mer

3 Förskoleklassen. Förskoleklassens syfte och centrala innehåll

3 Förskoleklassen. Förskoleklassens syfte och centrala innehåll 3 Förskoleklassen Förskoleklassens syfte och centrala innehåll Undervisningen i förskoleklass som anordnas vid en skolenhet med sameskola ska utgå från den värdegrund och det uppdrag samt de övergripande

Läs mer

Kursplan ENGELSKA. Ämnets syfte. Mål. Innehåll. Insikt med utsikt

Kursplan ENGELSKA. Ämnets syfte. Mål. Innehåll. Insikt med utsikt Kursplan ENGELSKA Ämnets syfte Undervisningen i ämnet engelska ska syfta till att deltagarna utvecklar språk- och omvärldskunskaper så att de kan, vill och vågar använda engelska i olika situationer och

Läs mer

för Rens förskolor Bollnäs kommun

för Rens förskolor Bollnäs kommun för Bollnäs kommun 2015-08-01 1 Helhetssyn synen på barns utveckling och lärande Återkommande diskuterar och reflekterar kring vad en helhetssyn på barns utveckling och lärande, utifrån läroplanen, innebär

Läs mer

SJÄLVSKATTNING. ett verktyg i det systematiska kvalitetsarbetet

SJÄLVSKATTNING. ett verktyg i det systematiska kvalitetsarbetet SJÄLVSKATTNING ett verktyg i det systematiska kvalitetsarbetet TYCK TILL OM FÖRSKOLANS KVALITET! Självskattningen består av 6 frågor. Frågorna följs av påståenden som är fördelade på en skala 7 som du

Läs mer

Kommunikation. Sammanhang. Utmaning. Östra Göinge kommun

Kommunikation. Sammanhang. Utmaning. Östra Göinge kommun Kommunikation Utmaning Sammanhang Motivation Förväntningar är grunden för vår pedagogiska plattform. Varje utvalt ord i vår plattform vilar på vetenskaplig grund eller beprövad erfarenhet. Läs mer om detta

Läs mer

Handlingsplan för Ängstugans förskola läsåret 2012/2013

Handlingsplan för Ängstugans förskola läsåret 2012/2013 Handlingsplan för Ängstugans förskola läsåret 2012/2013 Detta dokument ligger till grund för arbetet i förskolan och innehåller nedbrutna mål från Lpfö98 (reviderad 2010) samt Nyköpings kommuns tjänstegarantier.

Läs mer

Retorikplan för Ludvika kommun skriven läsåren 2010 13. Reviderad våren 2013. RETORIKPLAN för Ludvika kommun

Retorikplan för Ludvika kommun skriven läsåren 2010 13. Reviderad våren 2013. RETORIKPLAN för Ludvika kommun RETORIKPLAN för Ludvika kommun 1 Syfte och mål för våra elever Våga, vilja och kunna - tala inför andra - framföra sina åsikter - ta ställning för och emot Respektera de andra i gruppen Få stärkt självförtroende

Läs mer

Språk, lärande och identitetsutveckling är nära förknippade. Genom rika möjligheter att samtala, läsa och skriva ska varje

Språk, lärande och identitetsutveckling är nära förknippade. Genom rika möjligheter att samtala, läsa och skriva ska varje Språk, lärande och identitetsutveckling är nära förknippade. Genom rika möjligheter att samtala, läsa och skriva ska varje elev få utveckla sina möjligheter att kommunicera och därmed få tilltro till sin

Läs mer

Språk- och kunskapsutvecklande arbetssätt

Språk- och kunskapsutvecklande arbetssätt Språk- och kunskapsutvecklande arbetssätt Varför språk- och kunskapsutvecklande arbetssätt? Att bygga upp ett skolspråk för nyanlända tar 6-8 år. Alla lärare är språklärare! Firels resa från noll till

Läs mer

VERKSAMHETSPLAN NORDINGRÅ FÖRSKOLA

VERKSAMHETSPLAN NORDINGRÅ FÖRSKOLA VERKSAMHETSPLAN NORDINGRÅ FÖRSKOLA 2014/2015 2.1 NORMER OCH VÄRDEN Mål för likabehandlingsarbetet Mål Förskolan ska sträva efter att varje barn utvecklar: Öppenhet, respekt, solidaritet och ansvar. Förmåga

Läs mer

Gemensamma mål för fritidshemmen i Sparsör

Gemensamma mål för fritidshemmen i Sparsör Gemensamma mål för fritidshemmen i Sparsör Detta material Lust att lära och möjlighet till att lyckas är visionen som Borås stad har satt som inspiration för oss alla som arbetar inom stadens skolor, fritidshem

Läs mer

Måldokument för fritidshemmen inom Vård & bildning i Uppsala kommun

Måldokument för fritidshemmen inom Vård & bildning i Uppsala kommun Måldokument för fritidshemmen inom Vård & bildning i Uppsala kommun Om fritidshemmet Fritidshemmet erbjuder omsorg för elever i förskoleklass till och med årskurs 6, fritidshemmet har också ett särskilt

Läs mer

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl

Läs mer

Syfte och centralt innehåll för förskoleklass som anordnas vid en skolenhet med specialskola

Syfte och centralt innehåll för förskoleklass som anordnas vid en skolenhet med specialskola Regeringsredovisning: förslag till text i Lspec11 om förskoleklass U2015/191/S 2015-11-23 Dnr: 2015:201 Syfte och centralt innehåll för förskoleklass som anordnas vid en skolenhet med specialskola Undervisningen

Läs mer

Övergripande mål och riktlinjer - Lgr 11

Övergripande mål och riktlinjer - Lgr 11 Övergripande mål och riktlinjer - Lgr 11 2.1 NORMER OCH VÄRDEN Skolan ska aktivt och medvetet påverka och stimulera eleverna att omfatta vårt samhälles gemensamma värderingar och låta dem komma till uttryck

Läs mer

Lokal pedagogisk planering i Omikron (år 3) läsåret Sverigetema v. 45 v. 6

Lokal pedagogisk planering i Omikron (år 3) läsåret Sverigetema v. 45 v. 6 Lokal pedagogisk planering i Omikron (år 3) läsåret 10-11 Sverigetema v. 45 v. 6 När vi planerat arbetet har vi utgått från: Mål att sträva mot i läroplanen Skolan skall sträva efter att eleven: utveckla

Läs mer

Naturvetenskapsprogrammet (NA)

Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) ska utveckla elevernas kunskaper om sammanhang i naturen, om livets villkor, om fysikaliska fenomen och skeenden och om kemiska processer.

Läs mer

Muntlig kommunikation på matematiklektioner

Muntlig kommunikation på matematiklektioner LÄRARPROGRAMMET Muntlig kommunikation på matematiklektioner Enkätundersökning med lärare som undervisar i årskurs 7-9 Margareta Olsson Examensarbete 15hp Höstterminen 2008 Handledare: Maria Bjerneby Häll

Läs mer

ipads i lärandet 24 aug kl 8-16

ipads i lärandet 24 aug kl 8-16 ipads i lärandet 24 aug kl 8-16 Dagens program Om projektet Erfarenheter Ytterbyns förskola Pedagogiska aspekter av ipads Introduktion på ipaden (teknisk utbildning) Testa några pedagogiska appar Metoden

Läs mer

Skolverkets förslag till reviderade kursplaner i svenska och svenska som andraspråk (arbetsmaterial 25 september 2019).

Skolverkets förslag till reviderade kursplaner i svenska och svenska som andraspråk (arbetsmaterial 25 september 2019). Skolverkets förslag till reviderade kursplaner i svenska och svenska som andraspråk (arbetsmaterial 25 september 2019). I detta dokument synliggörs föreslagna likheter och skillnader mellan kursplanerna.

Läs mer

TESTVERSION. Inledande text, Diamant

TESTVERSION. Inledande text, Diamant Inledande text, Diamant Diamant är en diagnosbank i matematik som består av 55 diagnoser, avsedda för grundskolan. Fokus ligger på grundläggande begrepp och färdigheter. Tanken med diagnoserna är att de

Läs mer

[FOKUSOMRÅDE LÄRANDE & UTVECKLING] Övergripande perspektiv: Historiskt perspektiv Miljöperspektiv Läroplansmål (i sammanfattning)

[FOKUSOMRÅDE LÄRANDE & UTVECKLING] Övergripande perspektiv: Historiskt perspektiv Miljöperspektiv Läroplansmål (i sammanfattning) Övergripande perspektiv: Historiskt perspektiv Miljöperspektiv Läroplansmål (i sammanfattning) Internationellt perspektiv Förskolan ska sträva efter att varje barn Etiskt perspektiv utvecklar sin identitet

Läs mer

SVENSKA SOM ANDRASPRÅK

SVENSKA SOM ANDRASPRÅK SVENSKA SOM ANDRASPRÅK Ämnet svenska som andraspråk behandlar olika former av kommunikation mellan människor. Kärnan i ämnet är språket och litteraturen. I ämnet ingår kunskaper om språket, skönlitteratur

Läs mer

Om ämnet Engelska. Bakgrund och motiv

Om ämnet Engelska. Bakgrund och motiv Om ämnet Engelska Bakgrund och motiv Ämnet engelska har gemensam uppbyggnad och struktur med ämnena moderna språk och svenskt teckenspråk för hörande. Dessa ämnen är strukturerade i ett system av språkfärdighetsnivåer,

Läs mer

Kommunal vuxenutbildning på grundläggande nivå

Kommunal vuxenutbildning på grundläggande nivå VUXENUTBILDNINGEN Kommunal vuxenutbildning på grundläggande nivå Kursplaner och nationella delkurser i engelska, matematik, svenska och svenska som andraspråk Reviderad 2016 Kommunal vuxenutbildning på

Läs mer

Arbetsplan. Killingens förskola

Arbetsplan. Killingens förskola Arbetsplan Killingens förskola 2016-2017 Inledning Killingen är förskola med endast en avdelning som utgörs av 24 barn i åldrarna 1-5 och 5 pedagoger samt en kock som tillagar lunch och mellanmål. Förskolan

Läs mer

Syfte och centralt innehåll för förskoleklass som anordnas vid en skolenhet med sameskola

Syfte och centralt innehåll för förskoleklass som anordnas vid en skolenhet med sameskola Regeringsredovisning: förslag till text i Lsam11 om förskoleklass U2015/191/S 2015-11-23 Dnr: 2015:201 Syfte och centralt innehåll för förskoleklass som anordnas vid en skolenhet med sameskola Undervisningen

Läs mer

SVENSKA. Ämnets syfte

SVENSKA. Ämnets syfte SVENSKA Ämnet svenska behandlar olika former av kommunikation mellan människor. Kärnan i ämnet är språket och litteraturen. I ämnet ingår kunskaper om språket, skönlitteratur och andra typer av texter

Läs mer

Kursplanen i svenska som andraspråk

Kursplanen i svenska som andraspråk planens centrala innehåll för såväl dig själv som för eleven? Fundera över hur du kan arbeta med detta både i början av kursen men också under kursens gång. Lvux12, avsnitt 2. Övergripande mål och riktlinjer

Läs mer

Den lustfyllda resan. Systematisk kvalitetsredovisning 15/16

Den lustfyllda resan. Systematisk kvalitetsredovisning 15/16 Den lustfyllda resan Systematisk kvalitetsredovisning 15/16 Rälsen Är symbolen för vår värdegrund, den är grundpelaren för den lustfyllda resans början. Den är byggd på tanken att ständigt med barnen levandegöra

Läs mer

Individuella utvecklingsplaner IUP

Individuella utvecklingsplaner IUP Individuella utvecklingsplaner IUP 1 SYFTE OCH BAKGRUND Regeringen har beslutat att varje elev i grundskolan skall ha en individuell utvecklingsplan (IUP) från januari 2006. I Säffle är det beslutat att

Läs mer

LPP för årskurs 2, Matte V.46-51 HT12

LPP för årskurs 2, Matte V.46-51 HT12 LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

Handlingsplan. 2013/2014 Gnistan

Handlingsplan. 2013/2014 Gnistan 2012-06-27 Sid 1 (9) Handlingsplan för Ängsulls förskola 2013/2014 Gnistan S Ä T R A F Ö R S K O L E O M R Å DE Tfn 026-178000 (vx), 026-172349 Bitr.förskolechef Eva Levin Eva.g.levin@gavle.se www.gavle.se

Läs mer

Innehåll. Innehåll. Lpfö98/rev10 och Spana på matavfall

Innehåll. Innehåll. Lpfö98/rev10 och Spana på matavfall Lpfö98/rev10 och Spana på matavfall Årets miljöspanaruppdrag Spana på matavfallet ger många olika möjligheter att arbeta mot förskolans mål och riktlinjer enligt Lpför98/rev10. Nedan följer citat och urklipp

Läs mer

Västra Vrams strategi för 2015-2016

Västra Vrams strategi för 2015-2016 Västra Vrams strategi för 2015-2016 Västra Vrams förskola den lilla förskolan med det stora hjärtat 1 Vår vision Lek, lärande och utveckling i ett positivt, välkomnande, tryggt och öppet klimat och i en

Läs mer

Undervisningen i ämnet moderna språk ska ge eleverna förutsättningar att utveckla följande:

Undervisningen i ämnet moderna språk ska ge eleverna förutsättningar att utveckla följande: MODERNA SPRÅK Moderna språk är ett ämne som kan innefatta en stor mängd språk. Dessa kan sinsemellan vara mycket olika vad gäller allt från skriftsystem och uttal till utbredning och användning inom skiftande

Läs mer

FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Engelska, 450 verksamhetspoäng Ämnet handlar om hur det engelska språket är uppbyggt och fungerar samt om hur det kan användas. Det engelska språket omger oss i vardagen och används inom så skilda områden

Läs mer

Observationsschema Problemlösningsförmåga

Observationsschema Problemlösningsförmåga Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra

Läs mer

Utbildningsförvaltningen. Projektbeskrivning ipads i lärandet

Utbildningsförvaltningen. Projektbeskrivning ipads i lärandet Utbildningsförvaltningen Projektbeskrivning 2012-06-05 ipads i lärandet Inledning Barn av idag föds in i den digitala världen. Det måste förskola och skola förhålla sig till. Stiftelsen för Internetinfrastruktur

Läs mer

Sida 1(7) Lokal arbetsplan. Lövåsens förskola

Sida 1(7) Lokal arbetsplan. Lövåsens förskola 1(7) Lokal arbetsplan Lövåsens förskola 2010/2011 2 Innehållsförteckning Inledning 3 2.1 Normer och värden 3 Mål 3 3 2.2 Utveckling och lärande 3 Mål 3 4 2.3 Barns inflytande 4 Mål 4 4 2.4 Förskola och

Läs mer

Vårt projekt genomfördes under vårterminen Självreglering

Vårt projekt genomfördes under vårterminen Självreglering Carlsson, Dalsjö, Ingelshed & Larsson Bjud in eleverna att påverka sin matematikundervisning Fyra lärare beskriver hur deras elever blev inbjudna till att få insikt i och makt över sina egna lärandeprocesser

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

kultursyn kunskapssyn elevsyn 2014 Ulla Wiklund

kultursyn kunskapssyn elevsyn 2014 Ulla Wiklund kultursyn kunskapssyn elevsyn Pedagogik förmågan att inte ingripa? Kultursyn Inlärning perception produktion Kunskapssyn perception Lärande produktion reflektion inre yttre Estetik gestaltad erfarenhet

Läs mer

Kursplan i svenska som andraspråk grundläggande GRNSVA2

Kursplan i svenska som andraspråk grundläggande GRNSVA2 Kursplan i svenska som andraspråk grundläggande GRNSVA2 Kursen ger elever med annat modersmål än svenska en möjlighet att utveckla sin förmåga att kommunicera på svenska. Ett rikt språk ger ökade förutsättningar

Läs mer

ARBETSPLAN FÖRSKOLAN EKBACKEN

ARBETSPLAN FÖRSKOLAN EKBACKEN ARBETSPLAN FÖRSKOLAN EKBACKEN Inledning Förskolan regleras i skollagen och har Skolverket som tillsynsmyndighet. Sedan 1 augusti, 1998, finns en läroplan för förskolan, Lpfö 98. Läroplanen är utformad

Läs mer

LSU210, Specialpedagogiskt perspektiv på skriftspråksutveckling och matematisk begreppsutveckling pedagogiska konsekvenser, 15 högskolepoäng.

LSU210, Specialpedagogiskt perspektiv på skriftspråksutveckling och matematisk begreppsutveckling pedagogiska konsekvenser, 15 högskolepoäng. = Gäller fr.o.m. vt 10 LSU210, Specialpedagogiskt perspektiv på skriftspråksutveckling och matematisk begreppsutveckling pedagogiska konsekvenser, 15 högskolepoäng. Becoming Litterate and Numerate in a

Läs mer

Förankring i läroplanen. Innehåll. I arbetsområdet kommer eleven att ges förutsättningar att utveckla förmågan att:

Förankring i läroplanen. Innehåll. I arbetsområdet kommer eleven att ges förutsättningar att utveckla förmågan att: Studieteknik för faktatexter 5 LGR11 Hi Re SvA Sv Ke Planering och bedömning i svenska/sva för ett tema om studieteknik för faktatexter i samarbete med SO- och NO-ämnet. Förankring i läroplanen I arbetsområdet

Läs mer

Det engelska språket omger oss i vardagen och används inom så skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska

Det engelska språket omger oss i vardagen och används inom så skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska Engelska Kurskod: GRNENG2 Verksamhetspoäng: 450 Det engelska språket omger oss i vardagen och används inom så skilda områden som kultur, politik, utbildning och ekonomi. Kunskaper i engelska ökar individens

Läs mer

Arbetsplan för fritidshemmen i Eslövs kommun

Arbetsplan för fritidshemmen i Eslövs kommun Arbetsplan för fritidshemmen i Eslövs kommun Version 2015-12-02 Inledning: På fritidshemmet pågår undervisning målstyrda processer som under lärare i fritidshemmets ledning syftar till att eleverna inhämtar

Läs mer

Humanistiska programmet (HU)

Humanistiska programmet (HU) Humanistiska programmet (HU) Humanistiska programmet (HU) ska utveckla elevernas kunskaper om människan i samtiden och historien utifrån kulturella och språkliga perspektiv, lokalt och globalt, nationellt

Läs mer

Kursplanearbete, hösten Göteborg 22 april 2010

Kursplanearbete, hösten Göteborg 22 april 2010 Kursplanearbete, hösten 2009 Göteborg 22 april 2010 Uppdraget Skolverket fick 22/ 1 2009 i uppdrag att revidera läroplan och kursplan: Kunskapskrav för godtagbara kunskaper samt utifrån den nya betygsskalan

Läs mer

Arbetsplan. för. Östra Fäladens förskola. Läsår 10/11

Arbetsplan. för. Östra Fäladens förskola. Läsår 10/11 Arbetsplan för Östra Fäladens förskola Läsår 10/11 Förskolan har ett pedagogiskt uppdrag och är en del av skolväsendet. Läroplanen för förskolan, Lpfö 98, är ett styrdokument som ligger till grund för

Läs mer

Lpfö-98 Reviderad 2010 Gubbabackens Förskola

Lpfö-98 Reviderad 2010 Gubbabackens Förskola Lpfö-98 Reviderad 2010 Gubbabackens Förskola Teknik Utveckla o uppmuntra barns intresse för teknik Samarbete samspel Elektronik Konstruktion och bygglek Utveckla sin kreativitet, tänkande, nyfikenhet och

Läs mer

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är

Läs mer

Ektorpsskolans lokala arbetsplan

Ektorpsskolans lokala arbetsplan EKTORPSRINGEN Ektorpsskolans lokala arbetsplan Fritidshemmet 2017/18 Enligt skollagens 14:e kapitel om Fritidshemmet finns ett antal mål för fritidshemsverksamheten. Fritidshemmet ska stimulera elevernas

Läs mer

Verksamhetsplan. Internt styrdokument

Verksamhetsplan. Internt styrdokument Verksamhetsplan Solhaga Fo rskola 2018-2019 Internt styrdokument Innehållsförteckning 1. Verksamhetens förutsättningar 2. Resultat 3. Analys 4. och Åtgärder Beslutande: Förskolechef Gäller till: 2019-06-30

Läs mer

STUDIEGUIDE. Socionomprogrammet B-nivå REFELEKTIONSGRUPPER. Malmö högskola Hälsa och samhälle Enheten för socialt arbete

STUDIEGUIDE. Socionomprogrammet B-nivå REFELEKTIONSGRUPPER. Malmö högskola Hälsa och samhälle Enheten för socialt arbete Malmö högskola Hälsa och samhälle Enheten för socialt arbete Socionomprogrammet B-nivå STUDIEGUIDE REFELEKTIONSGRUPPER Inriktning SP,MK,SO,VU terminerna 4,5,6. Martina Campart Tina Eriksson-Sjöö Innehåll

Läs mer