Facit. Strömningsförluster Räkneuppgifter. ELVA ProcessAutomation AB. Mikael Waltner
|
|
- Karolina Lund
- för 6 år sedan
- Visningar:
Transkript
1 er Mikael Waltner Facit. OBS: Beroene på valet av antal ecimaler så kan svaren variera.
2 Uppg 1. 1) Beräkna först en relativa ytjämnheten me hjälp av Bilaga & 5 och markera väret i axeln på iagrammet. Vi behov så avruna till närmaste utsatta tal. relativytj ämnhet k 0,01mm 15mm 0, ,00010 ) Beräkna sen Reynols tal me hjälp av bilaga. Detta sker genom att först beräkna Arean och sen strömningshastigheten. Area * Pi 0,15 ( m) *3,1 ( l / min) 0,01m 30 3 Q 60( s / min) *1000( l / m ) v 0,5m / s A 0,01m ( m / s) *0,15( m) v* 0,5 Re v 1*10 ( m / s) ) Markera ut Reynols tal, (avruna till närmaste utsatta stölinje), och utläs Lamba väret ur axeln. Lamba 0,0 ) Beräkna engångsförlusterna genom att u upprättar en tabell och me hjälp av Bilaga 3. TYP ANTAL FÖRLUST SUMMA 90* BÖJAR r 3 0, 1, Avstängningsventil Sluss 1 0, 0,
3 Utlopp / TOTAL, 5) För in värena i formeln för ynamisk uppforringshöj och beräkna. ( m) l v 000 λ * + Σξ* 0,0* * g 0,15 0,5 *9,81 h f, yn +,* 1 6) Beräkna en totala strömningsförlusten. h f. tot h f. yn + h f. stat, , 1mvp, mvp Uppg. 1) Beräkna först en relativa ytjämnheten me hjälp av Bilaga & 5 och markera väret i axeln på iagrammet. Vi behov så avruna till närmaste utsatta tal. relativytj ämnhet k 0,1mm 0,0003 0, mm ) Beräkna sen Reynols tal me hjälp av bilaga. Detta sker genom att först beräkna Arean och sen strömningshastigheten. Area * Pi 0,300 3 ( m / min) ( m) *3,1 0 Q 60( s / min) v,8m / s A 0,07m ( m / s) *0,300( m) ( m / s) 0,07m v*,8 Re v 1*10
4 3) Markera ut Reynols tal, (avruna till närmaste utsatta stölinje), och utläs Lamba väret ur axeln. Lamba 0,016 ) Beräkna engångsförlusterna genom att u upprättar en tabell och me hjälp av Bilaga 3. TYP ANTAL FÖRLUST SUMMA 90* BÖJAR r 1 0, 0, Avstängningsventil Sluss 1 0, 0, Kulbackventil 1 Utlopp / TOTAL 3,6 5) För in värena i formeln för ynamisk uppforringshöj och beräkna. ( m) l v 800 λ * + Σξ* 0,016* * g 0,300,8 *9,81 h f, yn + 3,6 * 5, 3 6) Beräkna en totala strömningsförlusten. h f. tot h f. yn + h f. stat 5, , 3mvp mvp
5 Uppg 3. 1) Beräkna först en relativa ytjämnheten me hjälp av Bilaga & 5 och markera väret i axeln på iagrammet. Vi behov så avruna till närmaste utsatta tal. relativytj ämnhet k 0,01mm 0, mm ) Beräkna sen Reynols tal me hjälp av bilaga. Detta sker genom att först beräkna Arean och sen strömningshastigheten. Area * Pi 0,100 ( m) *3,1 0,008m ( l / min) 0 3 Q 60( s / min) *1000( l / m ) v 0,9m / s A 0,008m ( m / s) *0,100( m) v* 0,9 Re v 1*10 ( m / s) ) Markera ut Reynols tal, (avruna till närmaste utsatta stölinje), och utläs Lamba väret ur axeln. Lamba 0,018 ) Beräkna engångsförlusterna genom att u upprättar en tabell och me hjälp av Bilaga 3. TYP ANTAL FÖRLUST SUMMA Avstängningsventil Sluss 1 0, 0, Utlopp / TOTAL 1,
6 5) För in värena i formeln för ynamisk uppforringshöj och beräkna. ( m) l v 100 λ * + Σξ* 0,018* * g 0,100 0,9 *9,81 h f, yn + 1, * 0, 8 6) Beräkna en totala strömningsförlusten. h f. tot h f. yn + h f. stat 0, , 8mvp mvp
7 Uppg. 1) Beräkna först en relativa ytjämnheten me hjälp av Bilaga & 5 och markera väret i axeln på iagrammet. Vi behov så avruna till närmaste utsatta tal. relativytj ämnhet k 0,05mm 0, mm ) Beräkna sen Reynols tal me hjälp av bilaga. Detta sker genom att först beräkna Arean och sen strömningshastigheten. Area * Pi 0,080 ( m) *3,1 0,005m ( l / min) Q 60( s / min) *1000( l / m ) v 1,m / s A 0,005m ( m / s) *0,08( m) v* 1, Re v 1*10 ( m / s) 3) Markera ut Reynols tal, (avruna till närmaste utsatta stölinje), och utläs Lamba väret ur axeln. Lamba 0,01 ) Beräkna engångsförlusterna genom att u upprättar en tabell och me hjälp av Bilaga 3. TYP ANTAL FÖRLUST SUMMA Utlopp / TOTAL 1,0
8 5) För in värena i formeln för ynamisk uppforringshöj och beräkna. ( m) l v 150 1, f, λ * + Σξ* 0,01* 1,0 *, 96mvp + * g 0,08 *9,81 h yn 6) Beräkna en totala strömningsförlusten. h f. tot h f. yn + h f. stat,96 + 6, 96mvp
9 Uppg 5. 1) Beräkna först en relativa ytjämnheten me hjälp av Bilaga & 5 och markera väret i axeln på iagrammet. Vi behov så avruna till närmaste utsatta tal. relativytj ämnhet k 0,1mm 0,0003 0, mm ) Beräkna sen Reynols tal me hjälp av bilaga. Detta sker genom att först beräkna Arean och sen strömningshastigheten. Area * Pi 0,350 3 ( m / min) ( m) *3,1 60 Q 60( s / min) v 10m / s A 0,1m ( m / s) *0,350( m) ( m / s) 0,1m v* 10 Re v 1*10 3) Markera ut Reynols tal, (avruna till närmaste utsatta stölinje), och utläs Lamba väret ur axeln. Lamba 0,016 ) Beräkna engångsförlusterna genom att u upprättar en tabell och me hjälp av Bilaga 3. TYP ANTAL FÖRLUST SUMMA 90* BÖJAR r 5 0,,0 Avstängningsventil Sluss 0, 0, Kulbackventil 1,0
10 Utlopp / TOTAL 5, 5) För in värena i formeln för ynamisk uppforringshöj och beräkna. ( m) l v f, λ * + Σξ* 0,016* 5, * 7mvp + * g 0,350 *9,81 h yn 6) Beräkna en totala strömningsförlusten. h f. tot h f. yn + h f. stat mvp
FAG Spårkullager FAG 142
FAG 142 Normer asutföranen Toleranser Lagerglapp Hållare Sneställning Varvtalslämplighet Värmebehanling Enraiga spårkullager kan uppta raiella och axiella belastningaamt är även lämpliga för höga varvtal.
TYP-TENTAMEN I TURBOMASKINERNAS TEORI
Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida
Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.
Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean
Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.
Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm
FEL I TEXT X Femte upplagan, Första tryckningen
FEL I TEXT X Femte upplagan, Första tryckningen Sid 99 I 169 ska det sista talet vara 38. Uppgiften ska vara: 169 Vilket tal saknas? 3 10 17 24 -?- 38 Sid 123 55 Bilden visar Cajsas rum. Mät i hela centimeter.
RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.
Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna
H m. P kw. NPSH m. Dessa pumper är normalt drivna av en elmotor på 2900 1/min med 2-pols motor vid 50Hz, 0 eller 1450 1/min med 4-pols motor vid 50Hz.
Hur man väljer en centrifugalpump Valet av en centrifugalpump skall ske me beaktning av en befintliga anläggningens karakteristik samt konition. För att välja pump är följane ata növäniga: Flöe Q Kvantitet
Övningsuppgifter omkrets, area och volym
Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Sitter och klurar på jordtag; Hur skulle en matematisk uppställning av ett jordtag se ut med homogen mark?
Beräkna jordtag Postad av Michell Andersson - 12 maj 2018 07:26 Sitter och klurar på jordtag; Hur skulle en matematisk uppställning av ett jordtag se ut med homogen mark? Jag tänker att jag skulle haft
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett
I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.
17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning
Kostnadsfördelning med fasta belopp
Bilaga 2 A Kostnadsfördelning med fasta belopp Ett förenklat exempel som visar stegvis kostnadsfördelning, där högskole- och fakultetsgemensamma kostnader fördelas med fasta belopp och direkta löner genomgående
Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
Bedömningsanvisningar Del II Uppgift 14, bedömningsmatris, (4/4/3) *
Bedömningsanvisningar Del II Uppgift 14, bedömningsmatris, (4/4/3) * FÖRMÅGOR E C A Begrepp Procedurer Eleven bestämmer längd och bredd för minst två A-format. +E P Eleven markerar minst två av punkterna
Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1. Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter
RIGMOR SANDER EXCEL START 1 1 (5) Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1 Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter Innehållet i den cell som är markerad syns i formelfältet
9 Dimensionering av tryckta och böjda konstruktioner i brottgränstillstånd, när stabilitet är avgörande
9 Dimensionering av trckta oc öja konstruktioner 9 Dimensionering av trckta oc öja konstruktioner Taell 9.1 Knäcklänger för pelare. β = E /, är E är pelarens effektiva läng (eller knäckläng) oc är pelarens
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Utforskande aktivitet med GeoGebra GeoGebra 0 Utforskande aktivitet med GeoGebra 1 Börja med att ta bort koordinataxlarna
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Fler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
1. Du slår en tärning två gånger. Låt A vara händelsen att det första kastet blir en sexa och låt B vara händelsen att summan av kasten blir sju.
Projekt MVE49 Del 1 Det är tillåtet att sammarbeta, men alla lösningar skall lämnas in individuellt. Sista inlämningsdag är 4de oktober på föreläsningen. Det är ok att lämna in elektroniskt genom att maila
Gruppledtrådar 6-3A (i samband med sidorna i Prima FORMULA 6) Hur gamla är syskonen Alfred, Bosse och Cajsa?
Gruppledtrådar 6-3A (i samband med sidorna 95-103 i Prima FORMULA 6) Alfred är a år. Bosse är tre år äldre. Summan av de tre syskonens åldrar är 19 år. Cajsa är äldst. Hon är yngre än 10 år. Cajsa är dubbelt
Mål Likformighet, Funktioner och Algebra år 9
Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter
Ekvationer & Funktioner Ekvationer
Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus
skalas bort först och sedan 4. Då har man kvar kärnan som är x.
Ge inte upp om inte ditt svar stämmer med facit. Du kan ha tänkt helt rätt, men bara räknat fel. Prova en gång till. Om ditt svar ändå inte stämmer med facit, klicka på Hjälp?, eller be din lärare om hjälp
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
3 Gaspumpar. Några fläkttyper
Gaspumpar F1 Tå kategorier a gaspumpar: Fläktar, för transport a gaser. Försumbar ensitetsföränring. Stor likhet me pumpar. Kompressorer, för större tryckföränringar. Betyane ensitetsföränring. Några fläkttyper
Matematik. Bedömningsanvisningar. Vårterminen 2010 ÄMNESPROV. Delprov B ÅRSKURS
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2016-06-30. Vid
Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson
, MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8
Facit till Testsidor i Mattedetektiverna 3A Lärarboken
Facit till Testsidor i Mattedetektiverna 3A Lärarboken 1 / 8 Test 3A - 1 1 Addera två tusental och fem tiotal till talen. 4582 6155 3473 2 532 4 5 1 423 2 Subtrahera tre hundratal och fem ental från talen.
Tentamen IX1304 Matematik, Analys , lösningsidéer
Tentamen IX0 Matematik, Analys 0-05-0, lösningsidéer. Gör en linjär approximation till kurvan y x, kring den punkt på kurvan där lutningen är. Bestäm sedan för vilka x som det relativa felet för approximationen
markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart
PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 3 Geometri Kapitel : 4 Samband och förändring Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Matematik och modeller Övningsuppgifter
Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 3
Kapitel 3.1 3101 Exempel som löses i boken. 3102, 3103, 3104 Se facit, kontakta din lärare om du behöver hjälp. 3105 a) Se facit. b) Lägg ihop höjden på alla staplar 15 + 10 + 25 = 50 st c) Se facit. 3106
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Hydraulvätskans inverkan på systemförluster
Hydraulik-dagarna 2012 Hydraulvätskans inverkan på systemförluster LiU/IEI/Flumes E-mail: karl-erik.rydberg@liu.se Viktiga egenskaper hos hydraulvätskor Smörjegenskaper, smörjfilm med hög bärighet Viskositet,
R E S U L T A T 2015 R E T062. Bördighetsförsök
1 VÄXTFÖLJD UTAN VALL OCH STALLG. (II) KÄRNA REL- REL- AV- VATT. RYMD- PRO- N N- P K STRÅ- ph P-AL K-AL RENV. TAL TAL RENS- HALT VIKT TEIN- % SKÖRD % % STYR- H2O MG/ MG/ 15% % VID G/L HALT% AV TS AV TS
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar
Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir
Modifiering av avgassystemet
Begränsningar för modifiering av avgassystemet Begränsningar för modifiering av avgassystemet Generella begränsningar för samtliga motortyper och avgassystem Det är generellt inte tillåtet att utföra modifieringar
Introduktion till Excel
Introduktion till Excel Detta är en handledning till övningen i kalkylprogrammet Microsoft Excel. Programmet kan användas för att göra beräkningar och figurer inom såväl statistik som farmakokinetik. En
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
GeoGebra. Sonja Kovalevsky- dagarna Utforskande aktivitet med GeoGebra. Karlstads universitet 11 november. Karlstads universitet
Sonja Kovalevsky- dagarna 2016 11 november Utforskande aktivitet med GeoGebra GeoGebra 0 Utforskande aktivitet med GeoGebra 1 Gå in på www.geogebra.org och välj Starta GeoGebra. Börja med att ta bort koordinataxlarna
TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursnummer: HF00 Matematik ör basår I Moment: TEN Program: Tekniskt basår Rättane lärare: Sara Sebelius & Håkan Strömberg Eaminator: Niclas Hjelm Datum: Ti: 0-0- 08:00-:00 Hjälpmeel: Formelsamling:
Lösningar/svar till tentamen i F0031T Hydromekanik Datum:
Lösningar/svar till tentamen i F003T Hydromekanik Datum: 00-06-04 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
R E S U L T A T 2015 R E T060. Bördighetsförsök
1 VÄXTFÖLJD UTAN VALL OCH STALLG. (II) KÄRNA REL- REL- AV- VATT. RYMD- PRO- N N- P K STRÅ- ph P-AL K-AL RENV. TAL TAL RENS- HALT VIKT TEIN- % SKÖRD % % STYR- H2O MG/ MG/ 15% % VID G/L HALT% AV TS AV TS
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Matematik. Del C. Vårterminen 2012 ÄMNESPROV ÅRSKURS. Elevens namn
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2018-06-30. Vid
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005
Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Måndag 5 december 24, kl. 8.-. Plats: Fyrislundsgatan 8, sal Ansvarig lärare: Hans Norlander, tel. 8-4737. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare,
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
Kapacitansmätning av MOS-struktur
Kapacitansmätning av MOS-struktur MOS står för Metal Oxide Semiconductor. Figur 1 beskriver den MOS vi hade på labben. Notera att figuren inte är skalenlig. I vår MOS var alltså: M: Nickel, O: hafniumoxid
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Fredag 4 mars 204, kl. 8.00-.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell
Planering Geometri a r 9
Planering Geometri a r 9 Mål När du har arbetat med det här kapitlet ska du kunna: förstå vad volym är för något ge namn och känna igen olika rymdgeometriska kroppar, till exempel rätblock, kub, cylinder,
Bedömningsanvisningar
Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
Inventering av PCB i byggnad
Inventering av PCB i byggnad OBS! Uppgifterna redovisas byggnadsvis. Finns flera byggnader på samma fastighet används en blankett per byggnad. Bifoga en situationsplan där det tydligt fram går vilken byggnad
matematik Lektion Kapitel Uppgift Lösningg T.ex. print(9-2 * 2) a) b) c) d)
1 Print 2.6 Prioriteringsregler 1 Beräkna a) 9 2 2 b) 10 + 5 6 c) 5 6 10 d) 16 + 4 5 6 2.6 Prioriteringsregler 7 Stina köper 3 chokladbollar för 10 kr styck och 1 kopp te för 14 kr. a) Skriv ett uttryck
vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2
TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler
Finns det hälsomässiga förutsättningar för ett längre arbetsliv?
Finns det hälsomässiga förutsättningar för ett längre arbetsliv? en analys av hälsoutvecklingen i den övre medelåldern Mårten Lagergren Pensionsåldersutredningens seminarium den 7 mars 2012 Frågeställning
Rotationsarea Pappos-Guldins regler Tyngdpunkt Dagens amnen 1 / 7
Dagens ämnen 1 / 7 Dagens ämnen Rotationsarea 1 / 7 Dagens ämnen Rotationsarea Pappos-Guldins regler 1 / 7 Dagens ämnen Rotationsarea Pappos-Guldins regler Tyngdpunkt 1 / 7 Rotationsarea 2 / 7 Rotationsarea
Ventilerna används i kombination med ställdonen AMV(E) 130/140, AMV(E) 130H/140H och AMV(E) 13 SU. DN k VS
Beskrivning VZ 2 VZ 3 VZ 4 VZ-ventiler tillhanahåller en högkvalitativ och kostnaseffektiv lösning för kontroll av varm- och/eller kallvatten för fläktkonvektorer, små återuppvärmare, och återkylare i
Tentamen i Värmetransporter (4A1601)
Tentamen i Värmetransporter (4A1601) 2005-12-15, kl. 14.00 19.00 Hjälpmeel: Uppgift 1-7: Inga hjälpmeel (enast papper och penna, ej räknare). Uppgift 8-10: Lärobok (Holman), formelsamling (Granry), räknare,
Veckoblad 3, Linjär algebra IT, VT2010
Veckoblad 3, Linjär algebra IT, VT Vi inleder den tredje veckan med att gå igenom begreppen determinant och invers matris som vi inte hann med i vecka, se veckoblad för övningar etc på dessa avsnitt. Därefter
RÄKENSKAPSANALYS OCH NYCKELTAL. F12 RoK Ht14 Agata Kostrzewa
RÄKENSKAPSANALYS OCH NYCKELTAL F12 RoK Ht14 Agata Kostrzewa RoK ht14 Agata Kostrzewa 2 Vad handlar det om Nycketal binder samman ansvar, prestation och mål Prestation Hur väl sköter en chef sitt uppdrag
PASS 4. POLYNOM, MINNESREGLERNA. 4.1 Kvadreringsreglerna. Kvadraten på en summa
PASS 4. POLYNOM, MINNESREGLERNA 4.1 Kvadreringsreglerna Kvadraten på en summa Den finländska modellfamiljen med mamma, pappa och två barn äger ett kvadratformat hus. Här nedan i figur 4 har vi en planritning
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
BARN- OCH UNGDOMSNÄMNDEN 2014-05-20
K A LLELSE BARN- OCH UNGDOMSNÄMNDEN 2014-05-20 Tid och plats 18:00 Bällstarummet Kallade tjänstemän Övriga kallade Marie Truedsson, förvaltningschef Elisabeth Johansson, kanslichef Johanna Harling, nämndsekreterare
6 cm. 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5. T.ex. print(3 * -4) 13 Beräkna cirkelns a) diameter b) omkrets
1 Print 1 Tal Multiplikation och division med negativa tal 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5 print(3 * -4) 2 Geometri Cirkelns omkrets 13 Beräkna cirkelns a) diameter b) omkrets 6
Eurokod laster. Eurocode Software AB
Eurokod laster Eurocode Software AB Eurokoder SS-EN 1991 Laster SS-EN 1991-1-1 Egentyngd, nyttig last SS-EN 1991-1-2 Termisk och mekanisk påverkan vid brand SS-EN 1991-1-3 Snölast SS-EN 1991-1-4 Vindlast
NpMa4 Muntligt delprov Del A vt 2013
Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater
STAD. Injusteringsventiler DN 10-50, PN 25
STAD Injusteringsventiler DN 0-50, PN 5 IMI TA / Injusteringsventiler / STAD STAD Injusteringsventilen STAD ger tillförlitlig hyronisk prestana i ett imponerane stort antal applikationer. Den är iealiskt
FAG S-lager Normer Basutföranden Stålagerhus
FAG S-lager FAG 470 FAG S-lager Normer asutföranen Stålagerhus FAG S-lager använs främst för minre krävane lagringar. Man finner em i t.ex. lantbruksmaskiner, transportanläggningar, byggnasmaskiner och
Experimentella metoder 2014, Räkneövning 1
Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9
1. Utan miniräknare, skissa grafen (bestäm ev. extrempunkter och asymptoter) y = x2 1 x 2 + 1
HiH / Georgi Tchilikov ENVARIABELANALYS 5p för LGr&LGy april 9.-. Hjälpmedel: Bifogat formelblad. Miniräknare. Betygsgränser: p. för Godkänd, p. för Väl Godkänd (p. från propedeutiska kursen kan tillgodoräknas)
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Ma2c - Prövning nr. 3 (av 9) för betyget E - Geometri
Ma2c - Prövning nr. 3 (av 9) för betyget E - Geometri Hjälpmedel : P apper, penna, sudd, f ormelblad och kalkylator Obs! Minsta slarvfel kan ge underkänt. Nytt försök tidigast om en vecka. En kurva erhålls
Pool - bygge. Alicia Åbrink. https://www.flickr.com/photos/andrejtrnkoczy/ /
Pool - bygge Alicia Åbrink https://www.flickr.com/photos/andrejtrnkoczy/9937515753/ Behöver veta för att räkna ut skala https://www.flickr.com/photos/lainer/132663371/ https://www.flickr.com/photos/ludiecochrane/4673663670/
GRUNDFOS PRODUKTbroschyr. Avlägsnande av mikrobubblor, föroreningar och magnetit
GRUNDFOS PRODUKTbroschyr Avlägsnande av mikrobubblor, föroreningar och magnetit Avskiljning av mikrobubblor, föroreningar och magnetit Med Grundfos Cleanvent og Magvent löser man detta. Luftavskiljning
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 17 mars 2016, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 17 mars 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:
Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?
Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i
NpMa3c Muntligt delprov Del A ht 2012
Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater
2s + 3t + 5u = 1 5s + 3t + 2u = 1 3s 3u = 1
ATM-Matematik Mikael Forsberg 074-4 För studenter på distans och campus Linjär algebra ma04a 04 0 5 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
Matematik E (MA1205)
Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND
Några problemlösnings och modelleringsuppgifter med räta linjer
Några problemlösnings och modelleringsuppgifter med räta linjer Dessa uppgifter är indelade i två delar utan miniräknare och med miniräknare. Försök gärna lösa någon av varje del istället för alla på en
Lösningar 15 december 2004
Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder
B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva
LABORATION 4 DISPERSION
LABORATION 4 DISPERSION Personnummer Namn Laborationen gokän Datum Assistent Kungliga Tekniska högskolan BIOX (8) LABORATION 4 DISPERSION Att läsa i kursboken: si. 374-383, 4-45 Förbereelseuppgifter: Va
Area och volym Punktposition Konvexa höljet. Geometri. Douglas Wikström KTH Stockholm
Geometri Douglas Wikström KTH Stockholm popup-help@csc.kth.se Volym av parallellepiped En parallellepiped i R n med ett hörn i origo kan beskrivas av vektorer v 1,...,v n R n. Dess orienterbara volym ges
Konsten att bestämma arean
Konsten att bestämma arean Lektion Ett (Matematiskt område - Talmängder) Vad är viktigast? Introducera tanken om att felet skulle kunna vara viktigare än svaret. Vad väger äpplet? Gissa. Jämför med mätvärdet