sociology Unit B1: Introduction to correlation and regression 3/3 Brendan Halpin May
|
|
- Hans Nilsson
- för 5 år sedan
- Visningar:
Transkript
1 Unit B1: Introduction to correlation and regression 3/3 Brendan Halpin Department of Sociology, University of Limerick May
2 Multicollinearity Topics 1 Multicollinearity 2 Leverage 3 Residuals
3 Multicollinearity 3 Multicollinearity 1. use (Body Fat). corr * (obs=20) triceps thigh midarm bodyfat triceps thigh midarm bodyfat
4 Multicollinearity 4 Multicollinearity 2. reg bodyfat tricep Source SS df MS Number of obs = 20 F(1, 18) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = bodyfat Coef. Std. Err. t P> t [95% Conf. Interval] triceps _cons
5 Multicollinearity 5 Multicollinearity 3. reg bodyfat thigh Source SS df MS Number of obs = 20 F(1, 18) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = bodyfat Coef. Std. Err. t P> t [95% Conf. Interval] thigh _cons
6 Multicollinearity 6 Multicollinearity 4. reg bodyfat midarm Source SS df MS Number of obs = 20 F(1, 18) = 0.37 Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = bodyfat Coef. Std. Err. t P> t [95% Conf. Interval] midarm _cons
7 Multicollinearity 7 Multicollinearity 5. reg bodyfat tricep thigh midarm Source SS df MS Number of obs = 20 F(3, 16) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = 2.48 bodyfat Coef. Std. Err. t P> t [95% Conf. Interval] triceps thigh midarm _cons
8 Multicollinearity 8 Multicollinearity 6. estat vif Variable VIF 1/VIF triceps thigh midarm Mean VIF
9 Leverage Topics 1 Multicollinearity 2 Leverage 3 Residuals
10 Leverage 10 Leverage 1. sysuse auto (1978 Automobile Data). reg price weight mpg Source SS df MS Number of obs = 74 F(2, 71) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = 2514 price Coef. Std. Err. t P> t [95% Conf. Interval] weight mpg _cons
11 Leverage 11 Leverage 2. dfbeta. predict cd, cooks. su _df* cd _dfbeta_1: dfbeta(weight) _dfbeta_2: dfbeta(mpg) Variable Obs Mean Std. Dev. Min Max _dfbeta_ _dfbeta_ cd e list make cd _df* if _dfbeta_1>1 make cd _dfbet ~ 1 _dfbet ~ Cad. Seville
12 Leverage 12 Leverage 3
13 Residuals Topics 1 Multicollinearity 2 Leverage 3 Residuals
14 Residuals 14 Residuals. sysuse auto (1978 Automobile Data). reg price weight mpg Source SS df MS Number of obs = 74 F(2, 71) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = 2514 price Coef. Std. Err. t P> t [95% Conf. Interval] weight mpg _cons predict res, res. scatter res weight
15 Residuals 15 Residuals
Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser
Öppnar jämförelser för ökad kvalitet i vård och omsorg om äldre? Bilaga Regressionsanalyser REGRESSIONSANALYSER Ett antal olika regressionsmodeller har konstruerats för att undersöka om resultaten i ÖJ
Läs mer2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Läs merEnkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
Läs merValfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs merExempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet
Läs merLUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Läs mer10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Läs merFlerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:
Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt
Läs mer8.1 General factorial experiments
Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.
Läs merSkrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Läs merMultipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1
Multipel linjär regression l: Y= β 0 + β X + β 2 X 2 + + β p X p + ε Välj β 0,β,β 2,, β p så att de minimerar summan av residualkvadraterna (Y i -β 0 -β X i - -β p X pi ) 2 Geometrisk tolkning Med Y=β
Läs merF16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en
Läs mera) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal
Läs mer732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Läs merSkrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merExempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
Läs merSkrivning i ekonometri lördagen den 29 mars 2008
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB, Ekonometri Skrivning i ekonometri lördagen den 9 mars 8.Vi vill undersöka hur variationen i antal arbetande timmar för gifta kvinnor i Michigan
Läs merRegressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann
Läs merTENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,
TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Läs merRegressions- och Tidsserieanalys - F5
Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?
Läs merRäkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
Läs merD. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Läs merDel A: Schema för ifyllande av svar nns på sista sidan
Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Läs merFöreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B
Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs mer732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland
Läs merSkrivning i ekonometri lördagen den 15 januari 2005
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad
Läs merD. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs merUppgift a b c d e f (vet ej) Poäng
TENTAMEN: Statistisk modellering för I3, TMS161, lördagen den 22 Oktober kl 8.30-11.30 på V. Jour: John Gustafsson, ankn. 5316. Hjälpmedel: På hemsidan tillgänglig ordlista och formelsamling med tabeller,
Läs merTentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2015-01-13 Tentamen Tillämpad statistik A5 (15hp) 2015-01-13 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Läs merFöreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B
Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs merMaximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng.
Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum: 26 april, 2014 kl. 9:00 13:00 Tillåtna hjälpmedel:
Läs mer732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet
732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs merF7 Polynomregression och Dummyvariabler
F7 Polnomregression och Dummvariabler Antag att man börjar med enkel linjär regression. Kap Polnomregression Emellanåt upptäcker man samband som är kvadratiska, kubiska osv. Allmänt: polnom av k:te ordningen
Läs merKroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Läs merSänkt restaurangmoms Hur många jobb skapades?
Kandidatuppsats Sänkt restaurangmoms Hur många jobb skapades? Författare: Jonatan Rosdahl Handledare: Hyunjoo Kim Karlsson Examinator: Dominique Anxo Termin: VT14 Ämne: Nationalekonomi Nivå: Kandidat 1
Läs merRegressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann
Läs merI vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann
Läs merDatorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:
Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merTENTAMEN I STATISTIK B,
732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merSamhällsvetenskaplig metod, 7,5 hp
Samhällsvetenskaplig metod, 7,5 hp Provmoment: Individuell skriftlig tentamen kvantitativ metod, 2,0 hp Ladokkod: 11OA63 Tentamen ges för: OPUS kull H13 termin 6 TentamensKod: Tentamensdatum: Fredag 24
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merOBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström & Pär Bjälkebring Tentamensdatum: 10/1-2015 Tillåtna hjälpmedel:
Läs mer7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Läs mer1. Man tror sig veta att en viss variabel, y, i genomsnitt beror av en annan variabel, x, enligt sambandet:
LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Extra övningsuppgifter 1. Man tror sig veta att en
Läs merGrundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Läs merTentamen Tillämpad statistik A5 (15hp)
Tentamen Tillämpad statistik A5 (15hp) 2016-02-13 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik
Läs merHjärtsjukvårdens Nationella Kvalitetsregister. Per Albertsson. Ordförande Sektorsrådet i Hjärtsjukvård
Hjärtsjukvårdens Nationella Kvalitetsregister Per Albertsson. Ordförande Sektorsrådet i Hjärtsjukvård Web-plattform Personnummerbaserat (Samkörning PAR, Dödsorsaksregistret, övriga kvalitetsregister o.s.v)
Läs merRäkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.
Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merTentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling
Läs merTentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the
Läs merTentamen i matematisk statistik
Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merRegressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Läs merSpelar risktoleransen någon roll?
Spelar risktoleransen någon roll? En studie om svenska studenters investeringsbeslut Författare: Anton Ahlfors Handledare: David Granlund Student Kandidatuppsats, 15 hp Institutionen för nationalekonomi
Läs merStatistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..
TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs merVid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Läs merFör betyget GODKÄND krävs preliminärt minst 28 poäng. För betyget VÄL GOD- KÄND krävs preliminärt minst 44 poäng.
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson Skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen 2: Regressionsanalys Torsdagen den 7
Läs merExaminationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Läs merUppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
查 询 TMS160 供 应 商 捷 多 邦, 专 业 PCB 打 样 工 厂,24 小 时 加 急 出 货 TENTAMEN: Statistisk modellering för I3, TMS160, fredagen den 26 Augusti kl? på?. Jour: Holger Rootzén, ankn. 3578 Hjälpmedel: Utdelad formelsamling
Läs merLaboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Läs merKom igång med Stata. Introduktion
Kom igång med Stata Introduktion Stata är det vanligaste statistikprogrammet bland de på institutionen som bedriver mycket kvantitativ forskning. Det är relativt enkelt att lära sig, samtidigt som det
Läs merPsykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:
GÖTEBORGS UNIVERSITET Psykologiska institutionen Tentamen Kurs: PC1307 Kurs 7: Samhällsvetenskaplig forskningsmetodik PC1546 Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Tentamensdatum:
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs merTentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2013-01-14 Tentamen Tillämpad statistik A5 (15hp) 2013-01-14 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Läs merSTOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik
Läs merPrognosmodell för medlemstal i Svenska kyrkan. Av Thomas Holgersson
Prognosmodell för medlemstal i Svenska kyrkan. Av Thomas Holgersson Det framtida medlemsantalet i svenska kyrkan tycks vara intressant för många, då det regelbundet diskuteras i olika sammanhang. Att kyrkans
Läs merVärderingsrapport. VLT AB:s deltagande i strukturaffären 2007. Stockholm den 26 maj 2008
Värderingsrapport VLT AB:s deltagande i strukturaffären 2007 Stockholm den 26 maj 2008 Clas Bergström Professor i Finansiell Ekonomi Institutionen för Finansiell Ekonomi Handelshögskolan i Stockholm 1.
Läs merOBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/ Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:
Läs mer732G71 Statistik B. Föreläsning 6. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15
732G71 Statistik B Föreläsning 6 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 15 Efterfrågeanalys Metoder för att studera sambandet mellan efterfrågan på
Läs merPerson Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.
y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader
Läs mera) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.
Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Läs mer1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet
Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två
Läs merStandard Normal Quantiles. Vilken av följande slutsatser kan man dra från qq-plotten?
-2.5cm TENTAMEN: Statistisk modellering för I3, TMS160, lördagen den 11 december 2004 kl 8:30-11:30 på M. Jour: John Gustavsson, mob 0705-330375 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs mer