Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan
|
|
- Charlotta Pettersson
- för 9 år sedan
- Visningar:
Transkript
1 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan Tillåtna hjälpmedel: Bifogad formelsamling (med approimationsshema) oh tabellsamling (dessa skall returneras). Egen miniräknare. Ansvarig lärare: Övrigt: Leif Rukman För att få maimala poäng på en uppgift krävs att antaganden oh motiveringar noga anges samt att lösningen även i övrigt är så utförlig att den utan svårighet kan följas! För betyget Godkänd krävs minst 4 poäng, för betyget Väl Godkänd krävs minst 6 poäng. Uppgift a Förklara begreppen målpopulation, rampopulation, undertäkning oh övertäkning samt vad dessa begrepp har med begreppet bias att göra. Ge gärna ett eempel för att tydliggöra det hela. b Förklara vad som menas med stugsittarurval oh problemet med dessa. Ge helst ett eempel. För att skatta medelvärdet i en population använder man ofta medelvärdet i stikprovet. Det finns dok några andra skattningstekniker, bland annat så kallade kvotskattningar. Förklara med hjälp av ett litet numeriskt eempel (t.e. med n4) vad det är som gör att en kvotskattning ibland fungerar myket bättre än det vanliga stikprovsmedelvärdet. Uppgift I nedanstående tabell redovisas hushållens konsumtionsutgifter (i miljarder kronor) tillsammans med KPI (konsumentprisinde) för åren 99, 995 oh. år KPI Hushållens konsumtionsutgifter a KPI ovan har 98 som basår. Byt basår till 99. b Redovisa hushållens konsumtionsutgifter som en indeserie med 99 som basår. Redovisa hushållens konsumtionsutgifter i 99 års penningvärde. d Ta fram en indeserie över hushållens konsumtionsutgifter i fasta priser. Använd 99 som basår.
2 Uppgift 3 Ett företag skall köpa in en ny kopieringsmaskin oh väljer bland tre olika, A, B oh C. Ett välkänt problem med denna typ av maskiner är att de ibland drabbas av papperstopp. Man får möjlighet att vid några tillfällen testa de olika maskinerna oh noterar vid varje tillfälle antal minuter maskinen är i aktiv drift utan att pappersstopp inträffar. Genomför under normalfördelningsantagande ett hypotestest för att utreda om maskinerna är likvärdiga med avseende på genomsnittlig tid innan de drabbas av pappersstopp. Maskin A: Maskin B: Maskin C: Uppgift 4 (fortsättning på föregående uppgift) Som föregående uppgift men du får nu inte anta normalfördelning. Uppgift 5 Ett företag tror att de timlöner de betalar ut följer en normalfördelning. För att testa om detta antagande är rimligt vill man genomföra ett hypotestest oh väljer därför slumpmässigt ut 3 av företagets arbetare (se nedan). Genomför ett lämpligt test på % signifikansnivå. X Timlön i kronor Frekvens 55 < < < < < 5 8 Summa 3 Uppgift 6 Tekentest, Wiloon tekenrangtest, Wiloon rangsummatest oh Kruskal-Wallis test förkommer i boken. Förklara vad dessa test går ut på oh vilka motsvarigheter testen har bland de parametriska testen.
3 Uppgift 7 En mäklare har nio hus inne till försäljning i ett visst område. Några data gällande dessa hus redovisas nedan. Hus nr (antal rum) (boarea i m ) y (pris i kronor) a Mäklaren har läst en del statistik oh tänker anpassa en modell av typen Y α + βx + ε till materialet. Frågan är nu vilken av X-variablerna som är det bästa valet i denna modell? Hjälp mäklaren välja X-variabel. Motiver ditt val (använd förslagsvis lämpliga grafer att motivera med). Anpassa sedan modellen till datamaterialet, d.v.s. ta fram den skattade linjen Y ' a + bx. Räknehjälp: 34, Σ 96, y 335, Σ i Σ i i Σ i 36, Σ 37, y 5775, i Σ i Σ 377, Σ 45, Σ i i i yi i yi 7b Anta att mäklaren får in ytterligare ett hus som har 4 rum oh kvadratmeters bostadsyta men att du inte vet något mer om detta hus. Vad anser du vore ett rimligt pris på detta hus? Motivera! 7 Konstruera ett intervall som med irka 95 % säkerhet innehåller priset på huset som kom in till mäklaren i 7b. 7d Räkna ut modellens förklaringsgrad. Hur tolkas förklaringsgraden? 7e Räkna ut den justerade förklaringsgraden. Förklara tanken bakom den justerade förklaringsgraden.
4 Uppgift 8 (fortsättning på uppgift 7) Plötsligt slog det mäklaren; varför nöja sig med en X- variabel när man kan ha med båda två i modellen? Sagt oh gjort, mäklaren lät SPSS anpassa modellen Y α + β X + β + ε oh fik då följande utskrifter: X Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate,84(a),79,6 65,676 a Preditors: (Constant), AREA, RUM ANOVA(b) Model Sum of Squares df Mean Square F Sig. Regression 639, ,3 7,34,5(a) Residual 5879, ,94 Total 8897, 8 a Preditors: (Constant), AREA, RUM b Dependent Variable: PRIS Coeffiients(a) Unstandardized Coeffiients Standardized Coeffiients Model B Std. Error Beta t Sig. (Constant) 69,5 9,899,9,7 RUM -3,38 4,489 -,95 -,43,5 AREA 4,667,7,437 3,67, a Dependent Variable: PRIS 8a Besvara fråga 7b med denna modell som utgångspunkt. 8b Tolka regressionskoeffiienterna i ord. 8 Ta fram ett konfidensintervall med 95 % konfidensgrad för parametern β. Förklara hur intervallet ska tolkas, d.v.s. innebörden av intervallet. 8d I tabellen i mitten, kolumnen längst till höger står det,5(a). Förklara vad denna siffra innebär. 8e I tabellen längst ner, kolumnen längst till höger, på raden RUM står det,5. Förklara vad denna siffra innebär. 8f Tyker du mäklaren ska använda modellen med en X-variabel eller den med båda X-variablerna? Motivera ditt val genom att helt kort jämföra fördelar oh nakdelar.
5 Svar/lösningsskisser till tentamen i statistik STAA oh STAA Uppgift. Se Dahmströms bok. Uppgift. år KPI Hushållens konsumtionsutgifter a) År KPI b) År Hushållens konsumtionsutgifter Inde ) År Hush kons.utg års penningv. d) År Hush kons.utg fasta priser, inde Uppgift 3 H : µ A µ B µ C Testa H : ej _ H på (förslagsvis) α 5 % signifikansnivå med hjälp av envägs-anova-testet. Beslutsregel: Förkasta nollhypotesen om F (.5) I vårt fall fik vi F obs F obs 4.7 (se ANOVA-tabellen nedan), dvs. nollhypotesen förkastas. Vi kan alltså (med 5 % felrisk ) påstå att maskinerna skiljer sig åt.,3
6 Anmärkning: En av testets förutsättningar är att alla populationerna har samma standardavvikelse, dvs. att σ A σ B σ C. Jämför vi skattningarna s,,, 3 nedan så verkar detta åtminstone inte orimligt. Numeriskt: Maskin observationer n T s j s j, j,,...,n n A 5, 7, 4, B 8, 5,, ,, C 8, 3, 5, ,, 7 sum 67 n SS tot SST, j j T n, j, j n n j j T j j j 49.8 ANOVA-tabell: källa SS df MSSS/df F behandling SST k 45 F 4. 7 slump SSE SStot SST n k total SS n 5 tot obs Uppgift 4 (fortsättning på föregående uppgift) Om fördelningen för maskinerna är lika så när som på att de eventuellt är förskjutna i sidled i förhållande till varandra (dvs. de har åtminstone samma form ), så kan vi formulera nollhypotesen enligt nedan. H : µ µ B H : ej _ H A µ C Vi använder den ike-parametriska motsvarigheten till envägs-anova, Kruskal- Wallis-test. Med α 5 % signifikansnivå får vi beslutsregeln förkasta nollhypotesen H χ om ( ) 99 obs
7 I vårt fall fik vi (se nedan) H obs 5. 54, dvs. nollhypotesen kan inte förkastas. Vi har inte tillräkligt med bevis för att med högst 5 % felrisk kunna påstå att maskinerna skiljer sig åt. Det är med andra ord myket möjligt att maskinerna är likvärdiga. Anmärkning: (.) Numeriskt: χ så p-värdet är någonstans mellan 5 % oh %. sort Σ Ri n i A: ΣR B: ΣR C: ΣR 33 6 summa n( n + ) ( ΣR ) ( ΣR ) k H obs ( + ) ( ) n n n n nk ( 6 + ) ( 6 ) n 36 n 6 Uppgift 5 För att kunna genomföra ett hi-två-test av fördelning måste först µ oh σ skattas. X Timlön Frekvensf Klassmitt f f i kronor 55 < < < < < Summa f 43 8kr n 3 s ( f) f n n
8 4 Frequeny Lön Cases weighted by f Mean 8 Std. Dev.,99 N 3 X Frekvens ff o Sannolikhetsarea i klass f e ( f f ) fe < 65 X µ 65 8 P( X < 65) P σ. P( Z.57) < < < Summa H : Lönerna är normalfördelade H : Lönerna är inte normalfördelade Signifikansnivå: α% o e Testfunktion: sann. ( f f ) o e χ χ är χ -fördelad med 5-- fg om H är fe Kritiskt område: Förkasta nollhypotesen om det observerade värdet på teststatistikan är större än tabellvärdet, 4.65.
9 Resultat: χ 7.4 > Nollhypotesen förkastas. Slutsats: De observerade frekvenserna avviker för myket från vad som kan förväntas då observationerna kommer från en normalfördelning oh nollhypotesen förkastas på % signifikansnivå. Uppgift 6 Se Lind Marhal Mason. Uppgift 7 a) 5, 45, 4, Pris 35, 3, 5,,,,5 3, 3,5 4, 4,5 5, Antal rum
10 5, 45, 4, Pris 35, 3, 5,, 4, 6, 8,,, 4, 6, Area Area oh pris uppvisar det största linjära sambandet. Model (Constant) Area a. Dependent Variable: Pris Unstandardized Coeffiients Coeffiients a Standardized Coeffiients B Std. Error Beta t Sig. 4,56,5,4,98,,933,65,63,58 Y X b) Y Ett rimligt pris för huset är utifrån modellen a 35:- ) y a y b n y s y
11 Prediktionsintervall 96 ( ) 9 Y ' ± t s y + + ± + + n ( ) n ± 3 Med 95% säkerhet kommer försäljningspriset för detta hus ligga mellan 39:- oh 565:- d) SSR 37593,989 Förklaringsgraden (se tabellerna nedan) R.43 är andelen SStot 8897, av variationen i Y som förklaras av att X- varierar. I vårt fall skulle alltså irka 4 % av variationen i huspriserna hänga samma med att husen är olika stora (olika stor boyta). Resterande 58 % av variationen kan alltså inte förklaras av att boarean varierar. ANOVA(b) Model Sum of Squares df Mean Square F Sig. Regression 37593, ,989 5,,58(a) Residual 5378, ,748 Total 8897, 8 a Preditors: (Constant), X_AREA b Dependent Variable: Y_PRIS Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate,65(a),43,34 85,67 a Preditors: (Constant), X_AREA e) Den justerade förklaringsgraden blir R adj MSE MStot SSE / SStot ( n ) /( n ) 5378,33/7 7339, ,/8.5 Den vanliga förklaringsgraden R ökar automatiskt när vi tar med ytterligare X- variabler i modellen vilket inte R adj gör. Ska vi välja mellan flera olika modeller oh dessa inte har samma antal X-variabler i sig, blir jämförelsen mer rättvis om vi använder R i stället för R som kriterium. adj
12 Uppgift 8 8a Skattat regressionsplan ( X, X ) a + b X + b X X X Y ˆ +. För det nyinkomna huset får vi Y ˆ( 4,) , med andra ord irka 33 kronor vore rimligt pris innan vi har ytterligare fakta om huset. 8b Tolkning av b : För två nyinkomna hus som har samma antal rum men det ena huset har m större yta, så skulle det större huset ligga uppskattningsvis irka 47 kronor högre i pris ( b ) än det mindre. Tolkning av b 3. 3 : För två nyinkomna hus som har samma boyta men det ena huset har ett rum mer, så skulle detta hus ligga uppskattningsvis irka 3 kronor lägre i pris än huset med färre antal rum. Detta resultat känns myket konstigt, att ytterligare rum drar ner priset (rummen blir i oh för sig mindre om ytan är given, så huset kanske känns mer trångt). Det verkar i alla fall vara problem med multikollinearitet: se SPSS-utskrifterna nedan. Correlations X_RUM X_AREA Y_PRIS Pearson Correlation Pearson Correlation Pearson Correlation X_RUM X_AREA Y_PRIS,87,36,87,65,36, Vi ser ett tydligt positivt samband i grafen, vilket okså bekräftas av att korrelationskoeffiienten är så hög, r.87, mellan antalet rum X oh boytan X. 8 X_AREA 6 4,5,,5 3, 3,5 4, 4,5 5, 5,5 X_RUM Se även uppgift 8e nedan.
13 ( ˆ ) ( ±.45.7) ( ± 3.6) (.55,7.783) 8 t ( 3) b σ. ±.5 9 b Intervallet säger att snittpriset för varje ytterligare kvadratmeter vi vill ha, ligger (då antalet rum är givet) någonstans mellan 55 oh 7783 kronor. Detta är ett myket brett intervall men stikprovet är ju okså ganska litet.. 8d p-värdet för test av H : β β är.5 %. Det verkar med andra ord inte troligt att nollhypotesen är sann. Därmed borde alltså åtminstone någon av X-variablerna gör åtminstone någon nytta i modellen. 8e Om X finns i modellen har testet av H : β ett p-värde som är 5. %. Om vi aepterar en felrisk på högst α 5 %, kan vi alltså inte utesluta att X inte behövs i modellen. Det skulle med andra ord vara möjligt att det ganska förvånande värdet på regressionskoeffiienten i 8b, b 3. 3, bara har orsakats av ren slump. 8f Jämför t.e. σˆ i de två modellerna (vilket är ekvivalent med att jämföra R adj ). Man bör okså väga in kompleiteten hos modellerna. Vid multikollinearitet kan vi få konstiga regressionskoeffiienter oh breda konfidensintervall för dessa (men själva skattningarna Y ˆ( X, X ) kan ändå vara bra), se ovan. Med en enda X-variabel kan vi enkelt illustrera samband oh spridning i en graf.
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00
Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt
Läs merTentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs merStockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
Läs merTentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merTentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Läs merD. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merTentamen Tillämpad statistik A5 (15hp)
Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik
Läs merTentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merUppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs merForsknings- och undersökningsmetodik Skrivtid: 4h
Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd
Läs merEn rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 23 e mars 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Läs mer10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 16 e januari 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 16 e januari 2015 Tillåtna hjälpmedel: Miniräknare
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merUppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merTentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,
Läs mer2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Läs merSTOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2011-03-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Erland
Läs merTentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Läs merTentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2015-01-13 Tentamen Tillämpad statistik A5 (15hp) 2015-01-13 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs merLaboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs merStatistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 12 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 12 e januari 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2013-08-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
Läs merFöreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann
Läs merFöreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merSpridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merValfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper
Läs merSamhällsvetenskaplig metod, 7,5 hp
Samhällsvetenskaplig metod, 7,5 hp Provmoment: Individuell skriftlig tentamen kvantitativ metod, 2,0 hp Ladokkod: 11OA63 Tentamen ges för: OPUS kull H13 termin 6 TentamensKod: Tentamensdatum: Fredag 24
Läs merTentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann
Läs merOMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Provmoment: Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna hjälpmedel: Miniräknare Tentan består av
Läs merAnalytisk statistik. Tony Pansell, optiker Universitetslektor
Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp
Läs merLäs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merTT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merEtt A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann
Läs merTT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,
Läs merMatematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merb) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
Läs merTENTAMEN I STATISTIK B,
732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Läs merOBS! Vi har nya rutiner.
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-11-12 Tillåtna hjälpmedel:
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 29 oktober, 2016 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merLTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merKOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-09-19 kl. 09:00 13:00
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
Läs merFöreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Läs merLäs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Läs mer