Problemlösning (3/5) Lösningar
|
|
- Emilia Nilsson
- för 6 år sedan
- Visningar:
Transkript
1 Problemlösning (3/5) Lösningar Lösning Problemlösning 1. Ture bygger en båt (2) Antag 0 tillhör S: motsägelse för den fjärde, som i så fall talar sanning. Antag 1 tillhör S: I så fall måste det vara den fjärde och då måste den femte tillhöra L. En möjlighet. Antag 2 tillhör S: Då måste den tredje tala sant och dessutom den femte också tillhöra S. En möjlighet. Antag 3 tillhör S: Den förste och den andre tillhör då S tillsammans med den femte. En möjlighet. Antag 4 tillhör S: Detta är förstås omöjligt eftersom minst två av de första fyra måste ljuga. Motsägelser Antag 5 tillhör S: Omöjligt av samma skäl som i punkten ovan. Återstår nu tre möjliga fall. I två av dessa tillhör den femte S. Vilket betyder att om den femte avger ett påstående som leder till att han tillhör S, så kan inte Ture avgöra det hela. Alltså finns det endast en som talar sanning, den fjärde och den femte tillhör L. Lösning Problemlösning 2. Ture bygger en båt (2) Antag att den korte talar sanning. Då måste medel tillhöra A och starta med att tala sanning. men då måste också Torkel vara rätt namn på den store, vilket är en motsägelse. Antag att den medellånga talar sanning. Leder till samma resonemang. Den korte måste då tillhöra A och vi får en motsägelse vad gäller namnet på den långa mannen Återstår så endast att den långa mannen talar sanning. Han heter Ludvig och det påstår också den korte mannen. Alltså måste den korte tillhöra A och börja med att ljuga. Vi ser nu att den meddelånga tillhör L. Allt stämmer! Den korte mannen tillhör A och heter Valdemar. Den medellånga mannen tillhör L och heter Osvald. Den långa mannen heter Ludvig och tillhör S. Lösning Problemlösning 3. Sture möter fyra män (2) Tabellen visar alla tänkbara kombinationer av stamtillhörighet som Adam och Bertil kan ha. A s betyder att han tillhör A och att han här startar med att tala sanning. Om A l, så är första påstående falskt. Resten av raden visar vad detta leder till. Ibland finns två möjligheter av Håkan Strömberg 1 KTH STH
2 tillhörighet. Talare Stam Adam Bertil Curt David Adam S S L L S Adam A s S S,A L L,A Adam A l L,A L S,A S Adam L L,A S,A S,A L,A Bertil S L S A S Bertil A s L L,A A L,A Bertil A l S,A S L,S S Bertil L S,A L,A L,S L,A Nu gäller det att kombinera Adam och Bertil, så att vi inte får några motsägelser. Om vi till exempel antar att båda talar sanning, så vimlar det av motsägelser. Låter vi Adam tillhöra L och Bertil A l, så kan dessa nästan kombineras. Påståendet om David ger dock en motsägelse. Vi har 16 kombinationer att kontrollera. Av dessa går tre igenom första kontrollen. Nämligen då Adam tillhör A l och Bertil L. Övertyga dig om detta. Men när vi tittar närmare på denna kombination ser vi att den endast fungerar om Adam tillhör S och Bertil A och det är ju tvärt emot antagandet. En annan kombination som fungerar i första steget är att båda tillhör L. Men för att det ska gå att förena dessa påståenden, måste både Adam och Bertil tillhöra A. Även denna kombination leder alltså till motsägelse. Nu finns det bara en chans kvar. Att Adam tillhör L och att Bertil tillhör A s. Detta antagande fungerar hela vägen. Vi vet nu att Adam tillhör L, Bertil A, Curt tillhör A och David A eller L (det kan vi inte avgöra och det har vi heller inte frågat efter). Lösning Problemlösning 4. Stures sista äventyr (2) Det finns 6 möjliga slutresultat och vi ska analysera dem alla. Vi får inte glömma att det finns en från A, en från L och en från S Resultat A B C ABC L L S ACB A L A BAC A L A BCA L A L CAB S A L CBA L S L Genom tabellen kan vi se att det bara finns en lösning. C, från L, vann. A, från S, kom tvåa och B från A kom sist. Håkan Strömberg 2 KTH STH
3 Lösning Problemlösning 5. H 2 0 (2) Figur 1: Lösning Problemlösning 6. Multiple Choice (2) Från de tre rättade skrivningarna kan vi få fram tre olika facit X, Y och Z. Det märkliga är att alla tre ger David 40 poäng Sum X o x o o x x o x x o 100 Y o x x o o x o x x o 100 Z o x x o x x o x o o 100 D x x o x o x x x o x 40 Lösning Problemlösning 7. Sten, Sax, Påse (2) Adam vann med 7 3 Lösning Problemlösning 8. Summa och produkt (3) Det finns bara ett annat sätt att göra detta urval 1,2,4,4,4,5,7,9,9 Lösning Problemlösning 9. Höger ben samtidigt (1) När Adam tagit 6 steg har Bertil tagit 9 och de är för första gången i takt igen. Adams 7:e steg tar han med med vänster ben liksom alla steg med udda ordningsnummer. Bertils 10:e steg tar han med höger ben. När Adam tagit 12 steg har Bertil tagit 18 och de är i takt för andra gången. Båda kommer nu att ta nästa steg med vänster ben och allt ser ut som då promenaden startade. De kommer alltså aldrig att samtidigt ta ett steg med höger ben. Håkan Strömberg 3 KTH STH
4 Lösning Problemlösning 10. De tre lamporna. (2) Slå på strömbrytaren längst till vänster och låt motsvarande lampa lysa i 1 minut. Slå därefter av den strömbrytaren. Slå nu på den mittersta strömbrytaren och gå ned i källaren. Den lampa som lyser är kopplad till den mittersta brytaren, den lampa som är släckt och varm är kopplad till den vänstra brytaren och den kalla och släckta lampan är kopplad till brytaren längst till höger. Lösning Problemlösning 11. Två multiplikationer (2) f[] := Block[{m, i, a, b, c, d, e, f, svar = {}, n}, m = Permutations[Range[9]]; For[i = 1, i <= Length[m], i++, n = m[[i]]; a = 10 n[[1]] + n[[2]]; b = n[[3]]; c = 10 n[[4]] + n[[5]]; d = n[[6]]; e = n[[7]]; f = 10 n[[8]] + n[[9]]; If[a*b == c && d*e == f, AppendTo[svar, {a, b, c, d, e, f}]; ] ]; svar ] Det finns bara en lösning 27 3 = = 54 (eller också 27 3 = = 54 om man är riktigt noggrann). Lösning Problemlösning 12. Far och son (1) Det finns två lösningar. Om det är pappan som fyller år i morgon, så är han 73 idag och sonen 37. Om det är sonen som fyller år i morgon, så är pappan 52 idag och sonen 25 Leder till en diofantisk ekvation. Genom Maple får vi svaret pappa = 10 s1 + s2; son = 10 s2 + s1; Reduce[pappa + 1 == 2 son, Integers] Reduce[pappa == 2 (son + 1), Integers] {s2 = 3 + 8n, s1 = n} {s2 = 2 + 8n, s1 = n} Eftersom s 1,s 2 {0...9} måste vi i båda ekvationerna välja n = 0. Håkan Strömberg 4 KTH STH
5 Lösning Problemlösning 13. Pentominoes (2) Här är samtliga 7 lösningar Figur 2: Lösning Problemlösning 14. Heltalskvadrater hela vägen (2) 1 #include <stdio.h> 2 int a[16],s[16]; 3 4 void solve(int nr){ 5 int i; 6 if(nr==15){ 7 for(i=1;i<=15;i++) 8 printf("%d ",s[i]); 9 printf("\n"); 10 } 11 else 12 for(i=1;i<=15;i++) 13 if(!a[i] && (nr==0 (int)(sqrt(i+s[nr]))==sqrt(i+s[nr]))){ 14 s[nr+1]=i; 15 a[i]=1; 16 solve(nr+1); 17 a[i]=0; 18 } 19 } 20 int main(void){ 21 solve(0); 22 } (8,1,15,10,6,3,13,12,4,5,11,14,2,7,9) (9,7,2,14,11,5,4,12,13,3,6,10,15,1,8) Håkan Strömberg 5 KTH STH
6 Lösning Problemlösning 15. Dålig telefonlinje (3) Om vi börjar med att granska alla sätt på vilka vi kan spendera de 200 kr på dessa speciella typer av frimärken och köpa åtminstone en av varje. så finns det 5 möjligheter: 12kr 14kr 17kr Totalt antal (1) (2) (3) (4) (5) Eftersom det totala antalet frimärken inte var en tillräckligt för att Curt skulle kunna ge svaret kan vi eliminera (1) och (5). Det totala antalet är alltså 14. Om svaret på frågan: Köpte du endast en av någon sort? hade varit ja kunde Curt fortfarande inte ge svaret. Men eftersom han kunde svara måste det ha varit 4 12, 6 14 kr, och 4 17 Håkan Strömberg 6 KTH STH
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Onsdagen 12 mars Tentamen består av 6 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Onsdagen 12 mars 2014 Tentamen består av 6 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning. Julpromenaden (2) Vi antar först att sträckan på slät mark är km och att backen är y km lång. Från det kända sambandet får vi t = s/v och kan nu teckna
1 Sifferkryss 21,15,9,22,15,8. i vårt exempel. Programmet ska i en tabell skriva ut de 9 talen, som för vårt exempel ger. Håkan Strömberg 1 KTH STH
1 Sifferkryss Till vänster i figuren ovan ser du ett sifferkryss, där de tomma rutorna ska fyllas i, med talen 1... 9, så att alla summor stämmer. Varje tal 1...9 ska finnas med precis en gång i lösningen,
Problemlösning Lösningar
Problemlösning Lösningar Figur 1: Problemlösning 1. Vem är kär i Adam (2) Vi kan bilda följande kedjor, där står för älskar och för älskar inte (1) A?? E? (2) B?? F? (3) C? D? (4) G B (5) H? G Om ingen
ÖVNINGSTENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 10:15-13:15. Torsdagen 20 maj Tentamen består av 4 sidor.
ÖVNINGSTENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 10:15-13:15 Torsdagen 20 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning 1. Dela bröd och pengar (0) Luffarna åt 8/3 bröd var. Luffare A gav bort 3 8/3 = 1/3 bröd till C och luffare B gav bort 5 8/3 = 7/3 bröd till C. Alltså ska
Fråga 13. Skriv en loop som fyller arrayen int v[100] med talen
Håkan Strömberg KTH STH 1 Fråga 1. Vilken är den största respektive minsta värde variabeln SUM kan erhålla genom följande rutin? srand(time(0)); for(k=1;k
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-17:15. Måndag 19 december Tentamen består av 5 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-17:15 Måndag 19 december 2011 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:00. Fredag 28 maj Tentamen består av 4 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:00 Fredag 28 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.
Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen
Lösningar och kommentarer till uppgifter i 1.1
Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna
Version A i TANKENÖTTER 4 4 = = 100 FACIT
Version 2017-12-01 4A i t r o v a F TANKENÖTTER 4 4 = 16 10 10 = 100 = 3 61 FACIT 1. Talet är 5 789. 2. a. 91 + 9 = 100 91 9 = 82 b. 502 + 498 = 1 000 502 498 = 4 c. 5 021 + 4 979 = 10 000 5 021 4 979
Dagens Teori. 5.1 Logik. Så här inleds förklaringen av ordet logik i vår Nationalencyklopedi:
Dagens Teori 5.1 Logik Så här inleds förklaringen av ordet logik i vår Nationalencyklopedi: Logik vid bemärkelse grundläggande principer för en grupp företeelser eller lära om följdriktiga slutledningar
1,3,5,7,9,...,99. Skriv ett program som genererar en multiplikationstabell med följande utseende
Arraymotion Skriv ett program som fyller en array med talen 1,3,5,7,9,...,99 och därefter skriver ut dem början på 99. Antal lika Skriv ett program som fyller två vektorer (arrayer) a och b med 100 slumptal
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Onsdagen 21 maj Tentamen består av 6 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Onsdagen 21 maj 2014 Tentamen består av 6 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 8:15-13:15. Måndag 8 juni Tentamen består av 4 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 8:15-13:15 Måndag 8 juni 2009 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också
Belopp Belopp > procent
Dagens problem Försäljarprovision Lönen för en försäljare är helt grundad på provision, direkt kopplad till den omsättning han lyckas skapa under en månad. Tabellen nedan anger procentsatser för olika
TENTAMEN. Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15. Tisdagen 26 april Tentamen består av 8 sidor
TENTAMEN Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15 Tisdagen 26 april 2011 Tentamen består av 8 sidor Hjälpmedel Förutom dator med installerad Code::Blocks, Utforskaren, Acrobat reader och Notepad
TENTAMEN. Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15. Tisdagen 26 april Tentamen består av 8 sidor
TENTAMEN Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15 Tisdagen 26 april 2011 Tentamen består av 8 sidor Hjälpmedel Förutom dator med installerad Code::Blocks, Utforskaren, Acrobat reader och Notepad
Fråga 11. Vad skrivs ut? Fråga 12. Vad skrivs ut? Fråga 13. Vad skrivs ut? x=x+y; y=x-y; x=x-y;
Håkan Strömberg KTH STH 1 Fråga 1. Vilka värden har c, e och f efter att de tre tilldelningssatserna har exekverats? int a=3, b=10; float c,d=2.0,e,f; c=b/a; e=b/a+d; f=d*b/a; Fråga 2. Skriv ett logiskt
Enkla uppgifter. Uppgift 1. Uppgift 2
Enkla uppgifter Dessa 10 ganska enkla uppgifter är till för dig som känner att du ännu inte kommit igång med kursen. I samtliga uppgifter behövs en enkel loop, for eller while. Beräkningarna är i allmänhet
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Torsdagen 16 januari Tentamen består av 5 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Torsdagen 16 januari 2014 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
HI1024, Programmering, grundkurs, 8hp KTH STH TENTAMEN. HI1024:TEN1 - Teoretisk tentamen Tid: Torsdagen den 20 oktober 2011,
KTH STH TENTAMEN HI1024:TEN1 - Teoretisk tentamen Tid: Torsdagen den 20 oktober 2011, 8.15-12.15 Gamla kurskoder: HI1900, 6E2950, etc. Examinator: Johnny Panrike Rättande lärare: Nicklas Brandefelt, Johnny
52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040
Tillämpningar på främst geometriska, men även aritmetiska summor och talföljder. Att röka är ett fördärv. Förutom att man kan förlora hälsan går en mängd pengar upp i rök. Vi träffar Cigge, som röker 20
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Programmering, grundkurs, 8.0 hp HI1024, TEN1. Fredagen den 2 mars 2012
Programmering, grundkurs, 8.0 hp HI1024, TEN1 Fredagen den 2 mars 2012 Tentamen består av två delar, del A och del B. Del A innehåller 4 kryssfrågor på olika teman inom C programmering. Varje fråga är
3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd
I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4
{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}
Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden
Sidor i boken
Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker
Ekvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Torsdagen 7 juni Tentamen består av 5 sidor.
TENTAMEN HF00, 6H0, 6H7 Diskret Matematik Skrivtid :5-8:5 Torsdagen 7 juni 0 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Programmering Grundkurs (HI1900) Teoridel
Tentamen Programmering Grundkurs, 11 januari 2010, STH KTH, Håkan Strömberg 1 Programmering Grundkurs (HI1900) Teoridel Skrivtid: 8:15-12:15 Datum: Onsdagen 2010-10-20 Tentamen består av 4 sidor Hjälpmedel:
Talmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61
Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska
HI1024, Programmering, grundkurs, 8hp KTH STH TENTAMEN. HI1024:TEN2 - Praktisk tentamen Tid: Fredagen den 21 oktober 2011,
KTH STH TENTAMEN HI1024:TEN2 - Praktisk tentamen Tid: Fredagen den 21 oktober 2011, 8.15-13.15 Gamla kurskoder: HI1900, 6E2950, etc. Examinator: Johnny Panrike Rättande lärare: Nicklas Brandefelt, Johnny
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Version TANKENÖTTER FACIT
Version 2018-05-18 B TANKENÖTTER FACIT 1. a. 5,, 5 7 b. 1 2 3 5 < < < < < 2 3 5 c. 19 20 20 21 < < < 21 22 22 23 7 2. a. 890 stenar b. 890 1 000 c. 89 100 3. 1 Mira A Isa. a. 1 3 b. 1 10 + = 1 eller 2
REGIONFINAL 2018 LAGEN
REGIONFINAL 2018 LAGEN 1. Förmörkelser Trots att solen ligger mycket längre bort från jorden än vad månen gör ser de ungefär lika stora ut på himlen eftersom solen är mycket större. En följd av detta är
Tjugofyra koltrastar
Tjugofyra koltrastar Detta är en övning som passar från åk 4 och uppåt. Den tränar addition, mönsterletning och problemlösning. Den tar mellan 1 3 lektioner. Sammanfattning: En morgon när drottningen öppnade
Matematiskt luffarschack
Matematiskt luffarschack - idé från Valentina Chapovalova Luffarschack är en lagtävling där lagen ska lösa uppgifter på tid. På varje uppgift ska man endast lämna in svar. På en lapp skriver man uppgiftens
Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.
Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen
Linjära ekvationssystem
Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.
Programmering Grundkurs Laboration 1
Programmering Grundkurs Laboration 1 Till kursen Programmering Grundkurs hör fyra obligatoriska laborationer. Detta är Laboration 1 given i period 1, HT 2010 vid KTH STH. Mål: I början av en programmeringskurs
Lösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
f(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
f (a) sin
Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan
Välkommen till min workshop Tankeläsare, korttrick och stengetter. Varje deltagare behöver 5 rutade kort 10 tändstickor
Välkommen till min workshop Tankeläsare, korttrick och stengetter Varje deltagare behöver 5 rutade kort 10 tändstickor Välkommen till min workshop Tankeläsare, korttrick och stengetter En fullständig redovisning
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Kängurun Matematikens hopp
Kängurun Matematikens hopp Ecolier 017, svar och lösningar Här följer korta svar, rättningsmall och redovisningsblanketter. Ett underlag till hjälp för bokföring av klassens resultat finns att hämta på
Sidor i boken Figur 1: Sträckor
Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar
Gruppledtrådar 6-3A (i samband med sidorna i Prima FORMULA 6) Hur gamla är syskonen Alfred, Bosse och Cajsa?
Gruppledtrådar 6-3A (i samband med sidorna 95-103 i Prima FORMULA 6) Alfred är a år. Bosse är tre år äldre. Summan av de tre syskonens åldrar är 19 år. Cajsa är äldst. Hon är yngre än 10 år. Cajsa är dubbelt
Moment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Välkommen till min workshop Tankeläsare, korttrick och stengetter Varje deltagare behöver 5 rutade kort 8 tändstickor
Välkommen till min workshop Tankeläsare, korttrick och stengetter Varje deltagare behöver 5 rutade kort 8 tändstickor Tankeläsaren Skolpojkens dröm: Multiplikationstabellen 0 * 0 = 0 0 * 1 = 0 Bin 1 *
Känguru 2013 Benjamin sida 1 / 7 (åk 6 och 7) I samarbete med Pakilan ala-aste och Brändö gymnasium
Känguru 2013 Benjamin sida 1 / 7 NAMN KLASS Poäng: Känguruskutt: Lösgör denna svarsblankett från uppgiftspappren. Skriv ditt svarsalternativ under uppgiftsnumret. Ett felaktigt svar ger minus 1/4 poäng
Problemlösning. Veckodagsproblemet Gissa talet Siffersumman
Problemlösning Veckodagsproblemet Gissa talet Siffersumman Veckodagsproblemet Vi vill skriva ett program som kan berätta för oss vad det är för veckodag om x dagar. Arbetsgång Förstå problemet Strukturera
Vad kommer det att stå i rutan som är märkt med ett X? A: 2 B: 3 C: 4 D: 5 E: 6 A: 5 B: 6 C: 7 D: 8 E: 9 A: 40 B: 37 C: 35 D: 34 E: 32
Trepoängsproblem Vad kommer det att stå i rutan som är märkt med ett X? 2 Elsas kub Natalies kub Natalie ville bygga en likadan kub som Elsa hade byggt, men hennes klossar tog slut. Hur många klossar till
KOKBOKEN. Håkan Strömberg KTH STH
KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
Programmering, grundkurs, 8.0 hp, Elektro, KTH, hösten Detta är andra problemlösningsföreläsningen, vi diskuterar problemen ur Problem II.
Detta är andra problemlösningsföreläsningen, vi diskuterar problemen ur Problem II. Första problemet: Frekvenstabell Skriv ett program som slumpar ett tärningskast n gånger. Programmet skall därefter skriva
Provverktyg för elever instruktioner [SE]
Provverktyg för elever instruktioner [SE] Innehållsförteckning 1 Inledning 3 2 Göra proven 3 2.1 Logga in 3 2.2 Kontrollera ljudet för hörförståelseprovet 5 2.3 Göra ett prov 5 3 Uppgifterna 7 3.1 Uppgifter
Programmering Grundkurs (6H2950) Grundläggande Programmering (6A2001)
Programmering Grundkurs (6H2950) Grundläggande Programmering (6A2001) Skrivtid: 8:15-13:15 Datum: Torsdagen 2003-08-21 Tentamen består av 4 sidor Hjälpmedel: Förutom dator med installerad Borland C++ 5.02
TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor
TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,
Switch, Array (fält) switch break, continue, goto (scary) Sammansatta tilldelningar Kommentarer Array Sortering
Switch, Array (fält) switch break, continue, goto (scary) Sammansatta tilldelningar Kommentarer Array Sortering switch int weekday; printf("mata in veckodagnummer 1-7: "); scanf("%d", &weekday); switch(weekday)
15.1 Mer om betingad sannolikhet
15.1 Mer om betingad sannolikhet Exempel 1. En vanlig tärning kastas Låt A tärningen visar 1 Låt B tärningen visar ett udda poängantal Bestäm P(A). Bestäm P(A B), det vill säga: Hur stor är sannolikheten
Sidor i boken 8-9, 90-93
Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta
Dagens Teori. 7.1 Mer kombinatorik Duvhålsprincipen
Dagens Teori 7.1 Mer kombinatorik 7.1.1 Duvhålsprincipen På engelska Pigeonhole Principle eller Dirichlet s Box Principle. I sin enklaste version Sats 1 Om vi har n + 1 objekt, som ska placeras i n lådor,
Problemlösning. Veckodagsproblemet Gissa talet Siffersumman
Problemlösning Veckodagsproblemet Gissa talet Siffersumman Veckodagsproblemet Vi vill skriva ett program som kan berätta för oss vad det är för veckodag om x dagar. Arbetsgång Förstå problemet Strukturera
Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
UPPGIFT 1 V75 FIGUR 1.
UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp
Enkla datatyper minne
Enkla datatyper minne 143.56 sant Sonja A falskt 18 1999-10-29 Bertil Gralvik, KTH Ingenjörsskolan 1 Addera två tal Algoritmen Summera tal Mata in två tal Beräkna Skriv ut resultat Mata in tal 1 Mata in
D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.
Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar
Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Föreläsning 2. Variabler, tilldelning och kodblock{} if-satsen Logiska operatorer Andra operatorer Att programmera
Föreläsning 2 Variabler, tilldelning och kodblock if-satsen Logiska operatorer Andra operatorer Att programmera Variabler Det är i variabler som all data (information) lagras. Genom att ändra värde på
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Likhetstecknets innebörd
Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:
Funktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3)
Känguru 2013 Student sida 1 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.
Några satser ur talteorin
Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan
Fråga 5. Vad krävs av funktionen undersok(a) för att b ska ökas med 1 respektive minskas med 1?
Håkan Strömberg KTH STH 1 Fråga 1. Följande två funktioner finns deklarerade i ett större program int F1(int A,int B){ if(a>b) return 2*A; return 2*B; int F2(int A,int B){ return abs(a-b); Vad får A för
Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.
Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:
Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1
1127 Påstående betecknas med P Motsatsen till påsteåendet betecknas P = icke P = inte P = ej P P n är ett udda tal P n är ett jämnt tal Kommentar: n kan enbart vara udda eller jämnt, P a + 2b 15 P a +
Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.
Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller
Matematiska uppgifter
Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som
Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och
Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Matteklubben Vårterminen 2015, lektion 6
Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt
polynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,
Dagens Teori. a 1,a 2,a 3,...a n
Dagens Teori 10.1 Summor och talföljder 10.1.1 Talföljder En talföljd är en uppräkning av tal a 1,a,a 3,...a n här n stycken. Ofta kan talföljder skrivas på ett mer kompakt sätt, som dessa oändliga talföljder
17.1 Kontinuerliga fördelningar
7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare
Känguru 2013 Ecolier sida 1 / 6 (åk 4 och 5) i samarbete med Pakilan ala-aste och Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Ecolier sida 1 / 6 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal!
Följande, ur problemsynpunkt enkla uppgifter, är till för att nöta in dagens teori.
Problem Nivå 1 Följande, ur problemsynpunkt enkla uppgifter, är till för att nöta in dagens teori. Problem 1 Skriv ett program som tar reda på hur många termer man måste ta med i serien för att summa ska
KTH STH TENTAMEN. HI1024:TEN2 - Praktisk tentamen Tid: 8-13, den 18 februari 2012
KTH STH TENTAMEN HI1024:TEN2 - Praktisk tentamen Tid: 8-13, den 18 februari 2012 Gamla kurskoder: HI1900, 6E2950, etc. Examinator: Johnny Panrike Rättande lärare: Nicklas Brandefelt, Johnny Panrike och
Funktioner och programstruktur. Föreläsning 5
Funktioner och programstruktur Föreläsning 5 Dagens kluring int v[10]=1,2,3,4,5,6,7,8,9,10; int i; for(i=0;i
f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.