Problemlösning Lösningar

Storlek: px
Starta visningen från sidan:

Download "Problemlösning Lösningar"

Transkript

1 Problemlösning Lösningar Lösning Problemlösning 1. Dela bröd och pengar (0) Luffarna åt 8/3 bröd var. Luffare A gav bort 3 8/3 = 1/3 bröd till C och luffare B gav bort 5 8/3 = 7/3 bröd till C. Alltså ska A ha 1 kr och B 7 kr. Lösning Problemlösning 2. De fyra korten (0) Vi översätter de fem satserna till lika många pusselbitar Valörbitarna kan endast sättas Figur 1.1: samman på ett sätt. Färgbitarna likaså. När vi sedan passar in färgkorten över raden av valörkort, finns det även här endast en möjlighet och vi har svaret: hjärterdam, hjärterkung, spaderkung och spaderdam. Lösning Problemlösning 3. Finn skeppen (0) Figur 1.2: Håkan Strömberg 1 KTH STH

2 Lösning Problemlösning 4. Finn skeppen igen (0) Figur 1.3: Lösning Problemlösning 5. Talet (1) Eftersom = är det hela inget fenomen! Lösning Problemlösning 6. De falska mynten (2) Plocka 1 mynt från den första påsen, 2 från den andra, 3 från den tredje och så vidare till 13 mynt från den trettonde påsen. Väg dessa = 91 på en gång. Hade alla varit äkta skulle vågen visa 8 91 = 798 gram. Detta tal från det vågen visar och du får reda på numret på den påsen där de falska mynten finns. Lösning Problemlösning 7. De fyra konstnärerna (2) Bertilsson kan inte vara författare eller målare, så vi kan placera ett x i dessa positioner i tabellen nedan. Varken Adamsson eller Curtsson kan vara sångare. Adamsson är inte författare. Inte heller Davidsson är författare. Vi har då: Dansare Målare Sångare Författare Adamsson x x Bertilsson x x Curtsson x Davidsson x Helt klart måste då Curtsson vara författare. Adamsson kan inte vara målare, eftersom Curtsson har suttit modell för målaren och Adamsson aldrig har hört talas om honom. Adamsson måste då vara dansare, vilket leder till att Bertilsson är sångare och Davidsson är målare. Vi får till slut tabellen: Dansare Målare Sångare Författare Adamsson x x x Bertilsson x x x Curtsson x x x Davidsson x x x Håkan Strömberg 2 KTH STH

3 Lösning Problemlösning 8. Dela äpplen (2) Bakgrund: Uppgiften är en förenklad variant av Kokosnötterna, sjömännen och apan, ett klassiskt problem. Plan: Normalt för ett liknande problem är att anta att det från början finns x äpplen och därefter försöka teckna en ekvation. Denna ekvation kan bli ganska lång och komplicerad. Ett annat angreppssätt, ganska vanligt, är att börja bakifrån och arbeta sig framåt mot utgångsläget. Genomförande: Vi kommer här att genomföra båda planerna. Först den minst arbetskrävande: När C kommer fram till högen tar han 1/3 av äpplena och lämnar alltså kvar 2/3. 8 äpplen är alltså 2/3 av vad som fanns innan. C tog 4 äpplen och det fanns 12 totalt i högen när han kom. När B kommer fram lämnar även han 2/3 av vad som finns, lika med 12 äpplen. B tog 6 äpplen och det fanns 18 äpplen när han kom. Så till sist A som också tog 1/3 av vad högen hade att bjuda på. Han lämnade 2/3 eller 18 äpplen, vilket betyder att A tog 9 äpplen och att det fanns 27 från början. Så över till ekvationen: Antag att det fanns x äpplen från början. A lämnade kvar x x/3 äpplen. B lämnade kvar (x x/3) (x x/3)/3. C lämnade kvar ((x x/3) (x x/3)/3) ((x x/3) (x x/3)/3)/3 som är lika med 8. Lite vackrare skrivet: x x 3 x x 3 3 x x 3 x x = 8 Håkan Strömberg 3 KTH STH

4 Lösning Problemlösning 9. Den betande geten (2) Studenten : Jag har förstått problemet och jag tror att jag kan lösa det. Jag börjar med att rita figuren 1.4. Här är min plan. Som Du ser består den area vi ska beräkna av tre olika delar. Alla är delar av olika cirklar. Läraren : Du såg det snabbt, att geten kan gå runt hörnen. Bra! Studenten : Jag behöver nu formeln för cirkelns area A = πr 2 Så här kommer uttrycket (och mitt genomförande) för hela arean att se ut: 3π π π m 2 Figur 1.4: Håkan Strömberg 4 KTH STH

5 Lösning Problemlösning 10. Den blommande trädgården (2) Här kan man använda lcm för att direkt få fram lösningen a) lcm(11,13,15) = 2145 b) lcm(11,22,15) = 330 c) lcm(72,48,144) = 144 Fick du rätt svar så har du egentligen upptäckt lcm på egen hand. Det är detta som är tanken med denna kurs att upptäcka saker själv. Håkan Strömberg 5 KTH STH

6 Lösning Problemlösning 11. KTH-basket (3) Lyckat straffskott (s) ger 8 poäng, och lyckat distansskott (s) ger 11 poäng. Självklart måste gcd(s,d) = 1, annars finns oändligt många poäng som inte kan uppnås. Den allmänna formeln för den högsta poäng som inte kan uppnås är g(s,d) = s d (s+d) känd som Frobenius number. Vi skriver ett program där vi utnyttjar denna begränsning coinproblem[v1_, v2_ := Block[{n1 = 0, n2, m = {}}, max = v1*v2 - (v1 + v2); While[n1 <= max, n2 = 0; While[True, v = v1*n1 + v2*n2; If[v > max, Break[; ; AppendTo[m, v; n2++; n1++; ; Complement[Range[max, Union[m test[ := Block[{v1, v2, l, svar = {}}, For[v1 = 2, v1 <= 19, v1++, For[v2 = v1 + 1, v2 <= 20, v2++, l = coinproblem[v1, v2; If[MemberQ[l, 58 && Length[l == 35, AppendTo[svar, {v1, v2}; ; svar test[ ger svaret {8, 11} Håkan Strömberg 6 KTH STH

7 Lösning Problemlösning 12. Inhägnaderna (2) Bondens inhägnad hade måtten 9 40 med arean 360. Grrannen hade flera möjligheter att göra en större hage med mindre stängsel. Största arean han kan nå är 588 m 2 med sidorna 21 och 28 och med 133 m stängsel. staket[langd_, area_ := Block[{a, b, c, svar = {}}, For[a = 1, a <= langd/2, a++, For[b = a, b <= langd/2, b++, c = Sqrt[a^2 + b^2; If[2 a + 2 b + c <= langd && IntegerQ[c && a*b > area, AppendTo[svar, {a, b, c, a*b}; ; svar staket[139,360 {{12, 35, 37, 420}, {16, 30, 34, 480}, {18, 24, 30, 432}, {20, 21, 29, 420}, {21, 28, 35, 588}} Håkan Strömberg 7 KTH STH

8 Lösning Problemlösning 13. Mysteriet med kokosnötterna (3) Det här problemet kan lösas snabbt och rakt fram genom att man låter x beteckna den mängd som var och en får när den slutliga uppdelningen gjorts och sedan arbetar sig bakåt ända tills man får fram en ekvation för y, det ursprungliga antalet kokosnötter. I x räknat blir denna ekvation y = 1024x Ekvationen ifråga kan lösas utan större svårighet och svaret blir y = 1024k+247 x = 81k+18 Följande resonemang ger emellertid samma svar litet snabbare och direktare: Den fjärde mannen lämnade kvar 12r kokosnötter, eftersom han ju lämnade kvar en hög som kunde delas lika (utan någon rest) i antingen tre eller fyra högar. Han måste alltså ha upptäckt en hög innehållande 16r + 3 kokosnötter. Dessa 16r+3 måste ha varit jämnt delbara med 3 (den tredje av männen lämnade ju kvar 3 lika stora högar). Sätts r lika med 3s blir 16r+3 till 48s+3; nummer tre måste ha tagit 16s+1 som sin andel. Det måste ha funnits kokosnötter när han anlände till högen. 64s+4+13 = 64s+7 Eftersom denna summa betecknar det antal kokosnötter nummer två lämnade kvar måste den också vara jämnt delbar med 3. Sätt s lika med 3t+2. Då måste det antal kokosnötter nummer 2 lämnade kvar ha varit 192t Den mängd han själv tog måste ha varit 64t+45. Härav följer att den mängd nummer två fann vid sin ankomst (och som nummer ett alltså lämnade kvar) var 256t = 256t+183 Detta antal måste givetvis vara jämnt delbart med 3. Detta blir fallet om t sätts lika med 3k, och antalet blir då 768k Härav följer att nummer ett måste ha tagit 256k + 61 och att han alltså måste ha funnit när han kom till högen. 1024k = 1024k+247 Härav följer alltså att y = 1024k För att få fram värdet på x behövs bara en enkel substituering: x = 12r = 3r = 3 3s = 9s = 9(3t+2) = 27t+18 = 27 3k+18 4 x = 81k+28 Genom att sätta k = 0 kan vi få fram att det lägsta antal kokosnötter högen kan ha innehållit från början är 247. För den händelse ni är intresserad av en allmän lösning på detta problem, så har ni den här: Antag en ursprunglig hög innehållande a kokosnötter och en grupp på n män. Var och en av männen delar i tur och ordning upp de kokosnötter han finner i n lika stora högar, varvid ett mindre antal nötter, låt oss kalla det m, blir över. Han kastar resten åt Håkan Strömberg 8 KTH STH

9 aporna, tar undan en hög åt sig själv, och samlar de andra i en enda stor hög igen. Nästa morgon finns det bara så pass mycket kokosnötter kvar att var och en kan få x kokosnötter. Då blir a = r n n+1 m( n) n m(n 1) där r är ett helt tal, vilket som helst, dock valt så att a blir ett positivt tal. Ju mindre r är, dess mindre blir också a. I sådana fall där antalet män är udda kan r få vilket heltalsvärde som helst från noll och uppåt; om antalet män är jämnt kan r inte vara = 0 men kan i övrigt vara vilket heltal som helst från ett och uppåt. I båda fallen får vi x = ( ) n 1 n (a+m(n 1) m(n 1) n n Håkan Strömberg 9 KTH STH

10 Lösning Problemlösning 14. Mobilen (3) Vi har 7 obekanta, antalet kulor i varje skål. Med hjälp av detta ekvationssystem får vi svaret a+b+c+d+e+f+g = 40 a+b+c = d+e+f+g 3a = 2(b+c) 3b = c d+e = 3(f+g) 4d = e f = 4g a b c d e f g Lösning Problemlösning 15. Förvirrad professor (4) Bilnumret är 9240 Med C-programmet: 1 #include <stdio.h> 2 int faktorer2(int tal,int talen[){ 3 int start=2,n=0; 4 while(tal>1 && start<=tal){ 5 while(tal%start==0){ 6 talen[n=start; 7 tal=tal/start; 8 n++; 9 } 10 start++; 11 } 12 talen[n=tal; 13 return n; 14 } int faktorer(int tal,int talen[100[2){ 17 int i,n=0; 18 for (i=1;i<=tal;i++) 19 if (tal%i==0){ 20 talen[n[0=i; 21 talen[n[1=tal/i; 22 n++; 23 } 24 return n-1; 25 } Håkan Strömberg 10 KTH STH

11 1 int main(void){ 2 int i,j,k,l,s,m,n,t,talen[100[2,min; 3 int antal,antal2,talen2[3,talen3[100,sum; 4 for (i=1000;i<9999;i++){ 5 n=faktorer(i,talen); 6 antal=0; 7 min=100000; 8 if (n>=2){ 9 for (j=0;j<n-2;j++) 10 for (k=j+1;k<n-1;k++) 11 for (l=k+1;l<n;l++){ 12 if (talen[j[0+talen[k[0+talen[l[0==100){ 13 antal++; 14 s=talen[j[1+talen[k[1+talen[l[1; 15 if (s<=min){ 16 min=s; 17 talen2[0=talen[j[0; 18 talen2[1=talen[k[0; 19 talen2[2=talen[l[0; 20 t=s; 21 } 22 } 23 } 24 } 25 n=faktorer2(t,talen3); 26 if (antal>1 && n==4){ 27 sum=0; 28 for(j=0;j<4;j++) 29 sum=sum+talen3[j; 30 antal2=0; 31 for(j=0;j<3;j++) 32 if(sum-1==talen2[j sum+1==talen2[j) 33 antal2++; 34 if(antal2==2) 35 printf("min: %d ger %d %d %d (%d) -> %d\n", 36 i,talen2[0,talen2[1,talen2[2,n,sum); 37 } 38 } 39 } Håkan Strömberg 11 KTH STH

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1

f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1 Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur

Läs mer

Problemlösning Lösningar

Problemlösning Lösningar Problemlösning Lösningar Lösning Problemlösning. Julpromenaden (2) Vi antar först att sträckan på slät mark är km och att backen är y km lång. Från det kända sambandet får vi t = s/v och kan nu teckna

Läs mer

Problemlösning (3/5) Lösningar

Problemlösning (3/5) Lösningar Problemlösning (3/5) Lösningar Lösning Problemlösning 1. Ture bygger en båt (2) Antag 0 tillhör S: motsägelse för den fjärde, som i så fall talar sanning. Antag 1 tillhör S: I så fall måste det vara den

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4. Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två

Läs mer

Fråga 13. Skriv en loop som fyller arrayen int v[100] med talen

Fråga 13. Skriv en loop som fyller arrayen int v[100] med talen Håkan Strömberg KTH STH 1 Fråga 1. Vilken är den största respektive minsta värde variabeln SUM kan erhålla genom följande rutin? srand(time(0)); for(k=1;k

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

Problemlösning Lösningar

Problemlösning Lösningar Problemlösning Lösningar Figur 1: Problemlösning 1. Vem är kär i Adam (2) Vi kan bilda följande kedjor, där står för älskar och för älskar inte (1) A?? E? (2) B?? F? (3) C? D? (4) G B (5) H? G Om ingen

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

Lösningsförslag Junior 2018

Lösningsförslag Junior 2018 Lösningsförslag Junior 2018 poäng 1. (C) 5 2. (C) 5 Av triangelolikheten följer att varje sida i en triangel är längre än differensen av övriga två sidor och kortare än dess summa. Den tredje sidan måste

Läs mer

Dagens Teori. 1.1 Talteori Några olika talmängder. Definition 1 Heltal kallas de tal som ingår i mängden Z = {..., 3, 2, 1,0,1,2,3,...

Dagens Teori. 1.1 Talteori Några olika talmängder. Definition 1 Heltal kallas de tal som ingår i mängden Z = {..., 3, 2, 1,0,1,2,3,... Dagens Teori 1.1 Talteori 1.1.1 Några olika talmängder Definition 1 Heltal kallas de tal som ingår i mängden Z = {..., 3, 2, 1,0,1,2,3,...} Definition 2 Naturliga tal kallas de tal som ingår i mängden

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

17.1 Kontinuerliga fördelningar

17.1 Kontinuerliga fördelningar 7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare

Läs mer

Svar och korta lösningar Benjamin 2006

Svar och korta lösningar Benjamin 2006 3 poäng Svar och korta lösningar Benjamin 2006 1. B 2006 2005 + 2007 är lika mycket som 2 2006. 2. D 2 309 415 687 Det kort man lägger först längst till vänster, måste ha så litet tal till vänster som

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng.

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. PYTHAGORAS QUEST Matematiktävling för högstadieelever Kvalificeringstest Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. 1 Ett heltal multipliceras med 2 och produkten multipliceras med 5. Vilket

Läs mer

ÖVNINGSTENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 10:15-13:15. Torsdagen 20 maj Tentamen består av 4 sidor.

ÖVNINGSTENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 10:15-13:15. Torsdagen 20 maj Tentamen består av 4 sidor. ÖVNINGSTENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 10:15-13:15 Torsdagen 20 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,

Läs mer

Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3)

Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3) Känguru 2013 Student sida 1 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

FACIT 2008 års kalender

FACIT 2008 års kalender 1. 100 = 111 11 är den enda kända lösningen. FACIT 2008 års kalender 2. Kurt och Ola har lika många nötter och Kurt har lika många valnötter som Ola kokosnötter, så om vi tar alla valnötter från Kurt och

Läs mer

Dagens Teori. 1.1 Talteori Några olika talmängder. Definition 1 Heltal kallas de tal som ingår i mängden Z = {..., 3, 2, 1,0,1,2,3,...

Dagens Teori. 1.1 Talteori Några olika talmängder. Definition 1 Heltal kallas de tal som ingår i mängden Z = {..., 3, 2, 1,0,1,2,3,... Dagens Teori 1.1 Talteori 1.1.1 Några olika talmängder Definition 1 Heltal kallas de tal som ingår i mängden Z = {..., 3, 2, 1,0,1,2,3,...} Definition 2 Naturliga tal kallas de tal som ingår i mängden

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Repetition inför tentamen

Repetition inför tentamen Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Moment 4.2.1, 4.2.2, 4.2.3, 4.2.4 Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Många av de objekt man arbetar med i matematiken och

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Programmering Grundkurs (HI1900) Teoridel

Programmering Grundkurs (HI1900) Teoridel Tentamen Programmering Grundkurs, 11 januari 2010, STH KTH, Håkan Strömberg 1 Programmering Grundkurs (HI1900) Teoridel Skrivtid: 8:15-12:15 Datum: Onsdagen 2010-10-20 Tentamen består av 4 sidor Hjälpmedel:

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också

Läs mer

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. C: 1,101 D:!!!

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. C: 1,101 D:!!! PYTHAGORAS QUEST Matematiktävling för högstadieelever Kvalificeringstest Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. 1 Vilket av talen nedan är närmast talet 1? A: " B: "" C: 1,101 D: """

Läs mer

Fråga 11. Vad skrivs ut? Fråga 12. Vad skrivs ut? Fråga 13. Vad skrivs ut? x=x+y; y=x-y; x=x-y;

Fråga 11. Vad skrivs ut? Fråga 12. Vad skrivs ut? Fråga 13. Vad skrivs ut? x=x+y; y=x-y; x=x-y; Håkan Strömberg KTH STH 1 Fråga 1. Vilka värden har c, e och f efter att de tre tilldelningssatserna har exekverats? int a=3, b=10; float c,d=2.0,e,f; c=b/a; e=b/a+d; f=d*b/a; Fråga 2. Skriv ett logiskt

Läs mer

TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:00. Fredag 28 maj Tentamen består av 4 sidor.

TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:00. Fredag 28 maj Tentamen består av 4 sidor. TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:00 Fredag 28 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Riksfinal Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare OBS Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Fullständiga

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket av dessa tal är delbart med 3? A: 2009 B: 2 + 0 + 0 + 9 C: (2 + 0) (0 + 9) D: 2 9 E: 200 9 2. I ett akvarium finns det 200 fiskar varav 1 % är blå medan övriga är

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Arbeta vidare med aritmetik 2018

Arbeta vidare med aritmetik 2018 Arbeta vidare med aritmetik 2018 I det här materialet har vi samlat problem inom aritmetik från flera olika tävlingsklasser, från Ecolier till Student. Årtal Varje år förekommer det problem som utgår från

Läs mer

7. Max 0/2/1. 8. Max 0/1/1. 9. Max 2/0/0

7. Max 0/2/1. 8. Max 0/1/1. 9. Max 2/0/0 7. Max 0//1 a) Godtagbart angivet intervall, t.ex. då x är mellan 3 och 4 +1 C B med korrekt använda olikhetstecken ( 3 < x < 4 ) +1 C K b) Korrekt svar ( x = och x = 4 ) +1 A B 8. Max 0/1/1 a) Korrekt

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Känguru 2011 Cadet (Åk 8 och 9)

Känguru 2011 Cadet (Åk 8 och 9) sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Linjär algebra, HF94 eempel Datum: Skrivtid: 4 timmar Eaminator: Armin Halilovic För godkänt betg krävs av ma 4 poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, respektive poäng. Komplettering:

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 65, 982 Årgång 65, 982 Första häftet 3260. På var och en av rutorna på ett schackbräde (med 8 rutor) ligger en papperslapp. Kan man flytta papperslapparna så att samtliga kommer att ligga

Läs mer

Student. a: 5 b: 6 c: 7 d: 8 e: 3

Student. a: 5 b: 6 c: 7 d: 8 e: 3 Student Avdelning. Trepoängsproblem. Talen 3 och 4 samt två okända tal skrivs in i de fyra rutorna. Summan av talen i raderna blir 5 och 0 och summan av talen i den ena kolumnen blir 9. Vilket är det största

Läs mer

Programmering i C, 7,5 hp

Programmering i C, 7,5 hp Programmering i C, 7,5 hp Föreläsning 4 VÄLKOMNA! 31 switch-satsen Antag att vi har en heltalsvariabel a som skall styra programflödet Antag vidare att a kan anta tex 5 olika värden 1,2,3,4,5 printf( Mata

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Formelhantering Formeln v = s t

Formelhantering Formeln v = s t Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller

Läs mer

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)

Vi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x) Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion

Läs mer

Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3)

Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3) 1 Print 1 Tal, Prioriteringsregler 3 Procent, Procentuella förändringar 2 Variabler Teckna och tolka uttryck Ekvationslösningens grunder 1236 Beräkna utan räknare. a) 6 + 4 3 b) 9 4 12 3 c) 7 (3 + 12)

Läs mer

TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 8:15-13:15. Måndag 8 juni Tentamen består av 4 sidor.

TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 8:15-13:15. Måndag 8 juni Tentamen består av 4 sidor. TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 8:15-13:15 Måndag 8 juni 2009 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar

Läs mer

matematik Lektion Kapitel Uppgift Lösningg T.ex. print(9-2 * 2) a) b) c) d)

matematik Lektion Kapitel Uppgift Lösningg T.ex. print(9-2 * 2) a) b) c) d) 1 Print 2.6 Prioriteringsregler 1 Beräkna a) 9 2 2 b) 10 + 5 6 c) 5 6 10 d) 16 + 4 5 6 2.6 Prioriteringsregler 7 Stina köper 3 chokladbollar för 10 kr styck och 1 kopp te för 14 kr. a) Skriv ett uttryck

Läs mer

a (och liknande ekvationer). a har lösningar endast om 1 a 1 (eftersom 1 sin( x ) 1). 3 saknar lösningar.

a (och liknande ekvationer). a har lösningar endast om 1 a 1 (eftersom 1 sin( x ) 1). 3 saknar lösningar. TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x) a (och liknande ekvationer) Ekvationen sin( x) a har lösningar endast om a (eftersom sin( x ) ) Exempelvis, ekvationen sin( x) saknar lösningar Uppgift

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd

Läs mer

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7

Kontroll 13. Uppgift 1. Uppgift 2. Uppgift 3. Uppgift 4. Uppgift 5. Uppgift 6. Uppgift 7 Kontroll 13 Uppgift 1 Avståndet, r parsec, till en stjärna kan bestämmas med formeln M = m + 5 5 lgr där M =stjärnans absoluta ljusstyrka och m =stjärnans skenbara ljusstyrka. (1 parsec= 3.26 ljusår= 9.46

Läs mer

Kombinatorik 6.19. Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3)

Kombinatorik 6.19. Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3) Kombinatorik 6.19 Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3) S: Sitter med med uppgift 6.19 a och b i EA och trots att det finns lösningsförslag till a på hemsidan så förstår jag inte. C(n+1,2) - C(n,2)

Läs mer

Rättningsmall UM-final 2012

Rättningsmall UM-final 2012 Rättningsmall UM-final 2012 1. De första 9 sidorna har 9 siffror. De följande 90 har tvåsiffriga sidnummer, d.v.s. 180 siffror. Summan 189 siffror. Därefter följer tresiffrig numrering. Antalet siffror

Läs mer

, S(6, 2). = = = =

, S(6, 2). = = = = 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.

Läs mer

Gruppledtrådar 6-3A (i samband med sidorna i Prima FORMULA 6) Hur gamla är syskonen Alfred, Bosse och Cajsa?

Gruppledtrådar 6-3A (i samband med sidorna i Prima FORMULA 6) Hur gamla är syskonen Alfred, Bosse och Cajsa? Gruppledtrådar 6-3A (i samband med sidorna 95-103 i Prima FORMULA 6) Alfred är a år. Bosse är tre år äldre. Summan av de tre syskonens åldrar är 19 år. Cajsa är äldst. Hon är yngre än 10 år. Cajsa är dubbelt

Läs mer

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.

Läs mer

NpMa2b ht Kravgränser

NpMa2b ht Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 73 poäng varav 27 E-, 27 C- och 19 A-poäng. Kravgräns för provbetyget

Läs mer

Känguru 2017 Student gymnasiet

Känguru 2017 Student gymnasiet sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt

Läs mer

Examination i. PROGRAMMERINGSTEKNIK F1/TM1 TIN212 (Dugga) Dag: Onsdag Datum: 2014-12-17 Tid: 9.00-12.00 (OBS 3 tim) Rum: V

Examination i. PROGRAMMERINGSTEKNIK F1/TM1 TIN212 (Dugga) Dag: Onsdag Datum: 2014-12-17 Tid: 9.00-12.00 (OBS 3 tim) Rum: V Data och Informationsteknik / Computer Science and Engineering Chalmers University of Technology and University of Gothenburg Erland Holmström Göteborg 16 dec 2014 Examination i PROGRAMMERINGSTEKNIK F1/TM1

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel:

Läs mer

Enkla uppgifter. Uppgift 1. Uppgift 2

Enkla uppgifter. Uppgift 1. Uppgift 2 Enkla uppgifter Dessa 10 ganska enkla uppgifter är till för dig som känner att du ännu inte kommit igång med kursen. I samtliga uppgifter behövs en enkel loop, for eller while. Beräkningarna är i allmänhet

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-17:15. Måndag 19 december Tentamen består av 5 sidor.

TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-17:15. Måndag 19 december Tentamen består av 5 sidor. TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-17:15 Måndag 19 december 2011 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,

Läs mer