TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:00. Fredag 28 maj Tentamen består av 4 sidor.
|
|
- Barbro Ström
- för 6 år sedan
- Visningar:
Transkript
1 TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:00 Fredag 28 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar och böcker. Dock inga egna disketter eller CD-ROM. Tentamen består av 12 uppgifter. I katalogen W:\PROV\DM finns Kursbunten (pdf), Lathund i Maple (pdf) samt någon/några filer du kan komma att behöva för att lösa någon/några av uppgifterna. För varje uppgift med korrekt svar får du 1 poäng. 5 poäng av maximalt 12 räcker säkert till godkänt. Resultatet 4 poäng berättigar till komplettering. Du redovisar normalt bara svaret, ett tal eller en lista med tal. Det betyder att ett litet slarvfel leder till 0 poäng. För någon uppgift kan krävas något längre text som svar. I så fall anges detta. Betygsskala A B C D E Håkan Strömberg 1 KTH STH
2 Uppgift 1 Abundant numbers ( rika tal ) är heltal där σ(n) > 2n. σ(n) är summan av alla delare till n. σ(12) = = 28 > 24. Alltså är 12 ett abundant number. Vilket är det minsta udda abundant number? Lösning: Svaret är 945 Uppgift 2 f[ := Block[{t = 0, ok = False}, While[! ok, t++; If[2*t < Total[Divisors[t && Mod[t, 2 == 1, ok = True; t f[ För en familj gäller följande: Åldern i år för Fadern, Modern, Sonen och Dottern är alla heltalskvadrater. Faderns ålder är lika med summan av Moderns, Sonens och Dotterns ålder. Farfars ålder är summan av Faderns, Moderns och Dotterns ålder. Farfars ålder är ett primtal Bestäm de fem personernas ålder. Svar: Fadern är 49 år, modern är 36, dottern 4, sonen 9 och farfar 89 For[k=1,k<=10,k++, For[s=1,s<k,s++, For[d=1,d<k,d++, ma=k^2+s^2+d^2; f=ma+k^2+d^2; If[PrimeQ[f && f<100 && IntegerQ[Sqrt[ma, Print[f," ",ma," ",k^2," ",s^2," ",d^2," " Håkan Strömberg 2 KTH STH
3 Uppgift 3 De minsta konsekutiva haltalskuberna vars differens är en heltalskvadrat är = 169 = Vilket är nästa par av heltalskuber med denna egenskap? Lösning: = = Uppgift 4 h[ := Block[{t = 7, lista = {}, ok = False}, While[! ok, t++; If[IntegerQ[Sqrt[(t + 1)^3 - t^3, AppendTo[lista, {t + 1, t} ok = True; lista h[ 7 tvåsiffriga tal kan konkateneras (sammanfogas) till ett 14 siffror långt heltal, som dessutom är en heltalskvadrat. Vilket är det eftersökta talet då listan av tvåsiffriga tal är{74,89,23,67,10,46,24} Svar: = Clear[" *" f[lista_ := Block[{ m, t, s, svar = {}, tal}, m = Permutations[lista For[t = 1, t < Length[m, t++, tal = 0; For[s = 1, s <= Length[m[[t, s++, tal = 100*tal + m[[t, s If[IntegerQ[Sqrt[tal, AppendTo[svar, tal svar f[{74, 89, 23, 67, 10, 46, 24} Håkan Strömberg 3 KTH STH
4 Uppgift 5 Vi vill skriva talen 1..9 runt en cirkel, så att summan av två intilliggande tal aldrig delas jämnt av talen 3,5 eller 7. Presentera en lista som anger i vilken ordning talen ska placeras. Det räcker att ange en av flera lösningar. Lösning: Följande lösningar finns {{1,3,8,5,6,2,9,4,7},{1,7,4,9,2,6,5,8,3},{2,6,5,8,3,1,7,4,9}, {2,9,4,7,1,3,8,5,6},{3,1,7,4,9,2,6,5,8},{3,8,5,6,2,9,4,7,1}, {4,7,1,3,8,5,6,2,9},{4,9,2,6,5,8,3,1,7},{5,6,2,9,4,7,1,3,8}, {5,8,3,1,7,4,9,2,6},{6,2,9,4,7,1,3,8,5},{6,5,8,3,1,7,4,9,2}, {7,1,3,8,5,6,2,9,4},{7,4,9,2,6,5,8,3,1},{8,3,1,7,4,9,2,6,5}, {8,5,6,2,9,4,7,1,3},{9,2,6,5,8,3,1,7,4},{9,4,7,1,3,8,5,6,2}} f[n_ := Block[{l, r = {}, m, ok, t}, l = Permutations[Range[n For[m = 1, m <= Length[l, m++, ok = True; p = l[[m For[t = 1, t <= n - 1, t++, If [Mod[p[[t + p[[t + 1, 3 == 0 Mod[p[[t + p[[t + 1, 5 == 0 Mod[p[[t + p[[t + 1, 7 == 0, ok = False; If [Mod[p[[1 + p[[n, 3 == 0 Mod[p[[1 + p[[n, 5 == 0 Mod[p[[1 + p[[n, 7 == 0, ok = False If[ ok, AppendTo[r, p r f[9 Håkan Strömberg 4 KTH STH
5 Uppgift 6 Adam och Bertil har en gemensam spargris, som från början innehöll 210 kr. Varje dag tog Adam ett och samma belopp från spargrisen. Bertil fiskade upp ett annat belopp varje dag. Efter 6 veckor var grisen tom. Beräkna vilket belopp det var Adam och Bertil tog varje dag. Man vet att Adam ensam skulle ha tömt grisen 5 veckor tidigare än om Bertil, om de ensamma hade tagit sitt belopp från grisen varje dag. Lösning: Antag att Adam tog m x kr varje dag och att Bertil tog x kr. Vi får ekvationssystemet 210 x 210 = 35 mx 210 x+mx = 42 med lösningen m = 3 2 och x = 2, vilket betyder att Adam tog 3 kronor och Bertil 2 kr. Systemet har en lösning till m = 3 2 och x = 15, men den skulle ju innebära att Adam istället stoppade i pengar varje dag. Håkan Strömberg 5 KTH STH
6 Uppgift 7 Genom Förbifart Stockholm har anlagts en väg, som en cirkel runt staden, se figur, för att på det sättet avlasta trafiken i innerstaden (1). Mellan två intilliggande trafikplatser ( ) och mellan vissa trafikplatser och innerstaden finns beräknad körtid angiven. Trots det tjänar man ibland att ta vägen genom staden. Ta reda på för vilka par av trafikplatser (angivna som [tp 1,tp 2 ) man vinner tid, om man åker genom innerstaden. Grafen finns att på filen cirkelvagen.txt. Lösning: Vi får genom funktionen reda på att mellan (2,6),(4,8) och (4,9) bör färden gå genom innerstaden. f[:=block[{i, j, e, v, g, p, t, l = {}}, e={{1, 2}, {1, 4}, {1, 6}, {1, 8}, {1, 9}, {2, 3}, {2, 10}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}; v = {180, 165, 146, 116, 174, 110, 64, 106, 138, 88, 78, 110, 97, 72}; g = FromOrderedPairs[e, Type -> Undirected g = SetEdgeWeights[g, v t = AllPairsShortestPath[g For[i = 2, i <= 8, i++, For[j = i + 1, j <= 9, j++, p = ShortestPath[g, i, j If[Position[p, 1!= {}, AppendTo[l, {i, j, t[[i, j} l f[ Håkan Strömberg 6 KTH STH
7 Uppgift 8 Hitta alla naturliga tal n för vilka exakt två av följande tre uttalanden är sanna. 1) Talet n + 71 är en heltalskvadrat 2) Den sista siffran i n är 2. 3) Talet n 45 är en heltalskvadrat Dessa tal är väldigt få! Lösning: Det finns bara ett tal 829. f[m_ := Block[{i, L = {}, n}, For[ i = 1, i <= m, i++, n = 0; If[IntegerQ[Sqrt[i + 71, n++; If[Mod[ i, 10 == 2, n++; If[IntegerQ[Sqrt[i - 45, n++; If [n == 2, AppendTo[L, i L f[10000 Här en matematiskt bevis: Först så märker vi att varken 1) och 2), eller 2) och 3) kan vara sant samtidigt, eftersom sista siffran av en kvadrat bara kan vara 0,1,4,9,6 eller 5. Detta betyder att tal med sista siffran 2+1 = 3 eller 12 5 = 7 inte kan vara kvadrat av ett heltal. Detta betyder att vi letar efter ett tal n för vilket både n + 71 och n 45 är heltalskvadrater av heltal. Låt oss beteckna n+71 = x 2 och n 45 = y 2 och för enkelhetens skull, antar vi att både x och y är positiva. Vi har alltså x 2 y 2 = 116; där x och y är heltal. Vi skriver om ekvationen på formen (konjugatregeln) (x y)(x+y) = 116 Alla möjliga faktoriseringar av 116 i positiva heltal sådana att den första faktorn är mindre än den andra (ty hos oss x y < x + y både x och y är positiva och x = n+71 > n 45 = y) är 116 = = 2 58 = 4 29 Håkan Strömberg 7 KTH STH
8 Vi kan direkt eliminera faktoriseringarna och 4 29, ty i båda fallen har faktorerna olika pariteter (och x y och x + y har alltid samma paritet). Det återstår alltså att lösa ekvationssyetemet { x y = 2 x+y = 58 Lösningen är x = 30 och y = 28, vilket ger x 2 = 900 och y 2 = 784 och n = 829 är talet vi letade efter. Det finns alltså bara ett tal som uppfyller uppgiftens villkor och detta är 829. Uppgift 9 Figur 1: Grafen i figur 1 är inte planar. Det vill säga den kan inte ritas utan att två bågar skär varandra. Men genom att plocka bort en båge blir grafen planar. Vilka bågar kan komma ifråga? Lösning: Tar man bort någon av bågarna (2,11), (5,9) eller (6,10) blir grafen planar f[ := Block[{ lista = {}, e, e2, g, i}, e = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 10}, {2, 11}, {3, 4}, {3, 5}, {3, 10}, {4, 5}, {4, 6}, {5, 6}, {5, 9}, {5, 10}, {6, 7}, {6,10}, {7, 8}, {7, 9}, {8, 9}, {8, 11}, {9, 10}, {9, 11}, {10, 11}}; For[i = 1, i <= Length[e, i++, e2 = e; e2 = Drop[e, {i} g = FromOrderedPairs[e2, Type -> Undirected If[PlanarQ[g, AppendTo[lista, e[[i lista f[ Håkan Strömberg 8 KTH STH
9 Uppgift 10 I en låda ligger 111 stycken kulor i färgerna rött, blått, grönt och vitt. Man vet att om 100 kulor dras ur lådan på måfå, så kommer garanterat alla fyra färgerna att finnas med. Bestäm det minsta antalet kulor som man måste dra för att garanterat minst tre av färgerna ska förekomma. Lösning: Antag att antalet kulor av de olika färgerna ärr,b,g ochv, med r+b+g+v= 111. Man kan till exempel anta att r b g v. Det räcker med 100 kulor för att få fyra olika färger, det vill säga det är omöjligt att dra ut 100 stycken kulor där bara tre färger förekommer, inte ens av de färger det finns flest av. Det vill säga summan av b,g och v är mindre än 100, alltså b+g+v Således r 12 och därför också b 12. Vi vill bestämma g+v+1. Men g+v+1 = 112 r b = 88. Det kan inte vara mindre än 88, eftersom detta antal exempelvis krävs för fallet då r = 12,b = 12,g = 12,v = 75. Alltså är svaret 88. Uppgift 11 Vi startar med en kortlek innehållande n kort. Första kortet läggs underst, andra kortet kastas, tredje kortet läggs underst, fjärde kastas och så vidare till endast ett kort återstår. Skriv en funktion som, för givet n, tar reda på vilken plats (från toppen räknat) detta kort hade från början i kortbunten. Det är möjligt att bestämma en funktion som direkt ger svaret: f(n) = a n 2 log 2 (b n) +c +d Bestäm med hjälp av den skrivna funktionen värden för n = Använd dessa data för att bestämma a,b,c,d i den andra funktionen. Lösning: f[n_ := Block[{ S}, S = Range[n While[Length[S > 1, S = Flatten[{Drop[S, 2, S[[1} S[[1 t = Table[f[i, {i, 1, 30} FindFit[t,{a*n-2^(Floor[Log[2,b*n+c)+d},{a,b,c,d},n Vi får resultatet f(n) = 2n 2 log 2 n Med den här funktionen kan vi direkt bestämma det sista kortets placering från början i en kortlek med n kort g[n_ := 2*n - 2^(Floor[Log[2, n + 1) + 1 Håkan Strömberg 9 KTH STH
10 Uppgift 12 På en fest med 28 studenter, serverades tre sorters pizza: Vesuvio (V), Calzone (C) och Hawaii (H). Varje student åt åtminstone en sorts pizza Ingen av de 7 olika valen av en eller flera pizzor åts av samma antal studenter Varje val av endast en pizza gjordes av ett udda antal studenter Varje val av två olika pizzor gjordes av ett jämnt antal Om totalt 10 studenter åt Hawaii, hur många åt då de två pizzorna Vesuvio och Calzone? Lösning: När vi upptäcker att = 28 är mer än halva problemet löst. f[ := Block[{ L, S = {}, m, i}, L = Permutations[{1, 2, 3, 4, 5, 6, 7} For[i = 1, i <= Length[L, i++, m = L[[i If[ m[[1 + m[[4 + m[[5 + m[[7 == 10 && Mod[m[[1, 2 == 1 && Mod[m[[2, 2 == 1 && Mod[m[[3, 2 == 1 && Mod[ m[[4, 2 == 0 && Mod[ m[[5, 2 == 0 && Mod[ m[[6, 2 == 0, AppendTo[S, {m[[6, m} S f[ Det finns 8 lösningar alla med svaret 6 för valet Vesuvio och Calzone. Uppgiften i Roséns Handbook of Discrete Mathematics anger att antalet Hawaii-ätare är 18 med svaret 2, men tyvärr finns även svaren 4, 6 vilket diskvalificerar uppgiften. Däremot fungerar uppgiften om 18 byts mot 10 (svar 6) eller 22 (svar 2). Håkan Strömberg 10 KTH STH
ÖVNINGSTENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 10:15-13:15. Torsdagen 20 maj Tentamen består av 4 sidor.
ÖVNINGSTENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 10:15-13:15 Torsdagen 20 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 8:15-13:15. Måndag 8 juni Tentamen består av 4 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 8:15-13:15 Måndag 8 juni 2009 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-17:15. Måndag 19 december Tentamen består av 5 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-17:15 Måndag 19 december 2011 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Torsdagen 7 juni Tentamen består av 5 sidor.
TENTAMEN HF00, 6H0, 6H7 Diskret Matematik Skrivtid :5-8:5 Torsdagen 7 juni 0 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Onsdagen 12 mars Tentamen består av 6 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Onsdagen 12 mars 2014 Tentamen består av 6 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Onsdagen 21 maj Tentamen består av 6 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Onsdagen 21 maj 2014 Tentamen består av 6 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Torsdagen 16 januari Tentamen består av 5 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Torsdagen 16 januari 2014 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
Problemlösning (3/5) Lösningar
Problemlösning (3/5) Lösningar Lösning Problemlösning 1. Ture bygger en båt (2) Antag 0 tillhör S: motsägelse för den fjärde, som i så fall talar sanning. Antag 1 tillhör S: I så fall måste det vara den
Talmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Dagens Teori. Figur 12.1:
Dagens Teori 12.1 Grafer Del II 12.1.1 Grafer i Mathematica Definition Genom paketen Combinatorica och GraphUtilities får vi tillgång till en mängd rutiner och fördefinierade grafer för lösandet av problem
Funktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Problemlösning Lösningar
Problemlösning Lösningar Figur 1: Problemlösning 1. Vem är kär i Adam (2) Vi kan bilda följande kedjor, där står för älskar och för älskar inte (1) A?? E? (2) B?? F? (3) C? D? (4) G B (5) H? G Om ingen
TENTAMEN. Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15. Tisdagen 26 april Tentamen består av 8 sidor
TENTAMEN Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15 Tisdagen 26 april 2011 Tentamen består av 8 sidor Hjälpmedel Förutom dator med installerad Code::Blocks, Utforskaren, Acrobat reader och Notepad
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tentamen TMV20 Inledande Diskret Matematik, D/DI2 208-0-27 kl. 4.00 8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Anton Johansson, telefon: 5325 (alt. Peter Hegarty 070-5705475)
UPPGIFT 1 V75 FIGUR 1.
UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp
Linjära ekvationssystem
Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.
Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen
Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning 1. Dela bröd och pengar (0) Luffarna åt 8/3 bröd var. Luffare A gav bort 3 8/3 = 1/3 bröd till C och luffare B gav bort 5 8/3 = 7/3 bröd till C. Alltså ska
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning. Julpromenaden (2) Vi antar först att sträckan på slät mark är km och att backen är y km lång. Från det kända sambandet får vi t = s/v och kan nu teckna
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Tentamen. Matematik 2 Kurskod HF1003. Skrivtid 8:15-12:15. Fredagen 13 mars Tentamen består av 3 sidor. Maple samt allt tryckt material
Tentamen Matematik 2 Kurskod HF1003 Skrivtid 8:15-12:15 Fredagen 13 mars 2009 Tentamen består av 3 sidor Maple samt allt tryckt material Korrekt löst uppgift ger 2 poäng. För godkänt krävs 16 poäng. Varje
Sidor i boken 8-9, 90-93
Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta
4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.
Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två
Betingad sannolikhet och oberoende händelser
Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger
Hjalpmedel: Inga hjalpmedel ar tillatna pa tentamensskrivningen. 1. (3p) Los ekvationen 13x + 18 = 13 i ringen Z 64.
Matematiska Institutionen KTH Losning till tentamensskrivning i Diskret Matematik, SF och B8, torsdagen den oktober, kl.-.. Examinator Olof Heden. Hjalpmedel Inga hjalpmedel ar tillatna pa tentamensskrivningen.
aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13
Tentamen TEN, HF, aug 7 Matematisk statistik Kurskod HF Skrivtid: :-: Lärare och examinator : Armin Halilovic Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av vilken
Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Den räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Dagens Teori. Figur 4.1:
Dagens Teori 4.1 Funktioner En funktion är en regel som till varje objekt i en mängd A associerar ett objekt i en annan mängd B Figur 4.1: Första gången vi normalt hör talas om funktioner i matematisk
Den räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Efternamn förnamn ååmmdd kodnr
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn ååmmdd kodnr Lösning till kontrollskrivning 5A, den 15 maj 2014, kl 13.00-14.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel
Efternamn förnamn pnr kodnr
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr kodnr Lösning till kontrollskrivning 5A, 21 maj 2015, 13.15 14.15, i SF1610 Diskret matematik för CINTE, CMETE mfl. Inga hjälpmedel tillåtna.
Efternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Lösning till kontrollskrivning 5A, den 15 oktber 2013, kl 09.00-10.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst
Efternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Kontrollskrivning 3A, den 2 oktber 2013, kl 11.00-12.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel tillåtna. Minst
, S(6, 2). = = = =
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.
Dagens Teori. a 1,a 2,a 3,...a n
Dagens Teori 10.1 Summor och talföljder 10.1.1 Talföljder En talföljd är en uppräkning av tal a 1,a,a 3,...a n här n stycken. Ofta kan talföljder skrivas på ett mer kompakt sätt, som dessa oändliga talföljder
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Matematiska uppgifter
Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =
Matematiska uppgifter
Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,
Dagens Teori Något om kryptering med RSA
Dagens Teori 14.1 Något om kryptering med RSA Kryptologi kallas läran om krypteringssystem. I ett sådant system krypterar (chiffrerar) sändaren sitt meddelande, så att förhoppningsvis endast mottagaren
Matematiska uppgifter
Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor
TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Ekvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
y y 1 = k(x x 1 ) f(x) = 3 x
Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Matematiska uppgifter
Elementa Årgång 69, 1986 Årgång 69, 1986 Första häftet 3420. Två ljus av samma längd är gjorda av olika material så att brinntiden är olika. Det ena brinner upp på tre timmar och det andra på fyra timmar.
Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3)
Känguru 2013 Student sida 1 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:
TENTAMEN Kursnummer: HF0021 Matematik för basår I Moment: TEN1 Program: Tekniskt basår Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: 2015-03-10 Tid: 13:15-17:15 Hjälpmedel:
Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.
UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3
UPPGIFT 1 EURO Harry ska åka till Portugal och behöver växla till sig 500 Euro från svenska kronor. När han kommer tillbaka från Portugal kommer han att ha 200 Euro över som han vill växla tillbaka till
A-del. (Endast svar krävs)
Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN
freeleaks NpMaB vt000 1() Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 000 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B hör
Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Föreläsning 11. Giriga algoritmer
Föreläsning 11 Giriga algoritmer Föreläsning 11 Giriga algoritmer Användning Växelproblemet Kappsäcksproblemet Schemaläggning Färgläggning Handelsresandeproblemet Giriga algoritmer (Greedy algorithms)
(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.
UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
x 2 4 (4 x)(x + 4) 0 uppfylld?
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
Lästal från förr i tiden
Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt
Tentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Programmering Grundkurs (6H2950) Grundläggande Programmering (6A2001)
Programmering Grundkurs (6H2950) Grundläggande Programmering (6A2001) Skrivtid: 8:15-13:15 Datum: Torsdagen 2003-08-21 Tentamen består av 4 sidor Hjälpmedel: Förutom dator med installerad Borland C++ 5.02
9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
TENTAMEN I MATEMATISK STATISTIK 19 nov 07
TENTAMEN I MATEMATISK STATISTIK 9 nov 7 Ten i kursen HF ( Tidigare kn 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Ten i kursen 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Graärgning och kromatiska formler
Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela
Lösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Junior för elever på kurs Ma 2 och Ma 3
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Junior för elever på kurs Ma 2 och Ma 3 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF131 och SF130, den 10 januari 2011 kl 14.00-19.00. Examinator: Olof Heden, tel. 0730547891.
1. (3p) Bestäm den minsta positiva resten vid division av talet med talet 31.
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 7 juni 2011 kl 08.00-13.00. Examinator: Olof Heden, tel. 0730547891.
Diskret Matematik A för CVI 4p (svenska)
MITTHÖGSKOLAN TFM Tentamen 2004 MAAA98 Diskret Matematik A för CVI 4p (svenska) Skrivtid: 5 timmar Datum: 3 juni 2004 Denna tentamen omfattar 10 frågor, där varje fråga kan ge 12 poäng. Delfrågornas poäng
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Tentamen 10 december 2008 konverterad till Python Hjälpmedel: Kommer att finnas i skrivsalarna, bl.a. Revised 6 Report on the Algorithmic Language Scheme och två olika s.k. Cheat
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 7 juni 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)
INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående
UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET.
UPPGIFT 1 TVÅPOTENSER. 2 ½ ¾ = 5575186299632655785383929568162090376495104 n = 142 är det minsta värde på n för vilket 2 Ò inleds med siffrorna 55. Uppgiften består i att skriva ett program som tar emot
Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00
1 ( 7) Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier (ej anteckningar,
TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor
TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,
Uppgifter 9 och 10 är för de som studerar byggteknik
INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt
Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22
Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom
Enkla uppgifter. Uppgift 1. Uppgift 2
Enkla uppgifter Dessa 10 ganska enkla uppgifter är till för dig som känner att du ännu inte kommit igång med kursen. I samtliga uppgifter behövs en enkel loop, for eller while. Beräkningarna är i allmänhet
Tentamen Matematisk grundkurs, MAGA60
MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast
Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning
Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel