Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3

Storlek: px
Starta visningen från sidan:

Download "Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3"

Transkript

1 Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA

2 Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och större. Rita den fjärde och femte figuren Talen är ordnade efter ett visst mönster. Skriv talen som saknas. a) b) c) SWE svenska Skolverket och andra rättighetsinnehavare har upphovsrätt till materialet och Skolverket (11) delar som ingår i materialet. Materialet får inte mångfaldigas eller sparas på dator i annat syfte än för att genomföra en bedömning av nyanlända elevers kunskaper.

3 Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 4. a) Skriv de tal som fattas i den tredje figuren b) Hur kom du fram till talet i ringen? Förklara! 5. + = 8 + = 15 + = 16 Vad är varje sak värd? a) = b) = c) = SWE svenska Skolverket (11)

4 Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 6. + = 14 + = 10 + = 11 Hur mycket är flaskan värd? = 7. + = 50 + = 35 Rita den sak som fattas i den tomma rutan. + = Titta på mönstret hur det förändras från vänster till höger. Rita fortsättningen. SWE svenska Skolverket (11)

5 Kartläggningsmaterial för nyanlända elever Algebra åk 4 6 MA 1. Lös ekvationerna. a) 13 = 6 + x Svar: x = b) x 4 = 8 Svar: x = c) 2 x + 3 = 11 Svar: x = 2. Maria är x år. Hennes syster Anna är 2 år äldre än Maria. Vilket uttryck beskriver Annas ålder? Ringa in ditt svar. 2 x x x x 2 x 2 3. Skriv talen som saknas i varje talföljd. a) b) c) Fortsätt mönstret. SWE svenska Skolverket (11)

6 Kartläggningsmaterial för nyanlända elever Algebra åk 4 6 MA 5. Stenarna ligger i ett speciellt mönster. Hur många stenar är det i var och en av figurerna 3 och 4? Skriv svaret på raden under figurerna. Figur 1 Figur 2 Figur 3 Figur 4 Antal stenar 1 3 a) Hur många stenar blir det i nästa figur, figur 5? Visa hur du löser uppgiften och skriv svar. Svar: b) Hur många stenar blir det i figur 6? Visa hur du löser uppgiften och skriv svar. Svar: SWE svenska Skolverket (11)

7 Kartläggningsmaterial för nyanlända elever Algebra åk 4 6 MA 6. I tre träd fanns det sammanlagt 30 äpplen. 5 äpplen föll ner från första trädet, 3 från det andra och 4 från det tredje trädet. Därefter fanns det lika många äpplen i varje träd. Hur många äpplen fanns det från början i det andra trädet? Visa hur du löser uppgiften och skriv svar. SWE svenska Skolverket (11)

8 Kartläggningsmaterial för nyanlända elever Algebra åk 7 9 MA 1. a = 3 och b = -2 Bestäm värdet av a (a + 2) + b 2. Tabellen visar ett samband mellan x och y. Vilket tal ska stå i den tomma rutan? x y Lös ekvationen x + 1 = 5 2 Svar: x = 4. Undersök mönstret och ange det tal som är utelämnat Lös ekvationen 17 = 3x + 5 Svar: x = SWE svenska Skolverket (11)

9 Kartläggningsmaterial för nyanlända elever Algebra åk 7 9 MA 6. Hur mycket är 4x + 6y om 2x + 3y = Lös ekvationen x + 2 = 5 3 Svar: x = 8. Vilket av talen är en lösning till följande ekvation? x 2 + x 12 = 0 Ringa in ditt svar I en tablettask finns n stycken tabletter varav r stycken är röda och s stycken är svarta. a) Förklara med egna ord vad följande matematiska uttryck betyder: r + 5 = s b) Vad beräknar man med uttrycket: r n SWE svenska Skolverket (11)

10 Kartläggningsmaterial för nyanlända elever Algebra åk 7 9 MA 10. För vilken av ekvationerna är x = -3 en lösning? Ringa in ditt svar. x + 2 = 1 3 3x = 6 x + 4 = x = 8 6 = 3 x 11. I en fruktodling har man planterat mangoträd ( ) omgivna av apelsinträd ( ) på det sätt som figurerna visar. Figur 1 Figur 2 Figur 3 a) Hur många mangoträd och hur många apelsinträd finns det i figur 5? b) Hur många mangoträd och hur många apelsinträd finns det i figur n? Motivera ditt svar. SWE svenska Skolverket (11)

11 Kartläggningsmaterial för nyanlända elever Algebra åk 7 9 MA års medellängd för både unga män och unga kvinnor i Nederländerna, finns representerade i grafen nedan. a) Mellan 1980 och 1998 ökade medellängden för 20-åriga kvinnor med 2,3 cm, till 170,6 cm. Vilken var medellängden för 20-åriga kvinnor år 1980? Svar: cm b) Under vilken period i sina liv är kvinnor, enligt denna graf, i genomsnitt längre än män i samma ålder? c) Förklara hur grafen visar att den genomsnittliga tillväxttakten för flickor avtar efter 12 års ålder. SWE svenska Skolverket (11)

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.

Läs mer

Taluppfattning och tals användning Matematik

Taluppfattning och tals användning Matematik Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning åk 3 MA 1 Skriv

Läs mer

Sannolikhet och statistik Matematik

Sannolikhet och statistik Matematik Kartläggningsmaterial för nyanlända elever Sannolikhet och statistik Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Sannolikhet och statistik åk 3 MA Nova och Trojs klass gjorde

Läs mer

Matematik. Delprov C. Vårterminen 2009 ÄMNESPROV ÅRSKURS. Elevens namn

Matematik. Delprov C. Vårterminen 2009 ÄMNESPROV ÅRSKURS. Elevens namn ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11 Må Målet i sikte åk Målet i sikte Målet i sikte är ett kopieringsmaterial som kartlägger elevernas kunskaper i matematik. Utgångspunkt är det centrala innehållet och kunskapskraven i Lgr. För varje område

Läs mer

Lektionsplanering för matematik årskurs 9C Funktioner och Algebra

Lektionsplanering för matematik årskurs 9C Funktioner och Algebra Lektionsplanering för matematik årskurs 9C Funktioner och Algebra Datum Genomgång Elevaktivitet Vecka 41 10/10 Introduktion kapitel 2 Funktioner och Algebra 11/10 Funktioner Arbetar med sidorna 44 45 Filmklipp

Läs mer

Kartläggningsmaterial för nyanlända elever. Observationsscheman Idrott och hälsa

Kartläggningsmaterial för nyanlända elever. Observationsscheman Idrott och hälsa Kartläggningsmaterial för nyanlända elever Observationsscheman Idrott och hälsa 1 2 3 A. Erfarenheter* har erfarenheter av ämnet idrott och hälsa Fråga 2 Fråga 1 har erfarenheter av olika lekar, rörelseaktiviteter

Läs mer

Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn

Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Kartläggningsmaterial för nyanlända elever. Uppgifter Teknik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever. Uppgifter Teknik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Uppgifter Teknik 1 2 Steg 3 Tema innehåll Tema 1. Tekniska lösningar...4 Tema 2. Teknik, människa, samhälle och miljö...6 Tema 3. Arbetssätt för utveckling av

Läs mer

Lärarhandledning matematik

Lärarhandledning matematik Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken. Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband. Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Matematik klass 1. Vår-terminen

Matematik klass 1. Vår-terminen Matematik klass 1 Vår-terminen Rita din matematik-bild Skriv ditt namn i rutan Måla alla rutor där svaret blir 10 3+2 1+9 5+4 6+4 3+7 5+5 4-4 8+4 3+7 9+0 2+8 2+4 7+3 7-6 5+2 5+5 4+4 3+7 6-2 6+4 8+3 6+1

Läs mer

SNICKARE. En snickare har 32 meter virke och vill bygga en kant runt en blomsterrabatt. Han funderar över följande designer på rabatten.

SNICKARE. En snickare har 32 meter virke och vill bygga en kant runt en blomsterrabatt. Han funderar över följande designer på rabatten. SNICKARE Fråga 1: SNICKARE En snickare har 32 meter virke och vill bygga en kant runt en blomsterrabatt. Han funderar över följande designer på rabatten. A B 6 m 6 m 10 m 10 m C D 6 m 6 m 10 m 10 m Ringa

Läs mer

Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster

Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ

Läs mer

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan

Läs mer

8F Ma Planering v45-51: Algebra

8F Ma Planering v45-51: Algebra 8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

ALGEBRA. För att få betyg GODKÄND på avsnittet Algebra krävs att du klarar denna typ av uppgifter:

ALGEBRA. För att få betyg GODKÄND på avsnittet Algebra krävs att du klarar denna typ av uppgifter: MATEMATIK åk 8 ALGEBRA Per Malkert Fredriksdalsskolan Helsingborg För att få betyg GODKÄND på avsnittet Algebra krävs att du klarar denna typ av uppgifter: 1. Beräkna värdet av uttrycket: 3x + y för x=3

Läs mer

Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. Skriv i decimalform sjutton hundradelar.

Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. Skriv i decimalform sjutton hundradelar. NAN: KLASS: Del : Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) Skriv i decimalform sjutton hundradelar. 2) Vad är en tredjedel av 420 kr? 3) Vilket av

Läs mer

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 2014 års ämnesprov i matematik för årskurs 3 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning... 8 Udda tal och positionssystemet... 11 Likheter, tallinjen

Läs mer

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1 Matematik klass 2 Höstterminen Anneli Weiland Matematik åk 2 HT 1 Minns du från klass 1? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Miniräknare ej tillåten Del B1 Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng (0/1). Provtid: 80 minuter för Del B1 och Del B2 tillsammans.

Läs mer

Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013

Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2012/2013, exempel på provuppgifter... 3 Inledning... 3 Skriftliga delprov... 5 Miniräknare

Läs mer

Tummen upp! Matte Kartläggning åk 4

Tummen upp! Matte Kartläggning åk 4 Tryck.nr 47-11063-6 4711063_Omsl_T_Upp_Matte_4.indd Alla sidor 2014-01-27 07.32 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 4 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter

Läs mer

Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind. Inger Ridderlind, PRIM-gruppen

Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind. Inger Ridderlind, PRIM-gruppen Bedömning för lärande i matematik Workshop 15 juni 16 juni Inger Ridderlind PRIM-gruppen Workshop Komma igång med materialet Avgränsa ett Tema- Kunskapsområde Algebra (Samband och förändring) Hela materialet

Läs mer

Trollpengar. I trollens rike finns det pengar, men inte sådana som vi är vana vid. De använder sig av stenar, kottar och pinnar.

Trollpengar. I trollens rike finns det pengar, men inte sådana som vi är vana vid. De använder sig av stenar, kottar och pinnar. Trollpengar I trollens rike finns det pengar, men inte sådana som vi är vana vid. De använder sig av stenar, kottar och pinnar. 1 sten = 100 kronor 1 tallkotte = 10 kronor 1 pinne = 1 krona Ni ska nu samla

Läs mer

Matematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp

Matematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp Kursprov, höstterminen 2016 Matematik Delprov B 1b Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

8G Ma: Bråk och Procent/Samband

8G Ma: Bråk och Procent/Samband 8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera

Läs mer

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.

Läs mer

9A Ma: Statistik och Sannolikhetslära

9A Ma: Statistik och Sannolikhetslära 9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar NpMab vt 01 Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar

Läs mer

Lärarhandledning Aktivitet Mönster

Lärarhandledning Aktivitet Mönster Innehåll Aktivitet.... 2 Bakgrund.... 5 Elevexempel... 6 Kartläggningsunderlag.... 7 1 HITTA MATEMATIKEN NATIONELLT KARTLÄGGNINGSMATERIAL I MATEMATISKT TÄNKANDE I FÖRSKOLEKLASS. SKOLVERKET 2019. DNR. 2019:568

Läs mer

Målet i sikte. Förskoleklassen. Målet i sikte Förskoleklassen. kartläggning i matematik. Lgr11

Målet i sikte. Förskoleklassen. Målet i sikte Förskoleklassen. kartläggning i matematik. Lgr11 Må Målet i sikte Förskoleklassen Målet i sikte Målet i sikte är ett material som kartlägger elevernas kunskaper i matematik. Utgångspunkt för Målet i sikte - förskoleklassen är det centrala innehållet

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition

Läs mer

8G Ma: Bråk och Procent/Samband

8G Ma: Bråk och Procent/Samband 8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda

Läs mer

Ma7-Åsa: Procent och bråk

Ma7-Åsa: Procent och bråk Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt

Läs mer

8B Ma: Procent och bråk

8B Ma: Procent och bråk 8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN freeleaks NpMaB vt000 1() Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 000 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B hör

Läs mer

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

Mål. talföljder ~ använda räta linjens ekvation. formel variabel. funktion. värdetabell graf tabell. räta linjens ekvation aritmetisk talföljd

Mål. talföljder ~ använda räta linjens ekvation. formel variabel. funktion. värdetabell graf tabell. räta linjens ekvation aritmetisk talföljd Mål När du har arbetat med det här kapitlet ska du kunna: ~ beskriva begreppen funktion och linjär funktion ~ tolka linjära funktioner grafer och formler med ord, ~ använda formler som beskriver linjära

Läs mer

Matematik. Ämnesprov, läsår 2014/2015. Delprov B. Årskurs. Elevens namn och klass/grupp

Matematik. Ämnesprov, läsår 2014/2015. Delprov B. Årskurs. Elevens namn och klass/grupp Ämnesprov, läsår 2014/2015 Matematik Delprov B Årskurs 3 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

Arbetsblad 5:1 Ekvationer

Arbetsblad 5:1 Ekvationer :1 Ekvationer 1 a) x + 1,4 6,8 b) x + 186 300 c) x +,2 9,4 d) x + 87, 93, x, 4 x 1 1 4 x 4, 2 x 6 2 a) x + 341 37 b) x + 0,71 2,0 c) x + 166 819 d) x +,29 13,8 x 1 9 6 x 1, 3 4 x 6 3 x 8, 1 3 a) x 23 141

Läs mer

UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans.

UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans. UTTRYC ÅLDER Linda är 5 år äldre än Amanda. Amanda är x år. 5. ALGEBRA P M a) Skriv ett uttryck för hur gamla de är tillsammans. b)om de tillsammans är 29 år, hur gammal är var och en? E orrekt svar (a)

Läs mer

Ansvarig lärare: Kristina Wallin , Maria Lindström , Barbro Wase

Ansvarig lärare: Kristina Wallin , Maria Lindström , Barbro Wase Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 20 augusti 2015 14.00 18.00 Hjälpmedel: Miniräknare Ansvarig lärare: Kristina Wallin 054-700 23 16, Maria Lindström 054-700 21 46, Barbro Wase 070-6309748

Läs mer

OBS! Varje gång du börjar på en ny det vill vi att du börjar på ett nytt

OBS! Varje gång du börjar på en ny det vill vi att du börjar på ett nytt Uppsala universitet Institutionen för pedagogik, didaktik och utbildningsstudier Didaktik med inriktning matematik i förskolan och tidiga skolår A H t 2011 Marita Kj ellin ~~l 61 ~ skriftlig examination

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet

Läs mer

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 3 Algebra oc mönster Kapitel : 4 Geometri Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA

Läs mer

Ma7-Åsa: Statistik och Sannolikhetslära

Ma7-Åsa: Statistik och Sannolikhetslära Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp

Läs mer

Lärarhandledning Mönster

Lärarhandledning Mönster Lärarhandledning Mönster Innehåll Aktivitet Mönster 2 Bakgrund Mönster 4 Kartläggningsunderlag Mönster 5 Elevexempel Mönster 6 KARTLÄGGNING FÖRSKOLEKLASS HITTA MATEMATIKEN. SKOLVERKET 2018. 1 Mönster Aktivitet

Läs mer

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Terminsplanering årskurs 6 Matematik Ärentunaskolan Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

8E Ma: Aritmetik och bråkbegreppet

8E Ma: Aritmetik och bråkbegreppet 8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall Koll på 2A matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 1Volym Vad rymmer mest? Ringa in. Vad rymmer minst? Ringa in. Ta fram tre olika föremål som rymmer olika mycket. Rita

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma

Läs mer

Lärandemål E-nivå årskurs 9

Lärandemål E-nivå årskurs 9 Lärandemål E-nivå årskurs 9 Detta är vad ni behöver kunna för att nå E för kunskapskraven om begrepp och rutinuppgifter i matematik när ni slutar nian. Ni behöver klara av alla dessa moment. För att nå

Läs mer

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 3 Geometri Kapitel : 4 Samband och förändring Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE

Läs mer

Mönster statiska och dynamiska

Mönster statiska och dynamiska Modul: Didaktiska perspektiv på matematikundervisningen 1 Del 3: Fantasi, mönster och sannolikhet Mönster statiska och dynamiska Berit Bergius & Lena Trygg, NCM I många matematiska aktiviteter ska deltagarna

Läs mer

a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio

a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från

Läs mer

16. Max 2/0/ Max 3/0/0

16. Max 2/0/ Max 3/0/0 Del III 16. Max 2/0/0 Godtagbar ansats, visar förståelse för likformighetsbegreppet, t.ex. genom att bestämma en tänkbar längd på sidan med i övrigt godtagbar lösning med korrekt svar (8 cm och 18 cm)

Läs mer

Samtals - och dokumentationsunderlag

Samtals - och dokumentationsunderlag Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Samtals - och dokumentationsunderlag med uppgifter Numeracitet 1 Steg 2 3 Elever 9 år och äldre Samtals-

Läs mer

vux GeoGebraexempel 1b/1c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

vux GeoGebraexempel 1b/1c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 1b/1c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning

Läs mer

Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner

Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren

Mönster och Algebra. NTA:s första matematiktema. Per Berggren Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

1. Ett långt bord är sammansatt av småbord. Runt det långa bordet har man satt stolar, som figuren visar. Miniräknare får användas

1. Ett långt bord är sammansatt av småbord. Runt det långa bordet har man satt stolar, som figuren visar. Miniräknare får användas 1. Ett långt bord är sammansatt av småbord. Runt det långa bordet har man satt stolar, som figuren visar. a) 1 000 100 10 1 b) 4 9 16 25 c) 13 11 8 4 d) Välj en av talföljderna. Beskriv hur den är uppbyggd

Läs mer

Del 1: Statistik, kombinatorik och sannolikhetslära.

Del 1: Statistik, kombinatorik och sannolikhetslära. Tenta 2 LPGG06 Kreativ Matematik 25 augusti 2016 8.15 13.15 Hjälpmedel: Miniräknare och linjal Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283 och Kristina Wallin 054-7002316 eller 070-6106319

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd

Läs mer

På goda grunderen åtgärdsgaranti för läsning, skrivning och matematik. Barn- och ungdomsförvaltningen

På goda grunderen åtgärdsgaranti för läsning, skrivning och matematik. Barn- och ungdomsförvaltningen På goda grunderen åtgärdsgaranti för läsning, skrivning och matematik Barn- och ungdomsförvaltningen Syfte För att garantera att elever, som riskerar att inte uppnå kunskapskraven, upptäcks tidigt och

Läs mer

6:1 Likheter och olikheter

6:1 Likheter och olikheter :1 Likheter och olikheter Skriv likhetstecknet = eller tecknet för är inte lika med. = = = 1 a) 7 + 13 b) 228 + 5 233 c) 32 27 d) 111 3 108 2 a) 5 32 b) 7 3 12 c) 28 = 7 d) 25 5 Skriv tecknet för mindre

Läs mer

Uppgifter A Tecken, ord, meningar Litteracitet

Uppgifter A Tecken, ord, meningar Litteracitet Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 2, dnr 2016:428 Uppgifter A Tecken, ord, meningar Litteracitet 1 Steg 2 3 SVENSKA Elever i tidigt skede av sin läs- och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3 freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte

Läs mer

PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat

PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat Katarina Kjellström Ett bedömningsstöd för grundskolans matematiklärare På Skolverkets webbplats finns nu ett fritt tillgängligt bedömnings stöd. Artikel författaren har deltagit i arbetet med att ta fram

Läs mer

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar arbetsblad 1:1 Positionssystemet > > Skriv talen med siffror. Glöm inte decimaltecknet. Ental Tiondelar Hundradelar 1 tiondel 0, 1 52 hundradelar 0, 5 2 tiondelar 0, 17 tiondelar 1, 7 9 tiondelar 0, 9

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Extra-bok nummer 3. i matematik

Extra-bok nummer 3. i matematik Extra-bok nummer 3 i matematik Anneli Weiland 1 Skriv vart femte tal i ordning. Börja från vänster och skriv alla siffror uppifrån så blir de fina. -70-65 -35-25 -20 0 25 75 Sätt ut < = eller > i rutan.

Läs mer

M0038M Differentialkalkyl, Lekt 16, H15

M0038M Differentialkalkyl, Lekt 16, H15 M0038M Differentialkalkyl, Lekt 16, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 25 Repetition Lekt 15 Femte och trettioförsta elementet i en aritmetisk talföljd är 7

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp

Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp Ämnesprov, läsår 2013/2014 Matematik Delprov B Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

Att förstå algebra. Liv Sissel Grønmo & Bo Rosén

Att förstå algebra. Liv Sissel Grønmo & Bo Rosén Att förstå algebra Liv Sissel Grønmo & Bo Rosén I Nämnaren nr 1, 1998 presenterades diagnostiska uppgifter kring inledande algebra, generaliseringar oc elevers uppfattningar av symboler. Uppgifterna ar

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Resultat från nationella provet i matematik kurs 1c höstterminen 2018

Resultat från nationella provet i matematik kurs 1c höstterminen 2018 Resultat från nationella provet i matematik kurs 1c höstterminen 2018 Mattias Winnberg, Katarina Kristiansson & Niklas Thörn PRIM-gruppen Inledning De nationella proven i matematik 1a, 1b och 1c konstrueras

Läs mer

Jag tror att alla lärare introducerar bråk

Jag tror att alla lärare introducerar bråk RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer