Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1
|
|
- Marcus Sundberg
- för 8 år sedan
- Visningar:
Transkript
1 1127 Påstående betecknas med P Motsatsen till påsteåendet betecknas P = icke P = inte P = ej P P n är ett udda tal P n är ett jämnt tal Kommentar: n kan enbart vara udda eller jämnt, P a + 2b 15 P a + 2b = 15 Kommentar: VL kan enbart vara 15 eller "inte 15" c) P u + v > 90 P u + v 90 Kommentar: Summan av två vinklar kan enbart vara "större än 90 " eller "minder än eller lika med 90 " d) P Minst ett av talen k och l är udda = ett eller två av talen k och l är udda P Inget av talen k och l är udda = både k och l är jämna k Jämnt l Jämnt Jämnt Udda Minst ett udda 1128 Om a 2 är ett jämnt tal, så är också a ett jämt tal i två påståenden P a 2 är ett jämnt tal Q a är ett jämt tal Vårt ursprungliga påstående kan nu skrivas P Q Q a är ett jämnt tal Q a är ett udda tal P a 2 är ett jämnt tal P a 2 är ett udda tal c) vilket ger om a är ett udda tal a 2 är ett udda tal VL Om a är udda kan det skrivas som 2n + 1 HL a 2 = (2n + 1) 2 = 4n 2 + 4n + 1 = 2(2n 2 + 2n) + 1 = 2 heltal + 1 = 2k + 1 = udda tal Saken är klar påståendet om a är ett udda tal a 2 är ett udda tal är sant och då är även påståendet Om a 2 är ett jämnt tal, så är också a ett jämt tal sant Udda Jämnt Minst ett udda Udda Udda Minst ett udda
2 1129 Påstående Om x = 4, så är 3x 5 10" Bevisa påståendet. Sätt in x = 4 i 3x 5 10 ger VL: = 7 HL: 10 Påståendet är sant då VL HL Antag motsatsen Om x = 4, så är 3x 5 = 10 Sätt in x = 4 i ekvationen VL = = 7 HL = 10 VL = HL ger 7 = 10 som ger en motsägelse, inte sant. sålunda gäller att om x = 4, så är 3x Vad beträffar både talen a och b kan de vara mindre än noll, lika med noll eller större än noll Logisk motsats till a < 0 är a 0 och Logisk motsats till b < 0 är b 0 Logisk motsats till antingen a < 0 eller b < 0 blir då antingen både a 0 och b 0 (gör produkten a b positiv eller noll) eller både a < 0 och b < 0" (gör produkten a b positiv) vilket ger antingen både a 0 och b 0 eller både a < 0 och b < 0 a b 0 Kan delas upp i två fall Fall 1 både a 0 och b 0 a b 0 Fall 2 både a < 0 och b < 0 a b > 0 Vi vet att om ett tal är större än noll så är det positivt och mindre än noll negativit. Teckenreglerna säger att: Produkten av två positiva tal är alltid positiv. Produkten av två negativa tal är alltid positiv. Produkten av ett negativt och ett positivt tal är negativ. Så för att produkten ska bli negativ krävs att ett av talen är negativt dvs < 0 Produkten av två tal som är större eller lika med noll är naturligtvis själv större eller lika med noll. Produkten av två tal som båda är mindre än noll är större än noll. Alltså gäller att om a b < 0, så är antingen a < 0 eller b < 0 v. s. b.
3 1131 Antag att minst ett av talen a och b är jämnt. Om a är ett jämnt tal så gäller att a = 2n där n är ett positivt heltal. Då är a b = 2n b Eftersom produkten är delbar med 2 så är ab ett jämnt tal oavsett om b är ett udda eller jämnt tal. Motsvarande gäller om b är ett jämnt tal. Därmed gäller att om produkten av två tal a och b är udda så är båda talen a och b udda. vilket ger att påståendet om produkten av a och b är udda både a och b udda kan logiskt ersättas av påståendet om minst ett av talen a och b är jämnt produkten av a och b jämn Kommentar: Alla jämna tal innehåller faktorn 2, om det jämna talet mulipliceras med ett heltal så finns faktorn 2 fortfarande kvar. Sålunda om minst ett jämnt tal ingår i en produkt av heltal så blir produkten alltid jämn "om produkten av två tal a b är jämn" ger P "a b är jämnt" "så är minst ett av talen jämnt" ger Q "minst ett av talen a eller b är jämnt " Vi ska visa att P Q påstå motsatsen och vända på implikationen. P "a b är udda" Q "både a och b är udda" Vi visar nu istället att Om både a och b är udda kan vi sätta a = 2m + 1 och b = 2n + 1 vilket ger a b = (2m + 1) (2n + 1) = 4mn + 2m + 2n + 1 = 2 (2mn + m + n) + 1 = 2 heltal + 1 = 2k + 1, vilket är ett udda tal Sålunda är sant och då är även P Q sant v. s. v
4 1133 om n är ett udda tal så är n ett jämnt tal P "n är ett udda tal" Q "n ett jämnt tal" Vi ska visa att P Q påstå motsatsen och vända på implikationen. P "n är ett jämnt tal" Q "n ett udda tal" Sätt n = 2k + 1 ger n = (2k + 1) = *se eventuellt formelblad Ma 4 8k k k = 8k k 2 + 6k + 6 = 2 (4k 3 + 6k 2 + 3k + 3) = 2 heltal = 2m, vilket är ett jämnt tal 1134 P det finns inte ett reellt tal r som är större än alla andra tal P det finns ett reellt tal r som är större än alla andra tal Bevisa att P är sant för talet r r > 0 eftersom positiva tal större än negativa. r > x, x R (r större än alla reella tal x) antag nu till exempel att talet k = r + 1 då r + 1 > r blir k > r och vi har funnit ett tal som är större än r och sålunda är P falskt och då måste P vara sant. Vi har visat att är sant och då är även P Q sant v. s. v * Formelblad Ma4 s.1
5 1135 Visa att P 3 är ett irrationellt tal Använd motsägelsebevis och visa att P 3 är ett rationellt tal" Om 3 är rationellt så innebär det att 3 = a b, där a och b är heltal och b 0 samt att bråket a b är förkortat så långt som möjligt 3 = a2 b 2 3b 2 = a 2 Eftersom vi förkortat bråket a så långt som möjligt b så måste talen a och b vara udda (eftersom jämna tal alltid kan förkortas) Om a och b är udda så är även a 2 och b 2 udda. (om ett tal är udda så är även talets kvadrat udda enligt räknelagar för udda och jämna tal) a = 2m + 1 b = 2n + 1 gör att 3b 2 = a 2 kan skrivas som 3(2n + 1) 2 = (2m + 1) 2 3(4n 2 + 4n + 1) = 4m 2 + 4m n n + 3 = 4m 2 + 4m n n + 2 = 4m 2 + 4m 2(6n 2 + 6n + 1) = 2(2m 2 + 2m) 6n 2 + 6n + 1 = 2m 2 + 2m 2(3n 2 + 3n) + 1 = 2(m 2 + m) 2 heltal + 1 = 2 heltal 2p + 1 = 2q udda tal = jämnt tal motsägelse sålunda saknar ekvationen 3 = a b, där a och b är heltal och b 0 samt att bråket a b är förkortat så långt som möjligt lösningar och därmed kan inte 3 vara ett rationellt tal. 3 är ett irrationellt tal v. s. b.
D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.
Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
INDUKTION OCH DEDUKTION
AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
Delbarhet och primtal
Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
LMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
Matematisk kommunikation för Π Problemsamling
Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och
INDUKTION OCH DEDUKTION
Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk
Matematisk kommunikation för Π Problemsamling
Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan
2 Matematisk grammatik
MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk
Lösningar till utvalda uppgifter i kapitel 5
Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar
Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R
Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.
Anteckningar propp SMT2
Anteckningar propp SMT2 Lars Åström 11 december 2015 Under proppen ska följande gås igenom: Induktion - dominoeffekten Falluppdelning Extremprincipen Invarians Andra knep som används Induktion Vi använder
Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
Lösningar till utvalda uppgifter i kapitel 4
Lösningar till utvalda uppgifter i kapitel 4 4.7 Vi visar först att A 2n 3 2 n 2 med ett induktionsbevis. Basfall: n 0 Vi har att 3 2 0 2 A 0, och alltså gäller likheten för n 0. Induktionssteget: Antag
4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.
Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller
SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag
Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt
Analys 360 En webbaserad analyskurs Analysens grunder. Om de reella talen. MatematikCentrum LTH
Analys 60 En webbaserad analyskurs Analysens grunder Om de reella talen Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om de reella talen () Introduktion Den matematiska analysen är intimt förenad
Kapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
sin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x
33 a Använd additionsformel för sinus sin(x + 55 ) = sin x cos 55 + cos x sin 55 cos 55 och sin 55 beräknas med tekniskt hjälpmedel TI-räknare c Använd additionsformel för sinus sin (x + π ) = sin x cos
MATEMATIKENS SPRÅK. Avsnitt 1
Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en
Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen
Föreläsning 3 Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Mängder Induktion behöver inte börja från 1, Grundsteget kan vara P (n 0 ) för vilket heltal n 0 som
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
Kapitel 2: De hela talen
Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.
2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)
De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)
Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.
MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen
Fall 1 2x = sin 1 (1) + n 2π 2x = π 2 + n 2π. x = π 4 + n π. Fall 2 2x = π sin 1 (1) + n 2π. 2x = π π 2 + n 2π
48 a sin x + cos x = cos x Trigonometriska ettan sin v + cos v = 1 1 = cos x cos x = 1 x = ±cos 1 (1) + n π x = 0 + n π x = n π b sin x cos x = 1 Multiplicera båda led med sin x cos x = 1 sin x cos x =
ANDREAS REJBRAND NV3ANV Matematik Matematiskt språk
ANDREAS REJBRAND NV3ANV 2006-02-14 Matematik http://www.rejbrand.se Matematiskt språk Innehållsförteckning MATEMATISKT SPRÅK... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 MÄNGDER... 4 Att uttrycka en mängd...
När du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel.
Logik och bevis II 3. föring Detta avsnitt handlar om olika metoder för att bevisa påståenden, och hur man kan konstruera ett bevis. I varje avsnitt finns en allmän beskrivning av metoden, varför den fungerar
EXAMENSARBETEN I MATEMATIK
EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Matematiska bevis Beskrivning av olika bevismetoder och hur de används av Åsa Wall Månsson 2005 - No 2 MATEMATISKA INSTITUTIONEN,
Föreläsning 1: Tal, mängder och slutledningar
Föreläsning 1: Tal, mängder och slutledningar Tal Tal är organiserade efter några grundläggande egenskaper: Naturliga tal, N De naturliga talen betecknas med N och innehåller alla positiva heltal, N =
A B A B A B S S S S S F F S F S F S F F F F
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla
29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Hur man skriver matematik
Hur man skriver matematik Niels Chr. Overgaard 2015-09-28 1 / 8 Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man granskar och opponerar på en annan kursdeltagares lösning.
DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7
Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
Svar till S-uppgifter Endimensionell Analys för I och L
Svar till S-uppgifter Endimensionell Anals för I och L - 00 S 600 = 3 3 5 3850 = 5 7 847 = 7 största gemensamma delare till 600 och 3850: 5 minsta gemensamma multipel till 3850 och 847: 5 7 S a) +6+9 b)
formler Centralt innehåll
Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska
Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Bakgrund. Bakgrund. Bakgrund. Håkan Jonsson Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige
Är varje påstående som kan formuleras matematiskt*) alltid antingen sant eller falskt? *) Inom Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige Exempel: 12 = 13 nej, falskt n! >
MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss
Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt
Föreläsning 5: Summor (forts) och induktionsbevis
ht01 Föreläsning 5: Summor (forts) och induktionsbevis Några viktiga summor Det är inte alltid möjligt att hitta uttryck för summor beskriva med summanotation, men vi tar här upp tre viktiga fall: Sats:
Svar till S-uppgifter Endimensionell Analys för I och L
Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.
Uppsalas Matematiska Cirkel. Geometriska konstruktioner
Uppsalas Matematiska Cirkel Geometriska konstruktioner Matematiska institutionen Uppsala universitet Våren 2019 Några ord om Uppsalas Matematiska Cirkel Uppsalas Matematiska Cirkel bildades hösten 2018
Lösningsförslag till problem från Sonja-Kovalevsky-dagarna 2006, Göteborg
Lösningsförslag till problem från Sonja-Kovalevsky-dagarna 2006, Göteborg Jag vill först och främst uppmana läsaren att ha papper och penna till hands och aktivt sätta sig in i lösningarna, och själv fylla
Algebra, exponentialekvationer och logaritmer
Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen
Lite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Övningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
Kvalificeringstävling den 30 september 2014
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,
Repetition ekvationer - Matematik 1
Repetition ekvationer - Matematik 1 Uppgift nr 1 I en 2-barnsfamilj är alla tillsammans 107 år. Sonen är 7 år yngre än dottern. Mamman är 4 år äldre än pappan. Pappan är 4 gånger äldre än dottern. Hur
Talmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
8-4 Ekvationer. Namn:..
8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,
Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,
Hur man skriver matematik
Hur man skriver matematik Niels Chr. Overgaard 2018-10-01 N. Chr. Overgaard Skriva matematik 2018-10-01 1 / 12 Information: Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Geometriska konstruktioner
Stockholms Matematiska Cirkel Geometriska konstruktioner Lisa Nicklasson Gustav Zickert Institutionen för matematik KTH och Matematiska institutionen Stockholms universitet 2017 2018 Innehåll 1 Vad är
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Diskret matematik, lektion 2
Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A
(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C
Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B
Introduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Matematiska uppgifter
Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,
Logik och deduktiv matematik. 1 Inledning. 1.1 En liten historisk återblick
Logik och deduktiv matematik 1 Inledning En stor svårighet för många studenter som studerar matematik på universitets- eller högskolenivå är att komma in i det akademiska sättet att betrakta och behandla
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi
MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv
Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section
Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett
ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14...
ALA-a 2005 Innehåll 1 Lite teori 3 RÄKNEÖVNING VECKA 7 1.1 Kapitel 7....................................... 3 1.2 Kapitel 12....................................... 3 1.3 Kapitel 13.......................................
Kimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter
Kimmo Eriksson 12 december 1995 Matematiska institutionen, SU Att genomfora och formulera ett bevis Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter som svart. Ofta ar det
Övningar - Andragradsekvationer
Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.
Bisektionsalgoritmen. Kapitel Kvadratroten ur 2
Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man
Algebra I, 1MA004. Lektionsplanering
UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till
I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Sidor i boken
Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker
Matematisk problemlösning
Matematisk problemlösning För utveckling av personliga och professionella förmågor Linda Mattsson och Robert Nyqvist Blekinge tekniska högskola Institutionen för matematik och naturvetenskap 16 augusti
DOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera
Potenser Uppgift nr Skriv 7 7 7 i potensform Uppgift nr 2 Vilket tal är exponent och vilket är bas i potensen 9 6? Uppgift nr 3 Beräkna värdet av potensen (-3) 2 Uppgift nr 4 Skriv talet 4 i potensform
Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.
Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Finaltävling i Uppsala den 24 november 2018
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Finaltävling i Uppsala den 4 november 018 1. Låt ABCD vara en fyrhörning utan parallella sidor, som är inskriven i en cirkel. Låt P och Q vara skärningspunkterna
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Teori :: Diofantiska ekvationer v1.2
Teori :: Diofantiska ekvationer v1. 1 Definitioner och inledande exempel Låt oss börja med att göra klart för vad vi menar med en diofantisk ekvation: S:def+ex Definition 1.1. Betrakta ekvationen D:diofantiskEkv
Diskret matematik: Övningstentamen 1
Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som
Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm
Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.
Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att
Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre
Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.
KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan
2146 a. v = 290 v = 290 omvandlingsfaktor rad v = 290 v = rad v 5.1 rad
146 a v = 38 v = 38 omvandlingsfaktor rad v = 38 180 rad v = 0.663 rad v 0.7 rad c v = 90 v = 90 omvandlingsfaktor rad v = 90 180 rad v = 5.061 rad v 5.1 rad b v = 196 v = 196 omvandlingsfaktor rad v =
Peanos axiomsystem för de naturliga talen
5B1493, lekt 3, HT06 P1. Det finns ett naturligt tal 0. Peanos axiomsystem för de naturliga talen P2. Varje natutligt tal n har en s.k. efterföljare n +. P3. Om n + = m + så är n = m. P4. Inget naturligt
Inociell Lösningsmanual Endimensionell analys
Inociell Lösningsmanual Endimensionell analys Erik Oscar A. Nilsson 06, Juli Oscar Något smart och inspirerande citat Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual för: Övningar -
LOGIK, MÄNGDER OCH FUNKTIONER
LOGIK, MÄNGDER OCH FUNKTIONER KOMPLETTERANDE STUDIEMATERIAL TILL MMA121 MATEMATISK GRUNDKURS VÅRTERMINEN 2014 ERIK DARPÖ 1. Utsagor, implikation och ekvivalens En utsaga är en påstående, formulerat med
Resträkning och ekvationer
64 Resträkning och ekvationer Torsten Ekedahl Stockholms Universitet Beskrivning av uppgiften. Specialarbetet består i att sätta sig in i hur man räknar med rester vid division med primtal, hur man löser
ÄNDLIGT OCH OÄNDLIGT AVSNITT 4
VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt
Föreläsning 5. Deduktion
Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Innehållsförteckning Inledning... 2 Vad är matematik... 3 Det matematiska språket... 4 Några begrepp ur mängdläran... 4
Innehållsförteckning Inledning... Vad är matematik... 3 Det matematiska språket... 4 Några begrepp ur mängdläran... 4 Talmängder... 5 Mängdoperationer, den tomma mängden... 9 Några begrepp ur logiken...