Lösningar till utvalda uppgifter i kapitel 4
|
|
- Frida Fredriksson
- för 6 år sedan
- Visningar:
Transkript
1 Lösningar till utvalda uppgifter i kapitel Vi visar först att A 2n 3 2 n 2 med ett induktionsbevis. Basfall: n 0 Vi har att A 0, och alltså gäller likheten för n 0. Induktionssteget: Antag nu att det gäller för ett xt jämnt naturligt tal 2n. Visa att då gäller det också för 2n + ). Vi får A 2n+2 2A 2 2A 2n + ) 23 2 n 2 + ) 3 2 2, och alltså gäller likheten också för 2n + ). Enligt induktionsprincipen gäller därmed likheten för alla jämna naturliga tal. För de udda talen observerar vi bara att A 2 A 2n enligt ovan. 4.8 Vi gör ett induktionsbevis. Basfall: n 0 Då gäller att 0 F 2i ) 0 F 2 0), och alltså gäller likheten för n 0. Induktionssteget: Antag nu att det gäller för ett xt naturligt tal n. Visa att då gäller det också för n +. Vi får F 2i ) n F 2i ) + F 2n + ) ) F 2n) + F 2n + ) F 2n + 2) F 2n + )) 9
2 och alltså gäller likheten också för n +. Enligt induktionsprincipen gäller därmed likheten för alla naturliga tal. 4.9 Vi gör ett induktionsbevis. Basfall: Vi får i fallet n 4 att < 24 4! så påståendet är sant för n 4. Induktionssteg: Antag att påståendet är sant för något n med n 4. Vi ska visa att då är det också sant för n +. Genom att utnyttja induktionsantagandet och att n + ) > 4 > 2 så får vi n + )! n + )n! > n + )2 n > 2 2 n 2, vilket är precis påståendet för n +. Därmed följer det av induktionsprincipen att påståendet är sant för alla naturliga tal n > Sätt fn) n ) i2 i och gn) 2 2n. Då ska vi bevisa att fn) gn) för alla naturliga tal n >. Vi gör ett induktionsbevis. Basfall: n 2. Då har vi f2) 2 i ) 2 i2 så påståendet är sant för n g2), Induktionssteg: Antag att det är sant för n och visa att då är det också sant för n +. Genom att utnyttja induktionsantagandet så får vi fn + ) i2 i ) 2 n i2 i ) ) 2 n + ) 2 fn) n + )2 n + ) 2 gn) n2 + 2n n + ) 2 n + 2n n2 + 2n n + ) 2 nn + 2) 2nn + ) n + 2 gn + ). 2n + ) 0
3 Enligt induktionsprincipen är påståendet därmed sant för alla heltal n >. 4. a) Genom att utnyttja rekursionen så får vi F x) x ) + x 2 F 2 x) x 2 + x )x ) + x 2 x 3 + x 2 2x + F 3 x) x 3 + x 2 2x + )x ) + x 2 x 4 2x 2 + 3x b) Vi sätter fn) F n 0) och gn) ) n och ska alltså visa att fn) gn) för alla n N. Vi gör ett induktionsbevis: Basfall: n 0. Vi har f0) per denition och g0) ) 0 så det stämmer för n 0. Induktionssteg: Antag att fn) gn) för något xt tal n 0. Vi ska visa att i så fall är fn + ) gn + ). Om vi utnyttjar rekursionen fn + ) fn)0 ) + 0 fn) och induktionsantagandet så får vi fn + ) fn) gn) ) n ) gn + ). Nu följer det av induktionsaxiomet att fn) gn) för alla naturliga tal n. 4.3 Basfall: n 0. Vi har att båda leden är lika med. Alltså stämmer det för n 0. Induktionssteg: Antag att påståendet är sant för n. Vi ska visa att då är det också sant för n +. Genom att använda induktionsantagandet så får vi a i n a a a i + a a a + a a ) a vilket är lika med högerledet för n +. + a an+2 a,
4 Alltså är påståendet sant för n + om man antar att det är sant för n och därmed följer det av induktionsaxiomet att det är sant för alla naturliga tal n. 4.6 Vi gör ett induktionsbevis. Basfall: n Då gäller att V L k 2 k 2 0 och HL ) 2 +, k och alltså gäller likheten för n. Induktionssteget: Antag nu att det gäller för ett xt positivt heltal n. Visa att då gäller det också för n +. Vi får k 2 k k n k 2 k + n + ) 2 n k n ) 2 n + + n + ) 2 n 2n 2 n + n + ) ) 2 +, och alltså gäller likheten också för n +. Enligt induktionsprincipen gäller därmed likheten för alla positiva heltal. 4.7 Vi gör ett induktionsbevis. Basfall: Vi behöver två fall n 3 och n 4. Vi har och L3) L2) + L) b + a bf 3 ) + af 3 2) b + a L4) L3) + L2) b + a) + b 2b + a bf 4 ) + af 4 2) b 2 + a 2b + a så båda basfallen stämmer. 2
5 Induktionssteg: Antag att det är sant för alla k sådana att k n där n 4 och visa att då är det också sant för n +. Genom att utnyttja induktionsantagandet och rekursionen för Fibonacci-talen så får vi Ln + ) Ln) + Ln ) bf n ) + af n 2) + bf n ) + af n 2) bf n ) + F n 2)) + af n 2) + F n 3)) bf n) + af n ) vilket var precis vad vi skulle visa. Enligt induktionsprincipen är påståendet därmed sant för alla positiva heltal n > Vi gör ett induktionsbevis. Basfall: n 0. Vi har att båda leden är lika med 0. Alltså stämmer det för n 0. Induktionssteg: Antag att påståendet är sant för n. Vi ska visa att då är det också sant för n +. Genom att använda induktionsantagandet så får vi i i! n i i! + n + )n + )! n + )! ) + n + )n + )! + n + )n + )! n + 2)n + )! n + 2)!, vilket är lika med högerledet för n +. Alltså är påståendet sant för n + om man antar att det är sant för n och därmed följer det av induktionsaxiomet att det är sant för alla naturliga tal n. 4.9 Deniera först fn) n k k 2 och gn) 2 n. 3
6 Vi ska då visa att fn) < gn), eller ekvivalent att fn) gn) < 0, för alla heltal n >. Vi gör ett induktionsbevis. Basfall: Om n 2 så får vi f2) g2) 2 k Alltså stämmer det för n 2. k 2 2 ) < 0. Induktionssteg: Antag att fp) < gp) för något p >. Visa att i så fall är fp + ) < gp + ). Vi tittar på dierensen och får om vi i andra steget utnyttjar induktionsantagandet att fp) + ) gp + ) fp + ) gp + ) p + ) 2 < gp) + gp + ) p + ) 2 2 ) + p p + ) 2 p + p + ) 2 + p + p + )2 + p + pp + ) pp + ) 2 p2 2p + p + p 2 + p pp + ) 2 pp + ) 2 < 0. 2 p + Enligt indukionsprinipen gäller därmed, med stöd av basfall och induktionssteg, att fn) < gn) för alla heltal n > Deniera först ) fn) 2n k ) k+ k och gn) 2n k k. Vi ska då visa att fn) gn) för alla heltal n. Vi gör ett induktionsbevis. 4
7 Basfall: Om n så får vi f) g) 2 ) k+ k 2 2, k 2 k2 k 2. Alltså stämmer det för n. Induktionssteg: Antag att fp) gp) för något p. Visa att i så fall är fp + ) gp + ). Vi startar med fp + ) och får om vi i fjärde steget utnyttjar induktionsantagandet att fp + ) 2p+) k ) k+ 2p k ) k+ k + 2p + k fp) + 2p + gp) + 2p + 2p kp+ 2p+) kp+)+ k + 2p + k + p + 2p + + 2p + gp + ) + p + 2 gp + ). Enligt indukionsprinipen gäller därmed, med stöd av basfall och induktionssteg, att fn) gn) för alla heltal n. 5
Lösningar till utvalda uppgifter i kapitel 2
Lösningar till utvalda uppgifter i kapitel 2 2.15 Ett Venn-diagram över situationen ser ut så här: 10 5 A B C För att få ihop 30 element totalt så måste de tre okända fälten innehålla exakt 15 element
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Lösningar till utvalda uppgifter i kapitel 5
Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar
Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R
Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.
Delbarhet och primtal
Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda
inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,
Övningshäfte 1: Induktion, rekursion och summor
LMA100 VT2006 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 1: Induktion, rekursion och summor Övning A 1. Kan ni fortsätta följden 1,3,5,7,9,11,...? 2. Vilket är det 7:e talet i följden? Vilket är det 184:e?
Föreläsning 5: Summor (forts) och induktionsbevis
ht01 Föreläsning 5: Summor (forts) och induktionsbevis Några viktiga summor Det är inte alltid möjligt att hitta uttryck för summor beskriva med summanotation, men vi tar här upp tre viktiga fall: Sats:
Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl
1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:
När du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel.
Logik och bevis II 3. föring Detta avsnitt handlar om olika metoder för att bevisa påståenden, och hur man kan konstruera ett bevis. I varje avsnitt finns en allmän beskrivning av metoden, varför den fungerar
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,...
UPPSALA UNIVERSITET PROV I MATEMATIK Matematiska institutionen Baskurs i matematik Vera Koponen 2008-02-2 Skrivtid: 8-. Tillåtna hjälpmedel: Inga, annat än pennor, radergum och papper det sista tillhandahålles).
Föreläsning 6: Induktion
Föreläsning 6: Induktion Induktion är en speciell inferensregel. En mängd är välordnad om varje delmängd har ett minsta element Exempel: N är välordnad (under ) Låt P(x) vara ett predikat över en välordnad
Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1
1127 Påstående betecknas med P Motsatsen till påsteåendet betecknas P = icke P = inte P = ej P P n är ett udda tal P n är ett jämnt tal Kommentar: n kan enbart vara udda eller jämnt, P a + 2b 15 P a +
Tentamen i TDDC75 Diskreta strukturer , lösningsförslag
Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen
Föreläsning 3 Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Mängder Induktion behöver inte börja från 1, Grundsteget kan vara P (n 0 ) för vilket heltal n 0 som
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18: Svar: Ja, det gäller, vilket kan visas på flera sätt (se nedan).
Lösningar för tenta i TMV200 Diskret matematik 208-0-2 kl. 4:00 8:00. Ja, det gäller, vilket kan visas på flera sätt (se nedan). Alternativ (induktionsbevis): Vi inför predikatet P (n) : 2 + 2 3 + + n(n
29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
A-del. (Endast svar krävs)
Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i
Kvalificeringstävling den 30 september 2014
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,
SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall
Rekursiva funktioner Föreläsning 10 (Weiss kap. 7) Induktion och rekursion Rekursiva funktioner och processer Weiss 7.1-3 (7.4, 7.5.3 utgår) Fibonaccital (7.3.4) Exempel: Balansering av mobil (kod se lab
Rekursion och induktion
Rekursion och induktion Vi börjar med ett exempel. EXEMPEL 1 I slutet av 1800-talet presenterade den franske matematikern Edouard Lucas ett slags matematiskt pussel ( recréation mathématiques ) vars mål
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 januari 2006 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem som
1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta
MS-A409 Grundkurs i diskret matematik Appendix, del I
MS-A409 Grundkurs i diskret matematik Appendix, del I G. Gripenberg Aalto-universitetet 2 oktober 2013 G. Gripenberg (Aalto-universitetet) MS-A409 Grundkurs i diskret matematikappendix, del I 2 oktober
Kimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter
Kimmo Eriksson 12 december 1995 Matematiska institutionen, SU Att genomfora och formulera ett bevis Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter som svart. Ofta ar det
1 Talteori. Det här kapitlet inleder vi med att ta
1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens
Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
EXAMENSARBETEN I MATEMATIK
EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Matematiska bevis Beskrivning av olika bevismetoder och hur de används av Åsa Wall Månsson 2005 - No 2 MATEMATISKA INSTITUTIONEN,
Kappa Problem 5
Piotr Badziag, Kjell Höyland Grillska gynasiet, Årstaängsvägen 33, 117 43 Stockhol Kappa 2014 - Proble 5 I det här probleet betraktas n stora rutnät av rektangulära, där avser antalet rader och n antaler
Rekursion och induktion
Rekursion och induktion Vi börjar med ett exempel. EXEMPEL 1 I slutet av 1800-talet presenterade den franske matematikern Edouard Lucas ett slags matematiskt pussel ( recréation mathématiques ) vars mål
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
TDP015: Lektion 5 - Svar
TDP015: Lektion 5 - Svar 11 maj 015 1. Huvudsaken här är att det spelar roll vilket initialvärde vi har. Nedan har jag valt beräkningar som slutar när f(x) < ɛ, där ɛ 10 10. Detta behöver ni såklart inte
Tentamen i TDDC75 Diskreta strukturer
Tentamen i TDDC75 Diskreta strukturer 2017-01-05, Lösningsförslag (med reservation för eventuella fel) 1. Betrakta följande satslogiska uttryck: (p q) (q p) (a) Visa genom naturlig deduktion att uttrycket
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
Anteckningar propp SMT2
Anteckningar propp SMT2 Lars Åström 11 december 2015 Under proppen ska följande gås igenom: Induktion - dominoeffekten Falluppdelning Extremprincipen Invarians Andra knep som används Induktion Vi använder
1 Lite om matematisk notation
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och omarbetning Mats Dahllöf 2014). 1 Lite om matematisk notation
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Tillämpad Matematik I Övning 1
HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna
Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare
Umeå universitet Tentamen i matematik Institutionen för matematik Introduktion till och matematisk statistik diskret matematik Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare,
Diskret matematik. Gunnar Bergström
Diskret matematik Gunnar Bergström 20 september 2005 ii INNEHÅLL iii Innehåll 1 Logik och mängdlära 1 1.1 Satslogik........................... 1 1.1.1 Utsagor....................... 1 1.1.2 Konnektiv......................
Programkonstruktion och Datastrukturer, lektion 7
Programkonstruktion och Datastrukturer, lektion 7 Johannes Åman Pohjola & William Sjöstedt, Uppsala Universitet 9 Dec 2010 Vad har följande funktion för tidskomplexitet? fun pow2 0 = 1 pow2 n = pow2(n
Diskret matematik, lektion 2
Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A
Grafteori med inriktning på färgläggning
Stockholms Matematiska Cirkel Grafteori med inriktning på färgläggning Joar Bagge Lisa Nicklasson Institutionen för matematik KTH och Matematiska institutionen Stockholms universitet 2018 2019 Innehåll
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 014 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 014 1 / 44 Mängder (naiv, inte
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Kapitel 2: De hela talen
Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer
Om plana och planära grafer
KTH Matematik Bengt Ek April 2006 Material till kursen 5B1118 Diskret matematik för CL3: Om plana och planära grafer I många sammanhang (t.ex. vid konstruktion av elektriska kretsar) är det intressant
2 Matematisk grammatik
MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk
Inlämningsuppgift, LMN100
Inlämningsuppgift, LMN100 Delkurs 3 Matematik Lösningar och kommentarer 1 Delbarhetsegenskaper (a) Påstående: Ett heltal är delbart med fyra om talet som bildas av de två sista siffrorna är delbart med
Matematik 5 Kap 2 Diskret matematik II
Matematik 5 Kap 2 Diskret matematik II Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
Lösningsförslag TATM
Lösningsförslag TATM79 016-09-6 1 a) Vi isolerar x + och kvadrerar ekvationen observera att det då bara blir en implikation!): + x + = x x + = x ) x + = x ) = x 1x + 1 x 1 x + 10 = 0 x = 1 6 ± 7 6 Eftersom
5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm
VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa
MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken
Explorativ övning LMA100 ht 2002 MATEMATIS INDUTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför
Finaltävling i Stockholm den 22 november 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella
5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor
5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift
Ett Sammelsurium av Matematiskt Nonsens, Matematikens Grundvalar. Professor Ivar
Ett Sammelsurium av Matematiskt Nonsens, Matematikens Grundvalar. Professor Ivar April 24, 2017 ii Contents Företal v 1 Mängdteori. 1 1.0.1 Matematikens språk:..................... 2 1.0.2 Matematikens
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas, Malin Källén 20 mars 2016 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av
SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009
SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Tentamen SF e Januari 2016
Tentamen SF6 8e Januari 6 Hjälpmedel: Papper, penna. poäng per uppgift totalt poäng. Betg E är garanterat vid 6 poäng, betg D vid poäng, betg vid C poäng, betg B vid 8 poäng och betg A vid poäng. För de
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterationer på ett intervall av Fredrik Bratt 2011 - No 3 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM
Lösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
Om plana och planära grafer
Matematik, KTH Bengt Ek november 2017 Material till kurserna SF1679 och SF1688, Diskret matematik: Om plana och planära grafer I många sammanhang (t.ex. vid konstruktion av elektriska kretsar) är det intressant
Talföljder, summor och rekursioner
VK Talföljder, summor och rekursioner Matematiska institutionen, 000 . Introduktion Talföljder, summor och rekursioner är ett tämligen stort område som har tillämpningar inom samtliga delar av matematiken.
Ett Sammelsurium av Matematiskt Nonsens, Matematikens Grundvalar. Professor Ivar
Ett Sammelsurium av Matematiskt Nonsens, Matematikens Grundvalar. Professor Ivar April 4, 2017 ii Contents Företal v 1 Mängdteori. 1 1.0.1 Matematikens språk:................... 2 1.0.2 Uppgifter:.........................
Algebra I, 1MA004. Lektionsplanering
UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tentamen TMV20 Inledande Diskret Matematik, D/DI2 208-0-27 kl. 4.00 8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Anton Johansson, telefon: 5325 (alt. Peter Hegarty 070-5705475)
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.
HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna
Föreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
9. Predikatlogik och mängdlära
Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
1 Föreläsning Implikationer, om och endast om
1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
Kappa 2014, lösningsförslag på problem 5
Kappa 2014, lösningsförslag på problem 5 Lag Spyken Roger Bengtsson, Sten Hemmingsson, Magnus Jakobsson, Susanne Tegler Problemet I det här problemet betraktas m n stora rektangulära rutnät, där m avser
Matematisk kommunikation för Π Problemsamling
Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan
Diverse beteckningar och formler som dyker upp i induktionsavsnittet, men även litet överallt annars:
Talföljder Diverse beteckningar och formler som dyker upp i induktionsavsnittet, men även litet överallt annars: Talföljd En ändlig eller oändlig följd av tal uppställda i en bestämd ordning, t.ex. 1,,
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2 Jakob Jonsson April 5, 2011 Ö Övningsuppgifter These extra exercises are mostly in Swedish. If you have trouble understanding please
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 september 2015 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem
Algoritmer och datastrukturer H I HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T
Algoritmer och datastrukturer H I 1 0 2 9 HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T Föreläsning 1 Inledande om algoritmer Rekursion Stacken vid rekursion Rekursion iteration Möjliga vägar
Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av
Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.
MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken
) Explorativ övning MA00 vt 00 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför
Hela tal LCB 1999/2000
Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när
Uppgifter 6: Grafteori
Grunder i matematik och logik (2017) Uppgifter 6: Grafteori Marco Kuhlmann Nivå 6.01 nge antalet noder och bågar. a) b) a) 7 noder, 10 bågar b) 9 noder, 10 bågar 6.02 nge gradtalet för varje nod. a) b)
Talteori. 1 Grundbegrepp och kongruenser...1 2 Talföljder och rekursion 6 3 Induktionsbevis..14 4 Fraktaler.16 Facit.. 18
Talteori Von Kochs kurva, även känd som snöflingekurvan, först beskriven av Helge von Koch (1904). Kochkurvan är en kurva som saknar tangent i alla punkter. Numera även känd för att vara en av de först
18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.
HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som
Kompletteringskompendium
Kompletteringskompendium Tomas Ekholm Institutionen för matematik Innehåll 0 Notationer och inledande logik 3 0.1 Talmängder............................ 3 0. Utsagor.............................. 3 1 Induktion
BEGREPP HITTILLS FÖRELÄSNING 2 SAMMANSATTA UTTRYCK - SCHEME DATORSPRÅK
FÖRELÄSNING 2 Viss repetition av Fö1 Rekursivt fallanalys Rekursiva beskrivningar BEGREPP HITTILLS Konstant, Namn, Procedur/Funktion, LAMBDA, Parameter, Argument, Kropp, Villkor/Rekursion, Funktionsanrop,