BEGREPP HITTILLS FÖRELÄSNING 2 SAMMANSATTA UTTRYCK - SCHEME DATORSPRÅK
|
|
- Gun Nyström
- för 6 år sedan
- Visningar:
Transkript
1 FÖRELÄSNING 2 Viss repetition av Fö1 Rekursivt fallanalys Rekursiva beskrivningar BEGREPP HITTILLS Konstant, Namn, Procedur/Funktion, LAMBDA, Parameter, Argument, Kropp, Villkor/Rekursion, Funktionsanrop, Substitutionsmodellen Rekursiva och iterativa processer Scope för namn 1 2 DATORSPRÅK primitiva uttryck (primitive expressions) sammansättningsregler (means of combination) - Procedursammansättning - Sammansättning av primitivdata för att få sammansatt data abstraktioner (means of abstraction) - Svartlåda-tänkande (möjlighet att ignorera detaljer) - Högre-ordningens procedurer - Dataabstraktion - Procedurer som data SAMMANSATTA UTTRYCK - SCHEME Applikation av inbyggda procedurer (inbyggd-fn argument-1 argument-2 argument-n) Applikation av användardefinierade procedurer (användar-fn argument-1 argument-2... argument-n) Undantagsformer (if villkor då-uttrycket annars-uttrycket) (and uttryck-1 uttryck-2 uttryck-n) (or uttryck-1 uttryck-2... uttryck-n) Abstractionsmöjligheter (define namn värde) (lambda parametrar kropp) 3 4
2 PROGRAMMERING PROGRAMEXEMPEL: AVSTÅNDET MELLAN TVÅ PUNKTER problem problemanalys ~ fallanalys översättning av analysresultatet till programkod testning (define distance (lambda (x1 y1 x2 y2) ( s q r t ( + ( s q u a r e ( - x 2 x 1 ) ) (square (- y2 y1)))))) (define square (lambda (n) (* n n))) 5 6 SUBSTITUTIONSMODELLEN (distance ) (sqrt (+ (square (- 3 0)) (square (- 4 0)))) (sqrt (+ (square 3) (square 4))))) (sqrt (+ (* 3 3) (* 4 4))) (sqrt (+ 9 16)) (sqrt 25) 5 EVALUERING AV FUNKTIONSANROP/SUBSTITUTIONSMODELL För att evaluera ett anrop som (fn arg1 arg2 argn) Evaluera fn till det entitet den representerar Evaluera argumenten arg1 arg2 argn Ersätt förekomster av parametrar i procedurens kropp med motsvarande argument och evaluera sedan kroppen Detta sätt kallas för det applikativa substitutionsmodellen för beräkning 7 8
3 UNDANTAGSFORMEN IF Medan alla funktionsanrop evalueras enligt en och samma regel som beskrevs nyss, evalueras undantagsformer (special forms) på andra sätt t ex (if villkor då-uttryck annars-uttrycket) Evaluera villkor, om sant evaluera sedan då-uttrycket annars evaluera annars-uttrycket Resultatet blir antingen värdet på då-uttrycket eller annars-uttrycket SPECIALFORMEN COND (cond (villkor-1 då-uttryck-1) (villkor-2 då-uttryck-2)... (villkor-n då-uttryck-n)) Evaluera villkor-1, om sant, evaluera sedan då-uttryck-1, annars gå till nästa i ordningen Någon av villkoren måste vara sant annars blir det fel Genom att låta villkor-n vara nyckelordet ELSE garanterar vi att då-uttryck-n evalueras i fall de tidigare villkoren varit falska. Så här: (cond (villkor-1 då-uttryck-1) (villkor-2 då-uttryck-2)... (ELSE då-uttryck-n)) 9 10 SPECIALFORMEN AND (and arg-1 arg-2...) SPECIALFORMEN OR (or arg-1 arg-2...) Evaluera argumenten från vänster till höger tills ett falskt värde #f fås, i så fall är and-uttryckets värde #f, annars #t. Evaluera argumenten från vänster till höger till ett #t värde fås, i så fall är värdet på or-uttrycket #t, annars #f 11 12
4 FÖLJANDE ÄR EKVIVALENTA (FRÅN FÖ 1) (cond ((> x 0) x) ((= x 0) 0) ((< x 0) (- x))) (cond ((> x 0) x) ((= x 0) 0) (else (- x))) (if (> x 0) x (if (= x 0) 0 (- x))) REKURSIVT FALLANALYS Rekursion är ett sätt att få datorn att snurra Rekursion är ett sätt att bryta ner problem till enklare (mindre) problem Beräkningar definieras i termer av sig själva Ett termineringsfall är alltid nödvändigt Ganska vanligt inom matten, t ex, fakultetsfunktionens beskrivning: n! = n(n-1)! när n > 0 0! = FIBONACCITALEN FIBONACCITALEN 0, 1, 1, 2, 3, 5, 8, 13, Fallanalys fib(0) = 0 fib(1) = 1 fib(n) = fib(n-1)+fib(n-2) (define fib (lambda (n) (cond ((= n 0) 0) ((= n 1) 1) (else (+ (fib (- n 1)) (fib (- n 2))))))) 15 16
5 FIBONACCITALEN - FALLANALYS 2 0, 1, 1, 2, 3, 5, 8, 13, Fallanalys fibo(0) = 0 fibo(1) = 1 fibo(n) = fibo-iter(n, 0, 1, 1) fibo-iter(n, f0, f1, räknare) = f1 om (n = räknare) fibo-iter(n, f1, f0+f1, räknare+1) annars ITERATIV FIBONACCI (define fibi (lambda (n) (cond ((= n 0) 0) ((= n 1) 1) (else (fiter n 0 1 1))))) (define fibi-iter (lambda (n f0 f1 count) (if (= count n) f1 (fibi-iter n f1 (+ f0 f1) (+ count 1))))) FIBONACCITALEN - FALLANALYS 3 0, 1, 1, 2, 3, 5, 8, 13, Fallanalys fibi(0) = 0 fibi(1) = 1 fibi(n) = iter(n, 0, 1) iter(n, f0, f1) = f1 om (n = 1) iter(n-1, f1, f0+f1) annars FALLANALYS Uppdelning av ett större problem i enklare fall kräver att man jobbar med problemet Sällan kommer man på alla korrekta fallen direkt Ibland blir man tvungen att testa ett ofullständigt fallanalys för att bekanta sig med problemet ännu mer - förhoppningsvis kommer man på en fullständig lösning sedan Ibland måste man hitta på flera alternativa fallanalys och bara då kan välja den bästa uppdelningen 19 20
6 FALLANALYS - YTTERLIGARE EXEMPEL j i Fallanalys f(i,j) = j om (i=1) i om (j=1) 1 om (i=j) i-j +1 annars REKURSIVA BESKRIVNINGAR Vissa program kan formuleras som rekursiva beskrivningar (rekursivt fallanalys) Lösningar bryts ner till ett eller flera triviala fall (basfall) och ett eller flera generella fall. De generella fallen är nerskalade varianter på det ursprungliga problemet och därmed självreferens eller rekursion i lösningen Eller? PROCEDURER OCH PROCESSER När en procedur evalueras genereras en process. Processerna kan antingen vara Rekursiva, eller Iterativa Rekursiva processer i sin tur kan antingen utgöra en linjär rekursion eller trädrekursion OBS! att i både fallen kan proceduren ha definierats som en rekursiv beskrivning (anropar sig själv) LINJÄR REKURSIVA PROCESSER Procedurbeskrivningen innehåller anrop till sig själv (se fact) Varje rekursivt anrop skapar en fördröjd operation, den fördröjda operationen kombinerar resultatet på det rekursiva anropet med annat, med andra ord, Rekursiva anropet ingår i ett resultat genereande uttrycket Tidskomplexiteten (behovet av beräkningstid) växer linjärt relativt parameterns storlek. I ordonotation: O(n) Rymdkomplexiteten (behovet av datorminne) växer linjärt relativt parameterns storlek. I ordonotation: O(n) 23 24
7 ITERATIVA PROCESSER Ett rekursivt anrop (se fibo eller fibi) Rekursiva anropet skapar inga fördröjda beräkningar Rekursiva anropet är svaret (ingår inte i annat uttryck) Tidskomplexiteten (behovet av beräkningstid) växer linjärt relativt parameterns storlek. I ordonotation: O(n) Rymdkomplexiteten (behovet av datorminne) är konstant och oberoende av parameterns storlek. I ordonotation: O(k) eller O(1) TRÄDREKURSIVA PROCESSER Proceduren innehåller multipla rekursiva ansrop till själv (se fib) Resultatuttrycket vanligtvis kombinerar resultaten från de rekursiva anropen Fördröjda operationer växer som träd (förgreningen är beroende av antal rekursiva anrop i ett och samma resultatuttryck, t ex, i Fibonacci är förgreningen 2) Tidskomplexiteten växer exponentiellt O(k n ), där k är antalet multipla anrop, t ex, i rekursiva Fibonacci (fib), k=2 Rymdkomplexiteten växer linjärt O(n) UPPGIFT f(n) = n if n<3 f(n) = f(n-1)+2f(n-2)+3f(n-3) annars Skriv Schemeprocedurer som implementerar f(n) både som rekursivoch interaktiv process. Försök följa samma mönster som lösningarna för Fibonaccitalen 27
FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION
FÖRELÄSNING 2, TDDC74, VT2018 Begrepp och definitioner (delvis från föreläsning 1) Fallanalys som problemlösningsmetod Rekursivt fallanalys Rekursiva beskrivningar och processer de kan skapa Rekursiva
FÖRELÄSNING 1 PERSONAL TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 SYFTE EXAMINATION ORGANISATION
TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 Jalal Maleki Institutionen för datavetenskap Linköpings universitet jalal.maleki@liu.se FÖRELÄSNING 1 Introduktion till kursen Schemespråkets grunder
TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017
FÖRELÄSNING 1 TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 Introduktion till kursen Schemespråkets grunder Enkla exempel Jalal Maleki Institutionen för datavetenskap Linköpings universitet
Våra enkla funktioner eller procedurer
Föreläsning 3 Våra enkla funktioner eller procedurer Programmönster 1. Repetition 2. Högre-ordningens procedurer/programmönster - Procedurer som argument - Procedurer som returnerade värden 3. Scope och
Procedurer och villkor. Rekursiva procedurer. Exempel: n-fakultet
Procedurer och villkor Rekursiva procedurer (define lessorequal (lambda (x y) (or (< x y) (= x y)))) (define between (lambda (x y z) (and (lessorequal x y) (lessorequal y z)))) > (between 3 4 5) #t > (between
Procedurer och villkor
Procedurer och villkor (define lessorequal (lambda (x y) (or (< x y) (= x y)))) (define between (lambda (x y z) (and (lessorequal x y) (lessorequal y z)))) > (between 3 4 5) #t > (between 3 2 5) #f DA2001
Förra gången: Primitiva data
Förra gången: Primitiva data > 30 30 > 45.56 45.56 Variabler: > (define telnr 6000) > telnr 6000 DA2001 (Föreläsning 3) Datalogi 1 Hösten 2013 1 / 24 Förra gången: Procedurapplikation: > (+ 7900000 telnr)
Språket Scheme. DAT 060: Introduktion till (funktions)programmering. DrScheme. uttryck. Jacek Malec m. fl. evaluering av uttryck.
DAT 060: Introduktion till (funktions)programmering. Jacek Malec m. fl. www.cs.lth.se/home/jacek Malec/dat060 Idag: 1. Kursens innehåll 2. Kursens organisation 3. Programmeringsspråket Scheme 4. Introduktion
Föreläsning 9 Exempel
Föreläsning 9 Exempel Intervallhalveringsmetoden DA2001 (Föreläsning 9) Datalogi 1 Hösten 2013 1 / 24 Föreläsning 9 Exempel Intervallhalveringsmetoden Newton-Raphsons metod DA2001 (Föreläsning 9) Datalogi
Introduktion till programmering D0009E. Föreläsning 5: Fruktbara funktioner
Introduktion till programmering D0009E Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner
Föreläsning 9 Exempel. Intervallhalveringsmetoden. Intervallhalveringsmetoden... Intervallhalveringsmetoden...
Föreläsning 9 Intervallhalveringsmetoden Intervallhalveringsmetoden Newton-Raphsons metod Mer om rekursion Tidskomplexitet Procedurabstraktion Representation Bra om ni läst följande avsnitt i AS: Procedures
Introduktion till programmering SMD180. Föreläsning 5: Fruktbara funktioner
Introduktion till programmering Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner med
n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean?
Tidigare TDDC74 Programming: Abstraktion och modellering Föreläsning 4 Symboler, Par, Listor Representation av par, Grafisk notation för par Representation av listor mha par Typiska listhanteringsprocedurer
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv.
Strömmar (streams) De sista dagarna objekt med tillstånd modellerades som beräkningsobjekt med tillstånd. Isådana modeller är tiden modelerad (implicit) som en sekvens av tillstånd. För att kunna modellera
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
Algoritmer och datastrukturer H I HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T
Algoritmer och datastrukturer H I 1 0 2 9 HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T Föreläsning 1 Inledande om algoritmer Rekursion Stacken vid rekursion Rekursion iteration Möjliga vägar
I dag: Blockstruktur, omgivningar, problemlösning
Förra gången Förra gången: Rekursiva procedurer I dag I dag: Blockstruktur, omgivningar, problemlösning (define add-1 (define add-2 (lambda (a b) (lambda (a b) (if (= a 0) (if (= a 0) b b (+ 1 (add-1 (add-2
TDDC74 Programmering, abstraktion och modellering DUGGA 1
AID-nummer: Datum: 2011-02-04 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 1 Fredag 4 feb 14-16
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 januari 2006 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem som
SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall
Rekursiva funktioner Föreläsning 10 (Weiss kap. 7) Induktion och rekursion Rekursiva funktioner och processer Weiss 7.1-3 (7.4, 7.5.3 utgår) Fibonaccital (7.3.4) Exempel: Balansering av mobil (kod se lab
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-06-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Fredag 10 juni
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 2018-06-07, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014
TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd
Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)
Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa
DD1361 Programmeringsparadigm. Carina Edlund
DD1361 Programmeringsparadigm Carina Edlund carina@nada.kth.se Funktionell programmering Grundidéen med funktionell programmering är att härma matematiken och dess funktionsbegrepp. Matematiskt funktionsbegrepp
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016
TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte ordnade i någon
TDDC74 Programmering, abstraktion och modellering DUGGA 3
1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 3 Torsdag 4 mars 2010 kl 8-10 Namn: Personnummer:
Tentamen i. TDDA 69 Data och programstrukturer
1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDA 69 Data och programstrukturer Torsdag den 14 januari 2009, kl 14-18 Hjälpmedel: Inga. Poänggränser: Maximalt
Repetition i Pascal. Exemplen fac. Exemplen fac i Pascal. Exemplen fac motivering. Orginalet
Repetition Introduktion Repetition i Exemplen fac Orginalet I Scheme använde vi rekursion för all slags repetition. Efterom Scheme är ett funktionellt språk återsänder alla språkkonstruktioner ett värde
TDDC74 Lab 04 Muterbara strukturer, omgivningar
TDDC74 Lab 04 Muterbara strukturer, omgivningar 1 Översikt I den här laborationen kommer ni att lära er mer om: Tillstånd, och skillnader mellan ren funktionell programmering och imperativ. Skillnaden
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2012-01-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 10 januari
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas, Malin Källén 20 mars 2016 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av
Typsystem. Typsystem... Typsystem... Typsystem... 2 *
Typsystem Typsystem finns i alla programmeringsspråk. Avsikten med typsystem är att kontrollera att uttryck är säkra i den bemärkelsen att innebörden i operanderna är klar och inte är motsägelsefull och
Multipel tilldelning. Introduktion till programmering D0009E. Föreläsning 6: Iteration. while-satsen. Kom ihåg. Snurror kontra rekursion
Introduktion till programmering D0009E Föreläsning 6: Iteration Multipel tilldelning Helt ok att tilldela en variabel flera gånger: bruce = bruce, bruce = 7 bruce Output: 7 Som tillståndsdiagram: bruce
Typsystem. DA2001 (Föreläsning 23) Datalogi 1 Hösten / 19
Typsystem Typsystem finns i alla programmeringsspråk. Avsikten med typsystem är att kontrollera att uttryck är säkra i den bemärkelsen att innebörden i operanderna är klar och inte är motsägelsefull och
Repetition i Python 3. Exemplen fac. Exemplen fac motivering. Exemplen fac i Python
Repetition i Python 3 Exemplen fac Orginalet I Scheme använde vi rekursion för all slags repetition. Efterom Scheme är ett funktionellt språk återsänder alla språkkonstruktioner ett värde men i Python
Idag: Dataabstraktion
Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? DA2001 (Föreläsning 7) Datalogi 1 Hösten 2013 1 / 16 Idag: Dataabstraktion Hur använder
Deklarationer/definitioner/specifikationer
Deklarationer/definitioner/specifikationer Konstantdefinitioner innebär att ett namn binds och sätts att referera till ett värde som beräknas vid kompileringen/interpreteringen och som under programmets
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari
Imperativ och Funktionell Programmering i Python #TDDD73. Fredrik Heintz,
Imperativ och Funktionell Programmering i Python #TDDD73 Fredrik Heintz, IDA fredrik.heintz@liu.se @FredrikHeintz Översikt Repetition: Satser och uttryck Variabler, datatyper, synlighet och skuggning Upprepning,
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-08-17 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Onsdag 17 augusti
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl 14 18
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
TDDC74 Programmering: Abstraktion och modellering Datortenta
TDDC74 Programmering: Abstraktion och modellering Datortenta - 2017-08-26 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
Omgivningar. Omgivningar är viktiga eftersom de avgör vilka namn som är synliga och därmed dessas innebörd och de värden som är förknippade med dem.
Omgivningar Omgivningar är viktiga eftersom de avgör vilka namn som är synliga och därmed dessas innebörd och de värden som är förknippade med dem. (define (sqrroot c) (define (fixpoint guess c eps) (define
Dagens föreläsning Programmering i Lisp. - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning
1 Dagens föreläsning Programmering i Lisp - Block, räckvidd - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 2015, kl 8 12
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 215, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
Modularitet och tillstånd. Stora system kräver en uppdelning. En lösning: modularitet. Basera programmets struktur på den fysiska systemets struktur:
Modularitet och tillstånd Stora system kräver en uppdelning. En lösning: modularitet Basera programmets struktur på den fysiska systemets struktur: En fysisk objekt en beräkningsobjekt Ett agerande en
Tentamen i. TDDC67 Funktionell programmering och Lisp
1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering
TDDC74 Lab 02 Listor, sammansatta strukturer
TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 017-10-7, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk
1 Dagens föreläsning Programmering i Lisp Fö 7 Kopplingen funktionella programmering och diskret matematik. Jämför vad ni hittills gjort i denna kurs och i den diskreta matematiken, med referenser in i
Föreläsning 6 Innehåll. Rekursion. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursiv problemlösning. Rekursion. Rekursivt tänkande:
Föreläsning 6 Innehåll Rekursion Begreppet rekursion Rekursiv problemlösning Samband mellan rekursion och induktion Söndra-och-härska-algoritmer Dynamisk programmering Undervisningsmoment: föreläsning
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning Metoder för algoritmdesign TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 7 december 015 Tommy Färnqvist, IDA, Linköpings universitet.1
Programmeringsmetodik DV1 Programkonstruktion 1. Moment 4 Om rekursion. PK1&PM1 HT-06 moment 4 Sida 1 Uppdaterad
Programmeringsmetodik DV1 Programkonstruktion 1 Moment 4 Om rekursion PK1&PM1 HT-06 moment 4 Sida 1 Uppdaterad 2006-10-17 Summera godtyckligt antal tal (* sumupto n Type: int->int Pre: n >= 0, n
Metodanrop - primitiva typer. Föreläsning 4. Metodanrop - referenstyper. Metodanrop - primitiva typer
Föreläsning 4 Metodanrop switch-slingor Rekursiva metoder Repetition av de första föreläsningarna Inför seminariet Nästa föreläsning Metodanrop - primitiva typer Vid metodanrop kopieras värdet av en variabel
TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel
TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
TDDC74 Programmering, abstraktion och modellering DUGGA 2
AID-nummer: Datum: 2011-02-18 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Fredag 18 feb 2011
Föreläsning 8 Innehåll
Föreläsning 8 Innehåll Orientering om samarbete om Eclipse-projekt med git Orientering om konstruktion av användargränssnitt i Android Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering
Exempel: Förel Rekursion III Nr 14. Uno Holmer, Chalmers,
Exempel: Kappsäcksproblemet Backtracking Dynamisk programmering Föreläsning (Weiss kap..-) Kan man ur en grupp föremål F,,F N med vikterna V,,V N välja ut en delgrupp som väger exakt M kilo? Exempel: föremål
Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm.
Algoritmanalys Analys av algoritmer används för att uppskatta effektivitet. Om vi t. ex. har n stycken tal lagrat i en array och vi vill linjärsöka i denna. Det betyder att vi måste leta i arrayen tills
Introduktion till programmering SMD180. Föreläsning 4: Villkor och rekursion
Introduktion till programmering Föreläsning 4: Villkor och rekursion 1 1 Några inbyggda funktioner (med resultat!) Konverterar mellan de grundläggande typerna: >>> int("32") 32 >>> int(3.999) 3 >>> float(32)
TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 14-16
TDDC74 Programmering: Abstraktion och modellering Dugga 2, 207-04-06, kl 4-6 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
Datalogi, grundkurs 1 Övningsuppgifter i Scheme. Serafim Dahl, Carina Edlund, m.fl.
Datalogi, grundkurs 1 Övningsuppgifter i Scheme Serafim Dahl, Carina Edlund, m.fl. Hösten 2004 Datalogi, grundkurs 1, hösten 2002 1 1. Vad blir det för resultat vid beräkningen av följande Scheme-uttryck.
Rekursiva algoritmer sortering sökning mönstermatchning
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell
Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson
1 2 - Block, räckvidd Dagens föreläsning Programmering i Lisp - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch
Dagens föreläsning Programmering i Lisp Fö 5
Anders Haraldsson 1 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.3) - Iteratorer - Egenskaper
Föreläsning 13. Dynamisk programmering
Föreläsning 13 Dynamisk programmering Föreläsning 13 Dynamisk programmering Fibonacci Myntväxling Floyd-Warshall Kappsäck Handelsresandeproblemet Uppgifter Dynamisk programmering Dynamisk programmering
Programkonstruktion och Datastrukturer
Programkonstruktion och Datastrukturer VT 2012 Tidskomplexitet Elias Castegren elias.castegren.7381@student.uu.se Problem och algoritmer Ett problem är en uppgift som ska lösas. Beräkna n! givet n>0 Räkna
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
TDDC74 - Lektionsmaterial C
TDDC74 - Lektionsmaterial C Lektioner innehåller uppgifter av varierande slag. En del är mer diskussionsartade, andra mer experimentella. Ni behöver inte lämna in eller visa upp lösningarna på dessa för
TDDC74 Programmering: Abstraktion och modellering. Provkod TEN1, Tid: kl 14-18, , Kåra
Tentamen Provkod TEN1, Tid: kl 14-18, 2013-06- 07, Kåra Läs alla frågorna först och bestäm dig för den ordning som passar dig bäst. Även om det i uppgi;en står a< du skall skriva en procedur/funk?on, så
Summera godtyckligt antal tal. Programkonstruktion. Moment 4 Om rekursion. Fullständigt resonemang för summeringen. Analys av summeringsproblemet
Summera godtyckligt antal tal Programkonstruktion Moment 4 Om rekursion Pre: n >=, n
Abstraktion. Abstraktion... Abstraktion... Abstraktion...
Abstraktion Inom programmeringstekniken används två former av abstraktion dataabstraktion och programabstraktion. Dataabstraktion handlar om aggregat för att gruppera samhörande data. Programabstraktion
Föreläsning 5. Rekursion
Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Algoritm En algoritm är ett begränsat antal instruktioner/steg
Abstraktion. procedurabstraktion. DA2001 (Föreläsning 26) Datalogi 1 Hösten / 27
Abstraktion Inom programmeringstekniken används två former av abstraktion dataabstraktion och programabstraktion. Dataabstraktion handlar om aggregat för att gruppera samhörande data. Programabstraktion
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum:
TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Skriv tydligt så att inte dina lösningar missförstås. Använd väl valda namn på parametrar och indentera din kod. Även om det i
Datalogi, grundkurs 1. Lösningsförslag till tentamen
Datalogi, grundkurs 1 Lösningsförslag till tentamen 10 december 2008 1. a. Man testar med typiska värden, gränsvärden och värden utanför specificerad indatavärdemängd. Helst med alla permutationer av
Institutionen för datavetenskap, DAT060, Laboration 2 2 För denna enkla simulerings skull kommer handen att representeras som ett par tal μ värdet på
DAT 060 Laboration 2 I Malmös kasino Institutionen för datavetenskap 17 juni 2002 Per tänkte dryga ut sitt magra studielån genom att jobba som labbassistent på sommarkursen. Tyvärr fanns det redan tillräckligt
Lösning av några vanliga rekurrensekvationer
1 (8) Lösning av några vanliga rekurrensekvationer Rekursiv beräkning av X n En rekursiv funktion som beräknar x n genom upprepad multiplikation, baserat på potenslagarna X 0 = 1 X n+1 = X X n float pow(float
Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E. Föreläsning 4: Villkor och rekursion. Modulus-operatorn.
Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E Föreläsning 4: Villkor och rekursion Konverterar mellan de grundläggande typerna: >>> int("") >>> int(.999) >>> float().0
Introduktion till programmering SMD180. Föreläsning 2: Variabler, uttryck och satser
Introduktion till programmering Föreläsning 2: Variabler, uttryck och satser 1 1 Värden De grundläggande saker som en dator manipulerar resultaten av beräkningar kallas värden Värden vi stött på: 2 och
Hur man programmerar. TDDC66 Datorsystem och programmering Föreläsning 3. Peter Dalenius Institutionen för datavetenskap
Hur man programmerar TDDC66 Datorsystem och programmering Föreläsning 3 Peter Dalenius Institutionen för datavetenskap 2014-09-05 Översikt Problemlösning: Hur ska man tänka? Datatyper Listor (forsätter
Föreläsning 11: Rekursion
TDA 545: Objektorienterad programmering Föreläsning 11: Rekursion Magnus Myréen Chalmers, läsperiod 1, 2015-2016 Idag Läsanvisning: kap 19, men bara t.o.m. sida 812 rekursion fakulteten exponentiering
TDDC74 Programmering: Abstraktion och modellering Dugga 1, kl 14-16
TDDC74 Programmering: Abstraktion och modellering Dugga 1, 2017-02-22 kl 14-16 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 september 2015 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem
Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254
Rekursion Rekursion är en grundläggande programmeringsteknik M h a rekursion kan vissa problem lösas på ett mycket elegant sätt Avsnitt 11 i kursboken: Att tänka rekursivt Att programmera rekursivt i Java
Introduktion till programmering SMD180. Föreläsning 3: Funktioner
Introduktion till programmering Föreläsning 3: Funktioner 1 1 Mer matematik Vi har sett matematiska uttryck med variabler, värden och operatorer, ex: 17+n pi/2 hours*60+minutes Kan man även skriva uttryck
Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv.
Idag: Par och listor Symboler Hur hanterar man icke-numeriska problem? Hur hanterar man en samling av data? Hur konstruerar man sammansatta datastrukturer? Bra om du har läst följande avsnitt i AS: Pair
Introduktion till programmering SMD180. Föreläsning 9: Tupler
Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]
Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.) - Iteratorer
TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga
TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.