TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl 14 18
|
|
- Ingrid Lindström
- för 6 år sedan
- Visningar:
Transkript
1 TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd väl valda namn på parametrar och indentera din kod.väl valda namn omfattar exempelvis att inte blanda språk. Om du vill avsluta samtliga parenteser i en funktionsdefinition, kan du om du vill skriva en stor parentes. Observera att detta innebär att du sluter samtliga öppna parenteser från och med sista define du öppnade. Även om det i uppgiften står att du skall skriva en procedur/funktion, så får du skriva ytterligare hjälpfunktioner som kan vara nödvändiga. Observera att poängavdrag kan ges för onödigt komplicerade eller ineffektiva lösningar. Preliminära betygsgränser: betyg betyg betyg 5 Lycka till!
2 Uppgift 1. Beräkning av uttryck (4p) Vi ger DrRacket följande uttryck att beräkna (i ordningen som anges). Vilka värden får a, b, c,...? Om det uppstår fel vid definitionerna, beskriv vad för fel det är (vilken typ). > ( define a haha ) > a > ( define b (+ a 1)) > b > ( define (p p) (p)) > p > ( define c (p ( lambda () 3))) > c > ( define d ( cons a m)) > d > ( define (e x) (* x 2)) > e > ( define h ( lambda (g) (e))) > h > ( define i (h 3)) > i Uppgift 2. Datatyp: länkad lista (4p) a) Antag att vi har evaluerat följande Racket-uttryck (i ordning). ( define x ( list 2 3)) ( define y ( cons 1 x)) ( define z ( cons ( cons x y) 99) ) ( define w ( list 4 ( list 5 6))) Rita box-pointer diagram för x, y, z, w. Var noga med pekarna! (2p) b) Vi evaluerar följande uttryck: ( define p ( mcons 1 2)) ( define q ( mcons 3 4)) ( set-mcdr! p q) ( set-mcdr! p 999) Går det att skriva uttryck utan set-mcar! och set-mcdr!, som genererar samma struktur? Skriv kod isåfall. Motivera annars kortfattat (max två meningar) varför det inte går. (1p) 2
3 c) Vi evaluerar följande uttryck: ( define r ( mcons 5 6)) ( define s ( mcons 7 8)) ( set-mcdr! r s) ( set-mcdr! r r) Går det att skriva uttryck utan set-mcar! och set-mcdr!, som genererar samma struktur? Skriv kod isåfall. Motivera annars kortfattat (max två meningar) varför det inte går. (1p) Uppgift 3. Tillstånd och omgivningsdiagram (5p) Vi ges följande kod: ( define x 100) ( define (f x) ( define (g y) (+ x y)) (g x)) (f 12) a) När vi evaluerar koden returneras ett värde. Vilket? (1.5p) b) På nästa sida ser du fyra omgivningsdiagram. Vilket av dem visar det som händer när vi evaluerar koden ovan? Enbart en bokstav (A/B/C/D) behövs. Korrekt svar ger poäng, felaktigt ger 1p avdrag på uppgiftens poäng 1. Du behöver inte svara om du inte vill. (1.5p) c) Vi evaluerar följande: (define cat tesco) (define (change-name! name) (set! name cat) (set! name forex)) (change-name! tiger) Vilket värde har cat efteråt? Motivera kortfattat (en-två meningar). (2p) 1 Uppgift 3 kan alltså inte ge minuspoäng. 3
4 A x : 12 y : 12 f : g : f : B args : y body : (+ x y) args : x body : ( define ( g y ) (+ x y) ) ( g x ) args : x body : ( define ( g y ) (+ x y) ) ( g x ) C y : 12 f : g : f : D args : y body : (+ x y) args : x body : ( define ( g y ) (+ x y) ) ( g x ) args : x body : ( define ( g y ) (+ x y) ) ( g x ) args : y body : (+ x y) g : args : y body : (+ x y) y : 12 x : 12 g : y : 12
5 Uppgift 4. Enkelrekursion över olika domäner (4p) a) Konstruera funktionen sum-even som tar en lista av tal, och returnerar summan av de jämna talen i listan. Så här ska den fungera: > ( sum-even ( )) 6 > ( sum-even ( ) ) 0 > ( sum-even ()) 0 Ange kod för funktionen. Du får använda Racket-funktionen even?. (2p) b) Antag att du får använda Racket-funktionen expt som motsvarar upphöjt-till. x y blir (expt x y). Med Knuths dubbelpilsnotation kan vi skriva a 2 = a a, a 3 = a (aa), a 4 = a (a(aa)) och så vidare. Lite informellt, bygger vi ett torn av exponenter. Definiera (tower a n) så att (tower a n)=a n för godtyckligt a, och heltal n 1. Så här ska det fungera: > ( tower 2 1) ;; 2^1 2 > ( tower 2 3) ;; 2^(2^2) = 2^4 = > ( tower 4 2) ;; 4^4 = > ( tower 4 3) ;; 4^(4^4) = 4^ Svara med kod. (2p) 5
6 Uppgift 5. Abstrakt datatyp, högre ordningens procedur (5p) OBS! Försök gärna besvara alla deluppgifter, även om du inte gjort 5a! Uppgift 5a) Representation (2p) I matematiken stöter vi på polynom, som exempelvis p(x) = 8x 3 + 7x 2 + 6x + 5. Vi vill nu skapa en abstrakt datatyp poly som representerar ett polynom. När vi skapar polynomet anger vi helt enkelt dess lista av koefficienter, där vi börjar med konstanttermen. p ovan skulle alltså ha koefficient-listan ( ), och polynomet q(x) = x 4 + 3x skulle ha listan ( ). Det sista ser vi kanske tydligare om vi skriver ut det som q(x) = 1x 4 + 0x 3 + 3x 2 + 0x 1 + 7x 0. Ett polynoms grad (en: degree) är den högsta förekommande exponenten. p(x) har grad 3, r(x) = 5 har grad 0. Din uppgift är att implementera poly-typen, och dessa fyra funktioner: En konstruktor make-poly som tar en lista av koefficienter och skapar ett polynom. Vi kan anta att användaren anger polynom utan avslutande nollor (så p(x) ovan skapas alltid med listan ( ), och inte t ex ( )). Ett predikat poly? som kontrollerar om ett objekt är ett polynom 2. get-degree tar ett polynom och returnerar dess grad. get-coeff tar ett polynom och en exponent k (k 0 heltal), och returnerar koefficienten framför termen x k. Så här ska det fungera: > ( define p ( make-poly ( ))) > ( poly? ( )) ;; var listan ett polynom? #f > ( poly? p) ;; blir det vi skapade ett polynom? #t > ( get-degree p) 3 > ( get-coeff p 3) ;; ge mig koefficienten vid x ^3 8 > ( get-coeff p 5) ;; ge mig koefficienten vid x ^5 0 OBS! Du kan ha hjälp av funktionen list-ref, som givet en lista och ett index i (0,...) returnerar elementet på plats i. (list-ref 1 (a b c)) => b. 2 Korrekt utdata från make-poly. Du behöver inte kontrollera att användaren gjort rätt när de anropade make-poly. 6
7 Uppgift 5b) Användning (3p) Polynom av en variabel kan såklart adderas, och bildar då nya polynom. Om vi till exempel lägger ihop p(x) = 8x 3 + 7x 2 + 6x + 5 och q(x) = x + 95, får vi det nya polynomet 8x 3 + 7x 2 x + (6 + 1)x + (5 + 95) = 8x 3 + 7x 2 + 7x Mer allmänt, skrivs polynom som summor av termer på formen c k x k. När vi adderar två polynom p(x), q(x) går vi igenom dem term för term, och låter koefficienten framför x k i det nybildade polynomet bli summan av koefficienten framför x k i p(x) och koefficienten framför x k i q(x). 3 Din uppgift är att skriva en funktion add-poly som tar två polynom och returnerar ett nytt polynom som är summan av polynomen. Tänk på att du inte får anta något mer om polynomet än att funktionerna ovan (i 5a-beskrivningen ovan) kan användas. Så här ska det fungera: > ( define p ( make-poly ( ))) ;; p som ovan > ( define q ( make-poly (95 1))) ;; q(x) = x + 95 > ( define h ( add-poly p q));; h(x) = 8x ^3 + 7x ^2 + 7x > ( get-degree h) 3 För full poäng, notera särskilt: > ( define r ( make-poly ( ) )) > ( define s ( add-poly p r)) ;; s(x) = 8x + 6 > ( get-degree s) 1 3 Om polynomen har olika grad, antar vi att koefficienter som saknas är 0. 7
8 Uppgift 6. Högre ordningens procedur (5p) a) Vi säger att h = f g, sammansättningen av f och g, om h(x) = f(g(x)). Skriv en funktion compose som tar två funktioner och returnerar sammansättningen. Du kan anta att båda funktionerna tar ett argument. Så här ska det fungera: > ( define square ( lambda (x) (* x x))) > ( define double ( lambda (x) (* 2 x))) > ( define h1 ( compose square double )) > ( h1 3) ;; h1 (3) = square ( double (3)) = square (6) = Redovisa kod för funktionen. (2p) b) Om vi har en funktion f säger vi att f 1 (x) = f(x), f 2 (x) = f(f(x)), f 3 (x) = f(f(f(x))) och så vidare. Skriv en funktion repeat som tar en funktion f och ett antal repetitioner n 1, och returnerar funktionen f n. Din lösning måste använda compose. 4. Så här ska det fungera: > ( define sq2 ( repeat square 2)) > ( define sq3 ( repeat square 3)) > ( sq2 3) ;; (3^2) ^2 = 9^2 = > ( sq3 3) ;; ((3^2) ^2) ^2 = (9^2) ^2 = 81^ > ( define dbl2 ( repeat double 2)) > ( dbl2 7) ;; double ( double (7)) = double (14) = Redovisa kod för funktionen. repeat ska givetvis kunna ta valfri funktion (som tar ett argument) som indata, och får inte bara fungera för square. (2p) c) Ovan har du n = 1 som basfall. Antag att du ville ha n = 0 som basfall istället. Vad för funktion borde (repeat f 0) returnera, om lösningen ska vara konsekvent? (1p) 4 Vi kommer att anta att compose fungerar som den ska i 6a. Du kan få full poäng på deluppgiften även om du inte besvarat, eller gjort fel i, 6a. 8
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel
TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 2015, kl 8 12
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 215, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 14-16
TDDC74 Programmering: Abstraktion och modellering Dugga 2, 207-04-06, kl 4-6 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 17-19
TDDC74 Programmering: Abstraktion och modellering Dugga 2, 2017-04-06, kl 17-19 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i
TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016
TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte ordnade i någon
TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015
TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd
TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014
TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 017-10-7, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 2018-06-07, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-08-17 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Onsdag 17 augusti
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 08-12
TDDC74 Programmering: Abstraktion och modellering Datortenta - 2019-05-27, kl 08-12 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-06-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Fredag 10 juni
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2012-01-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 10 januari
TDDC74 Programmering: Abstraktion och modellering Datortenta
TDDC74 Programmering: Abstraktion och modellering Datortenta - 2017-08-26 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 3 mars 2016
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 3 mars 2016 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte ornade i någon
TDDC74 Programmering: Abstraktion och modellering Dugga 1, kl 14-16
TDDC74 Programmering: Abstraktion och modellering Dugga 1, 2017-02-22 kl 14-16 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i
Tentamen i Programmering
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen i Programmering EDAA65/EDA501/EDAA20 M MD W BK L 2018 05 30, 8.00 13.00 Preliminärt ger uppgifterna 7 + 14 + 6 + 9 + 4 = 40 poäng.
Våra enkla funktioner eller procedurer
Föreläsning 3 Våra enkla funktioner eller procedurer Programmönster 1. Repetition 2. Högre-ordningens procedurer/programmönster - Procedurer som argument - Procedurer som returnerade värden 3. Scope och
TDDC74 - Lektionsmaterial C
TDDC74 - Lektionsmaterial C Lektioner innehåller uppgifter av varierande slag. En del är mer diskussionsartade, andra mer experimentella. Ni behöver inte lämna in eller visa upp lösningarna på dessa för
Lösningsförslag. TDDC74 Programmering: Abstraktion och modellering. Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum:
Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum: 2013-03-12 Lösningsförslag Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum: 2013-03- 12 Läs alla frågorna först och bestäm dig för den ordning som passar dig
TDDC74 Programmering: Abstraktion och modellering. Provkod TEN1, Tid: kl 14-18, , Kåra
Tentamen Provkod TEN1, Tid: kl 14-18, 2013-06- 07, Kåra Läs alla frågorna först och bestäm dig för den ordning som passar dig bäst. Även om det i uppgi;en står a< du skall skriva en procedur/funk?on, så
TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga
TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.
TDDC74 Programmering, abstraktion och modellering DUGGA 2
AID-nummer: Datum: 2011-02-18 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Fredag 18 feb 2011
TDDC74 Programmering, abstraktion och modellering DUGGA 1
AID-nummer: Datum: 2011-02-04 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 1 Fredag 4 feb 14-16
TDDC74 Programmering, abstraktion och modellering DUGGA 3
1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 3 Torsdag 4 mars 2010 kl 8-10 Namn: Personnummer:
TDDC74 Lab 02 Listor, sammansatta strukturer
TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare
TDDC74 Lab 04 Muterbara strukturer, omgivningar
TDDC74 Lab 04 Muterbara strukturer, omgivningar 1 Översikt I den här laborationen kommer ni att lära er mer om: Tillstånd, och skillnader mellan ren funktionell programmering och imperativ. Skillnaden
TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum:
TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Skriv tydligt så att inte dina lösningar missförstås. Använd väl valda namn på parametrar och indentera din kod. Även om det i
TDDC74 Programmering, abstraktion och modellering DUGGA 2
1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Torsdag 19 feb 2009 8-10 Namn: Personnummer:
Tentamen i. TDDC67 Funktionell programmering och Lisp
1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering
Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.
Tentamen Programmeringsteknik II 2014-0-27 Skrivtid: 0800 100 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg
Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python)
Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken
n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean?
Tidigare TDDC74 Programming: Abstraktion och modellering Föreläsning 4 Symboler, Par, Listor Representation av par, Grafisk notation för par Representation av listor mha par Typiska listhanteringsprocedurer
Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv.
Strömmar (streams) De sista dagarna objekt med tillstånd modellerades som beräkningsobjekt med tillstånd. Isådana modeller är tiden modelerad (implicit) som en sekvens av tillstånd. För att kunna modellera
Datalogi, grundkurs 1 Övningsuppgifter i Scheme. Serafim Dahl, Carina Edlund, m.fl.
Datalogi, grundkurs 1 Övningsuppgifter i Scheme Serafim Dahl, Carina Edlund, m.fl. Hösten 2004 Datalogi, grundkurs 1, hösten 2002 1 1. Vad blir det för resultat vid beräkningen av följande Scheme-uttryck.
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python TDDE24 Funktionell och imperativ programmering del 2
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python TDDE24 Funktionell och imperativ programmering del 2 Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok,
Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
Idag: Par och listor. Scheme. DA2001 (Föreläsning 6) Datalogi 1 Hösten / 29
Idag: Par och listor DA2001 (Föreläsning 6) Datalogi 1 Hösten 2010 1 / 29 Idag: Par och listor Hur hanterar man icke-numeriska problem? DA2001 (Föreläsning 6) Datalogi 1 Hösten 2010 1 / 29 Idag: Par och
Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv.
Idag: Par och listor Symboler Hur hanterar man icke-numeriska problem? Hur hanterar man en samling av data? Hur konstruerar man sammansatta datastrukturer? Bra om du har läst följande avsnitt i AS: Pair
Börja med att kopiera källkoden till din scheme-katalog (som du skapade i Laboration 1).
Laboration 3 Grafiska figurer I den här laborationen skall du konstruera ett schemeprogram som kan rita rektanglar, punkter, cirklar, linjer och bilder som består utav en eller flera av nyss nämnda figurer.
Grundläggande programmering med C# 7,5 högskolepoäng
Grundläggande programmering med C# 7,5 högskolepoäng Provmoment: TEN1 Ladokkod: NGC011 Tentamen ges för: Omtentamen DE13, IMIT13 och SYST13 samt öppen för alla (Ifylles av student) (Ifylles av student)
TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017
FÖRELÄSNING 1 TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 Introduktion till kursen Schemespråkets grunder Enkla exempel Jalal Maleki Institutionen för datavetenskap Linköpings universitet
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
TDDC74 FÖRELÄSNING 9 ANDERS MÄRAK LEFFLER IDA/HCS
TDDC74 FÖRELÄSNING 9 ANDERS MÄRAK LEFFLER IDA/HCS 180226 Idag (ADT), OOP i Racket, labb 5 2 Allmän info Duggan. Laboration 4 deadline. Planering framöver Muddy cards (nästa timme) 3 Lite repetition ADT
BEGREPP HITTILLS FÖRELÄSNING 2 SAMMANSATTA UTTRYCK - SCHEME DATORSPRÅK
FÖRELÄSNING 2 Viss repetition av Fö1 Rekursivt fallanalys Rekursiva beskrivningar BEGREPP HITTILLS Konstant, Namn, Procedur/Funktion, LAMBDA, Parameter, Argument, Kropp, Villkor/Rekursion, Funktionsanrop,
Det finns en referensbok (Java) hos vakten som du får gå fram och läsa men inte ta tillbaka till bänken.
Tentamen Programmeringsteknik I 2015-03-19 Skrivtid: 14:00 19:00 Hjälpmedel: Java-bok Tänk på följande Det finns en referensbok (Java) hos vakten som du får gå fram och läsa men inte ta tillbaka till bänken.
Dagens föreläsning. Diverse Common Lisp. Konstanter, parametrar, globala variabler
21-1-2 1 Dagens föreläsning Hur fungerar ett Lisp system intern struktur av symbolen, tal, listan pekare - delade strukturer - eq minneshantering fri lista - sophämtning/garbage collection stack Diverse
FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION
FÖRELÄSNING 2, TDDC74, VT2018 Begrepp och definitioner (delvis från föreläsning 1) Fallanalys som problemlösningsmetod Rekursivt fallanalys Rekursiva beskrivningar och processer de kan skapa Rekursiva
C++ Funktioner 1. int summa( int a, int b) //funktionshuvud { return a+b; //funktionskropp } Värmdö Gymnasium Programmering B ++ Datainstitutionen
C++ Funktioner 1 Teori När programmen blir större och mer komplicerade är det bra att kunna dela upp programmet i olika delar som gör specifika saker, vilket kan göra programmet mer lättläst. Ett sätt
DD1361 Programmeringsparadigm. Carina Edlund
DD1361 Programmeringsparadigm Carina Edlund carina@nada.kth.se Funktionell programmering Grundidéen med funktionell programmering är att härma matematiken och dess funktionsbegrepp. Matematiskt funktionsbegrepp
Tentamen i Grundläggande Programvaruutveckling, TDA548
Tentamen i Grundläggande Programvaruutveckling, Joachim von Hacht/Magnus Myreen Datum: 2017-08-14 Tid: 14.00-18.00 Hjälpmedel: Lexikon Engelskt-Valfritt språk. Betygsgränser: U: -23 3: 24-37 4: 38-47 5
Tentamen i. TDDA 69 Data och programstrukturer
1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDA 69 Data och programstrukturer Torsdag den 14 januari 2009, kl 14-18 Hjälpmedel: Inga. Poänggränser: Maximalt
Programmering II (ID1019)
ID1019 Johan Montelius Instruktioner Betyg Programmering II (ID1019) 2019-03-08 Svaren skall lämnas på dessa sidor, använd det utrymme som nns under varje uppgift för att skriva ner ditt svar (inte på
Procedurer och villkor. Rekursiva procedurer. Exempel: n-fakultet
Procedurer och villkor Rekursiva procedurer (define lessorequal (lambda (x y) (or (< x y) (= x y)))) (define between (lambda (x y z) (and (lessorequal x y) (lessorequal y z)))) > (between 3 4 5) #t > (between
Programmering II (ID1019) :00-17:00
ID1019 Johan Montelius Programmering II (ID1019) 2014-03-10 14:00-17:00 Förnamn: Efternamn: Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.
Procedurer och villkor
Procedurer och villkor (define lessorequal (lambda (x y) (or (< x y) (= x y)))) (define between (lambda (x y z) (and (lessorequal x y) (lessorequal y z)))) > (between 3 4 5) #t > (between 3 2 5) #f DA2001
Dagens föreläsning Programmering i Lisp Fö 5
Anders Haraldsson 1 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.3) - Iteratorer - Egenskaper
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.) - Iteratorer
OBJEKTORIENTERAD PROGRAMVARUUTVECKLING
Institutionen för Data- och informationsteknik TENTAMEN OBJEKTORIENTERAD PROGRAMVARUUTVECKLING OBS! Det kan finnas kurser med samma eller liknande namn på olika utbildningslinjer. Denna tentamen gäller
HI1024 Programmering, grundkurs TEN
HI1024 Programmering, grundkurs TEN2 2016-12-22 KTH STH Flemingsberg 8.15-13.00 Tillåtna hjälpmedel: Kursboken C PROGRAMMING A Modern Approach K. N. King helt utan anteckningar Alternativt C från början
DELPROV 1 I DATAVETENSKAP
Umeå Universitet Datavetenskap Marie Nordström 070502 DELPROV 1 I DATAVETENSKAP Uppgift (poäng) 1 () 2 () 3 () 4 () 5 () 6 () Summa (xx) Inlämnad Poäng Kurs : Datum : 070502 Namn (texta) : Personnummer
Funktioner. Linda Mannila
Funktioner Linda Mannila 13.11.2007 Vad kan vi nu? Primitiva datatyper Tal, strängar, booleska värden Samlingsdatatyp Listan Utskrift Indata Felhantering Intro till funktioner och moduler Villkorssatsen
Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper
Tentamen Programmeringsteknik I 2018-03-16 Skrivtid: 8:00 13:00 Tänk på följande Skriv läsligt. Använd inte rödpenna. Skriv bara på framsidan av varje papper. Lägg uppgifterna i ordning. Skriv uppgiftsnummer
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
ger rötterna till ekvationen x 2 + px + q = 0.
KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip
Classes och Interfaces, Objects och References Objekt-orienterad programmering och design (DIT952) Niklas Broberg, 2016
Classes och Interfaces, Objects och References Objekt-orienterad programmering och design (DIT952) Niklas Broberg, 2016 Abstract class En abstract class är en class som inte kan skapa några objekt. Syfte:
HI1024 Programmering, grundkurs TEN
HI1024 Programmering, grundkurs TEN2 2016-01-09 KTH STH Haninge 8.15-13.00 Tillåtna hjälpmedel: En A4 handskriven på ena sidan med egna anteckningar Kursboken C PROGRAMMING A Modern Approach K. N. King
kl Tentaupplägg
Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer
Tentamen, EDAA10 Programmering i Java
LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, EDAA10 Programmering i Java 2019 08 21, 08.00 13.00 Anvisningar: Preliminärt ger uppgifterna 25 + 15 + 5 = 45 poäng. För godkänt betyg
Classes och Interfaces, Objects och References, Initialization
Classes och Interfaces, Objects och References, Initialization Objekt-orienterad programmering och design (DIT953) Niklas Broberg/Johannes Åman Pohjola, 2018 Abstract class En abstract class är en class
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
Omtentamen för TDA540 Objektorienterad Programmering. Institutionen för Datavetenskap CTH HT-17, TDA540. Dag: , Tid:
Omtentamen för TDA540 Objektorienterad Programmering Institutionen för Datavetenskap CTH HT-17, TDA540 Dag: 2018-08-30, Tid: 14.00-18.00 Ansvarig: Examinator: Alex Gerdes Carlo A. Furia Förfrågningar:
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
Tentamen i. för D1 m fl, även distanskursen. fredag 13 januari 2012
1 of 6 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Programmering grundkurs och Programmering C för D1 m fl, även distanskursen
Tentamen *:58/ID100V Programmering i C Exempel 3
DSV Tentamen *:58/ID100V Sid 1(5) Tentamen *:58/ID100V Programmering i C Exempel 3 Denna tentamen består av fyra uppgifter som tillsammans kan de ge maximalt 22 poäng. För godkänt resultat krävs minst
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Fiktiv Tentamen Lösningsförslag och kommentarer 1. Lösningsförslaget nedan förutsätter ingenting om filens innehåll och är alltså mer generell än nödvändigt: alfa= ABCDEFGHIJKLMNOPQRSTUVWXYZÅÄÖ
Tentamen Grundläggande programmering
Akademin för Innovation Design och Teknik Tentamen Grundläggande programmering Kurskod: DVA103 Datum 2012-06-11 Tid 14.10 16.30 Examinator: Lars Asplund Maxpoäng: 48 Betygsgränser: Betyg 3: 20 Betyg 4:
Outline. Objektorienterad Programmering (TDDC77) Att instansiera en klass. Objekt. Instansiering. Åtkomst. Abstrakt datatyp.
Objektorienterad Programmering (TDDC77) Föreläsning X: Klass diagram, inkapsling, arv Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2017 Att instansiera en klass Objekt I Man instansierar (skapar
TDDC77 Objektorienterad Programmering
TDDC77 Objektorienterad Programmering Föreläsning 5 Sahand Sadjadee IDA, Linköpings Universitet Hösttermin 2018 Outline Arrayer Metoder Räckvidd och Livslängd Arrayer Vända om inlästa värdena Vända om
Förra gången: Primitiva data
Förra gången: Primitiva data > 30 30 > 45.56 45.56 Variabler: > (define telnr 6000) > telnr 6000 DA2001 (Föreläsning 3) Datalogi 1 Hösten 2013 1 / 24 Förra gången: Procedurapplikation: > (+ 7900000 telnr)
Datalogi, grundkurs 1. Lösningsförslag till tentamen
Datalogi, grundkurs 1 Lösningsförslag till tentamen 10 december 2008 1. a. Man testar med typiska värden, gränsvärden och värden utanför specificerad indatavärdemängd. Helst med alla permutationer av
International Olympiad in Informatics 2011 22 29 July 2011, Pattaya City, Thailand Tävlingsuppgifter Dag 2 Svenska 1.3. Papegojor
Papegojor Yanee är fågelentusiast. Sedan hon läst om IP over Avian Carriers (IPoAC), har hon spenderat mycket tid med att träna en flock papegojor att leverera meddelanden över långa avstånd. Yanees dröm
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Programmera i C Varför programmera i C när det finns språk som Simula och Pascal??
Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? C är ett språk på relativt låg nivå vilket gör det möjligt att konstruera effektiva kompilatorer, samt att komma nära
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna
DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
Övning från förra gången: readword
(9 september 2010 T4.1 ) Övning från förra gången: readword /** readword.c * * int readword(char w[], int n) { * * Läser tecken tills en bokstav påträffas. * Läser och lagrar sedan högst n-1 bokstäver
Tillämpad Programmering (ID1218) :00-13:00
ID1218 Johan Montelius Tillämpad Programmering (ID1218) 2014-03-13 09:00-13:00 Förnamn: Efternamn: Regler Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
HI1024 Programmering, grundkurs TEN2 2015-10-30
HI1024 Programmering, grundkurs TEN2 2015-10-30 KTH STH Haninge 8.15-13.00 Tillåtna hjälpmedel: En A4 handskriven på ena sidan med egna anteckningar Kursboken C PROGRAMMING A Modern Approach K. N. King