TDDC74 - Lektionsmaterial C

Storlek: px
Starta visningen från sidan:

Download "TDDC74 - Lektionsmaterial C"

Transkript

1 TDDC74 - Lektionsmaterial C Lektioner innehåller uppgifter av varierande slag. En del är mer diskussionsartade, andra mer experimentella. Ni behöver inte lämna in eller visa upp lösningarna på dessa för att bli klara med labbserien. Däremot är det en god idé att arbeta med dem för att få öva, och för att få en djupare förståelse för hur språk[et] kan fungera. De flesta övningarna här är inte tänkta som individuell mängdträning eller att öva in mönster. Vissa kan vara lite klurigare och kräva en stunds tänkande. Ni förväntas inte ha gjort klart allt under passet. I detta lektionsmaterial kommer du att utforska hur bindningar och scope fungerar i Racket (liksom många andra språk) analysera hur lexical closures kan användas för att skapa objekt. hantera strukturer som vi kan ändra inuti. översätta mellan olika rekursiva modeller, och översätta till en mer imperativ programmeringsstil. 1 Procedurobjekt och scopes Uppgift Vi ges följande kod: (define name "Hugo") (define (switch! new-name) (if (eqv? new-name "GOOD") (set! name "GROOTIUS") (set! name "Nah"))) 1

2 (define (change-name! name) (if (eqv? name "GOOD") (set! name "Troll") (set! name "Nah"))) Vad borde name ha för värde efter att (switch! "GOOD") evaluerats? Vad borde name ha för värde efter att (change-name! "GOOD") evaluerats? Skriv ned din förutsägelse, och testa. Varför ser det ut som det gör? Om du vill kan du rita ett omgivningsdiagram för att förklara detta för dig själv. Uppgift Vi skriver in uttrycken nedan (utan att evaluera dem): (define phil "Socrates") (define (run f phil) (printf "In run, phil=~a.~n" phil ) (f)) (define (g) (printf "In g, phil=~a.~n" phil) phil) (define run-retval (run g "Popper")) Vad förväntar du dig kommer att skrivas ut när vi kör koden (och i vilken ordning?)? Vad skrevs faktiskt ut? Varför? Vad förväntar du dig att run-retval ska ha för värde? Vilket värde fick det? Uppgift Vi börjar nu bygga med lexical closures, där vi buntar ihop omgivningar (med lokala bindningar) med procedurer som når dem. Betrakta följande kod: (define (make-animal name) (lambda args 2

3 (cond [(null? args) (printf "Hello, I am ~a~n" name)] [(eqv? (car args) change-name!) (set! name (cadr args))] [else (printf "What?~n")]))) Lista ut svaren nedan, tillsammans med klasskamrater: a) Vad gör den? Vilket sorts värde returneras från make-animal? Symbol? Sträng? Funktion? Siffra? Osv. b) Vad kan man använda returvärdet till? Hur fungerar det? c) Om vi utför följande steg, vilka är returvärdena (eller utskrifterna)? > (define ox (make-animal "Tom J")) > ox ;; just to see what kind of value this is > (ox) > (ox change-name! "Thomas A") > (ox) d) Evaluera sedan följande (utan att ladda om så att ox-bindningen försvinner): > (define hedgehog (make-animal "Sonic")) > (hedgehog) > (hedgehog change-name! "Isaiah B") > (ox) ;; har ox ändrats? Notera att vi skapade ox och hedgehog på samma sätt. Varför påverkar inte de båda change-name! -anropen varandra, så att t ex ox presenterar sig själv som Isaiah B? Vi kommer att fortsätta detta arbete senare. 3

4 2 Muterbara strukturer I senare versioner av Scheme 1 finns det två sorts par. Dels immuterbara, som man inte kan ändra i, och muterbara. Muterbara cons-celler skapas med mcons (notera m:et). Man använder mcar, mcdr för att ta ut delarna. Om man vill ändra vad första elementet i ett muterbart par pekar på, använder man set-mcar! (och motsvarande för mcdr). Lägg till (require racket/mpair), så får du tillgång till funktioner som mlist, mlist?, mappend, mreverse, mmap. mmember. Skriv (print-as-expression #f) för att få läsbara listor i DrRacket. OBS I kursboken står det bara cons, set-car! och så vidare. Kom ihåg require-raden, lägg till ett m innan procedurnamnen ((m cons, set-m car!,... ) så fungerar det. Uppgift Vi evaluerar dessa uttryck i tur och ordning: (define *list* (mcons fir (mcons pine ()))) (set-mcar! *list* spruce) (define *new-list* (mcdr *list*)) (set-mcdr! (mcdr *list*) (mcons birch (mcons oak ()))) *new-list* *list* (eq? *new-list* *list*) (eq? *new-list* (mcdr *list*)) Rita box-pointer-diagram för att illustrera hur strukturerna skapas, namnges, och ändras efter varje nytt uttryck. Rita inte nya strukturer om det inte skapas något nytt (det vill säga, om något ändras i ett par, stryk över det som ändrats och skriv till det nya). Uppgift Vi skapar en procedur som tar ett muterbart par och ändrar det första elementet till siffran 1. Det ska fungera så här: > (require racket/mpair) 1 R 6 RS och framåt, inklusive Racket 4

5 > (define my-pair (mcons x y)) > my-pair { x. y } > (one-car! my-pair) > my-pair { 1. y } a) Vi försöker med detta: (define (one-car! p) (set! p (mcons 1 (mcdr p)))) Varför fungerar inte det? (testa exemplet ovan!) b) Skriv om one-car! så att den fungerar som den ska. Uppgift Vi vill skapa en procedur insert! som tar en muterbar lista (mlista) mlst som har något innehåll, ett element elem och en position pos (en siffra) och lägger in elementet efter den positionen i listan. Vi kan räkna med att pos inte ligger utanför listans gränser. Första elementet i listan har position 0. a) Rita upp ett par exempel på hur detta kommer att fungera. Exempelvis: hur ser mlistan {a b c d} ut som box-pointer-diagram? Om du ska lägga in talet efter position 2 i listan, vad behöver tillkomma? Vilken/vilka av pekarna kommer att behöva ändras? Rita ut förändringen i diagrammet (stryk och rita till pekare och annat som behövs). b) Vad skulle hända om vi behöver lägga in elementet sist i listan? c) Skriv en procedur add-after som tar en mcons-cell i listan och ett element, och lägger till elementet efter det nuvarande. > (require racket/mpair) > (define lst (mlist a b c)) > lst ; om jag glömt skriva print-as-expression (mcons a (mcons b (mcons c ()))) > (print-as-expression #f) > lst 5

6 {a b c} > (add-after lst 999) > lst {a 999 b c} > (define lst-2 (mlist x y z)) > (add-after (mcdr lst-2) 112) > lst-2 {x y 112 z} d) Skriv proceduren insert! enligt ovan. Så här ska den fungera: > (define my-mlist (mlist )) > my-mlist { } > (insert! my-mlist yo 2) > my-mlist {0 1 2 yo 3 4} 3 Iterativa procedurer och tilldelning Uppgift Nedan har vi en linjärrekursiv funktion merge som tar två sorterade listor, och returnerar en sorterad lista som innehåller elementen i listorna (i ordning). a) Översätt koden nedan till en rekursiv procedur som ger upphov till en iterativ process (annorlunda: som har en iterativ processlösning): (define (merge lst1 lst2) (cond [(null? lst1) lst2] [(null? lst2) lst1] [(< (car lst1) (car lst2)) (cons (car lst1) (merge (cdr lst1) lst2))] [else (cons (car lst2) (merge lst1 (cdr lst2)))])) 6

7 Som kontrollfråga: vad är det som säger att det inte är en iterativ processlösning redan? Du kan behöva en funktion i stil med add-last (som lägger till element sist i en lista). Det är också tillåtet att använda den inbyggda funktionen reverse. b) Översätt den till en iterativ procedur där vi istället för att passa med värden som förändras som parametrar 2 har lokala bindningar som vi uppdaterar med hjälp av set!. 4 Lexical closures II Uppgift Vi fortsätter make-animal-uppgiften ovan med att bygga ett objekt som hänvisar till andra objekt. En slags behållare. Det är helt OK att snegla på koden för make-animal! e) Definiera en procedur make-farm som fungerar som en behållare för olika djur enligt nedan: > (define oldmcdonalds (make-farm)) > oldmcdonalds #<procedure> > (define kolmarden (make-farm)) > (oldmcdonalds add-animal! (make-animal "Niccolo the Fox")) > (oldmcdonalds add-animal! (make-animal "Teenage Mutant Zeno Turtle")) > (oldmcdonalds) Presenting: Hello, I am Teenage Mutant Zeno Turtle Hello, I am Niccolo the Fox > (kolmarden) ;; inga djur tillagda här Presenting: > (oldmcdonalds animals) ;; returnera lista med själva djuren (#<procedure> #<procedure> #<procedure>) Fall som detta ska inte bli något problem: 2 Som man t ex passade med summan-hittills i sum-iter till exempel 7

8 > (define maxwell (make-animal "Maxwell the Demon")) > (oldmcdonalds add-animal! maxwell) > (kolmarden add-animal! maxwell) > (oldmcdonalds) Presenting: Hello, I am Maxwell the Demon Hello, I am Teenage Mutant Zeno Turtle Hello, I am Niccolo the Fox > (kolmarden) Presenting: Hello, I am Maxwell the Demon Ett par tips: Ett strategiskt placerat define (eller let) är användbart för att skapa lokala bindningar som bara gäller för just den funktion som vi skapar. (Varför vill man inte placera det innanför (lambda args...)?) Det finns en procedur for-each 3 som kan göra att du slipper skriva lite kod. 3 Leta på Se snabblänkarna i vänsterspalten, ON THIS PAGE:. 8

TDDC74 Lab 04 Muterbara strukturer, omgivningar

TDDC74 Lab 04 Muterbara strukturer, omgivningar TDDC74 Lab 04 Muterbara strukturer, omgivningar 1 Översikt I den här laborationen kommer ni att lära er mer om: Tillstånd, och skillnader mellan ren funktionell programmering och imperativ. Skillnaden

Läs mer

TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18

TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2011-08-17 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Onsdag 17 augusti

Läs mer

TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 2015, kl 8 12

TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 2015, kl 8 12 TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 29 augusti 215, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.

Läs mer

TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014

TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014 TDDC74 Programmering: Abstraktion och modellering Tenta, kl 14 18, 11 juni 2014 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016

TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016 TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 8 10, 7 april 2016 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte ordnade i någon

Läs mer

TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18

TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18 TDDC74 Programmering: Abstraktion och modellering Datortenta - 2018-06-07, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2011-06-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Fredag 10 juni

Läs mer

TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 08-12

TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 08-12 TDDC74 Programmering: Abstraktion och modellering Datortenta - 2019-05-27, kl 08-12 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 17-19

TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 17-19 TDDC74 Programmering: Abstraktion och modellering Dugga 2, 2017-04-06, kl 17-19 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i

Läs mer

Lösningsförslag. TDDC74 Programmering: Abstraktion och modellering. Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum:

Lösningsförslag. TDDC74 Programmering: Abstraktion och modellering. Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum: Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum: 2013-03-12 Lösningsförslag Dugga 3 (provkod TEN1), Tid: kl 14-16, Datum: 2013-03- 12 Läs alla frågorna först och bestäm dig för den ordning som passar dig

Läs mer

TDDC74 Lab 02 Listor, sammansatta strukturer

TDDC74 Lab 02 Listor, sammansatta strukturer TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare

Läs mer

TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel

TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel TDDC74 Programmering: Abstraktion och modellering Datordugga 2 - exempel Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015

TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015 TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd

Läs mer

TDDC74 Programmering: Abstraktion och modellering. Provkod TEN1, Tid: kl 14-18, , Kåra

TDDC74 Programmering: Abstraktion och modellering. Provkod TEN1, Tid: kl 14-18, , Kåra Tentamen Provkod TEN1, Tid: kl 14-18, 2013-06- 07, Kåra Läs alla frågorna först och bestäm dig för den ordning som passar dig bäst. Även om det i uppgi;en står a< du skall skriva en procedur/funk?on, så

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 3

TDDC74 Programmering, abstraktion och modellering DUGGA 3 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 3 Torsdag 4 mars 2010 kl 8-10 Namn: Personnummer:

Läs mer

TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12

TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12 TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 14-16

TDDC74 Programmering: Abstraktion och modellering Dugga 2, , kl 14-16 TDDC74 Programmering: Abstraktion och modellering Dugga 2, 207-04-06, kl 4-6 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2012-01-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 10 januari

Läs mer

n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean?

n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean? Tidigare TDDC74 Programming: Abstraktion och modellering Föreläsning 4 Symboler, Par, Listor Representation av par, Grafisk notation för par Representation av listor mha par Typiska listhanteringsprocedurer

Läs mer

TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl 14 18

TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl 14 18 TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 19 oktober 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 2

TDDC74 Programmering, abstraktion och modellering DUGGA 2 AID-nummer: Datum: 2011-02-18 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Fredag 18 feb 2011

Läs mer

TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18

TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18 TDDC74 Programmering: Abstraktion och modellering Datortenta - 017-10-7, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis

Läs mer

TDDC74 Programmering: Abstraktion och modellering Datortenta

TDDC74 Programmering: Abstraktion och modellering Datortenta TDDC74 Programmering: Abstraktion och modellering Datortenta - 2017-08-26 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.

Läs mer

Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)

Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c) Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa

Läs mer

Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv.

Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv. Idag: Par och listor Symboler Hur hanterar man icke-numeriska problem? Hur hanterar man en samling av data? Hur konstruerar man sammansatta datastrukturer? Bra om du har läst följande avsnitt i AS: Pair

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum:

TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum: TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Skriv tydligt så att inte dina lösningar missförstås. Använd väl valda namn på parametrar och indentera din kod. Även om det i

Läs mer

Idag: Par och listor. Scheme. DA2001 (Föreläsning 6) Datalogi 1 Hösten / 29

Idag: Par och listor. Scheme. DA2001 (Föreläsning 6) Datalogi 1 Hösten / 29 Idag: Par och listor DA2001 (Föreläsning 6) Datalogi 1 Hösten 2010 1 / 29 Idag: Par och listor Hur hanterar man icke-numeriska problem? DA2001 (Föreläsning 6) Datalogi 1 Hösten 2010 1 / 29 Idag: Par och

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015

TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd

Läs mer

TDDC74 FÖRELÄSNING 9 ANDERS MÄRAK LEFFLER IDA/HCS

TDDC74 FÖRELÄSNING 9 ANDERS MÄRAK LEFFLER IDA/HCS TDDC74 FÖRELÄSNING 9 ANDERS MÄRAK LEFFLER IDA/HCS 180226 Idag (ADT), OOP i Racket, labb 5 2 Allmän info Duggan. Laboration 4 deadline. Planering framöver Muddy cards (nästa timme) 3 Lite repetition ADT

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer

Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv.

Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv. Strömmar (streams) De sista dagarna objekt med tillstånd modellerades som beräkningsobjekt med tillstånd. Isådana modeller är tiden modelerad (implicit) som en sekvens av tillstånd. För att kunna modellera

Läs mer

Ändringsbar (mutable compound) data. TDDC74 Programmering: abstraktion och modellering. Sätta - samman listor kopiering. Hitta sista cons-cellen

Ändringsbar (mutable compound) data. TDDC74 Programmering: abstraktion och modellering. Sätta - samman listor kopiering. Hitta sista cons-cellen TDDC74 Programmering: abstraktion och modellering Ändringsbar (mutable comound) data Att göra strukturförändringar i listor Ändra car- och cdr-ekare SICP 3 (del ) Föreläsning 8 Anders Haraldsson (set-car!

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 3 mars 2016

TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 3 mars 2016 TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 3 mars 2016 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte ornade i någon

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 2

TDDC74 Programmering, abstraktion och modellering DUGGA 2 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Torsdag 19 feb 2009 8-10 Namn: Personnummer:

Läs mer

Dagens föreläsning Programmering i Lisp. - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning

Dagens föreläsning Programmering i Lisp. - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning 1 Dagens föreläsning Programmering i Lisp - Block, räckvidd - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch

Läs mer

Datalogi, grundkurs 1

Datalogi, grundkurs 1 Datalogi, grundkurs 1 Tentamen 10 december 2008 konverterad till Python Hjälpmedel: Kommer att finnas i skrivsalarna, bl.a. Revised 6 Report on the Algorithmic Language Scheme och två olika s.k. Cheat

Läs mer

Datalogi, grundkurs 1. Lösningsförslag till tentamen

Datalogi, grundkurs 1. Lösningsförslag till tentamen Datalogi, grundkurs 1 Lösningsförslag till tentamen 10 december 2008 1. a. Man testar med typiska värden, gränsvärden och värden utanför specificerad indatavärdemängd. Helst med alla permutationer av

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 1, kl 14-16

TDDC74 Programmering: Abstraktion och modellering Dugga 1, kl 14-16 TDDC74 Programmering: Abstraktion och modellering Dugga 1, 2017-02-22 kl 14-16 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i

Läs mer

Föreläsning 9 Exempel

Föreläsning 9 Exempel Föreläsning 9 Exempel Intervallhalveringsmetoden DA2001 (Föreläsning 9) Datalogi 1 Hösten 2013 1 / 24 Föreläsning 9 Exempel Intervallhalveringsmetoden Newton-Raphsons metod DA2001 (Föreläsning 9) Datalogi

Läs mer

Rekursiva algoritmer sortering sökning mönstermatchning

Rekursiva algoritmer sortering sökning mönstermatchning Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell

Läs mer

Föreläsning 9 Exempel. Intervallhalveringsmetoden. Intervallhalveringsmetoden... Intervallhalveringsmetoden...

Föreläsning 9 Exempel. Intervallhalveringsmetoden. Intervallhalveringsmetoden... Intervallhalveringsmetoden... Föreläsning 9 Intervallhalveringsmetoden Intervallhalveringsmetoden Newton-Raphsons metod Mer om rekursion Tidskomplexitet Procedurabstraktion Representation Bra om ni läst följande avsnitt i AS: Procedures

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 1 2 - Block, räckvidd Dagens föreläsning Programmering i Lisp - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch

Läs mer

Datalogi, grundkurs 1

Datalogi, grundkurs 1 Datalogi, grundkurs 1 Fiktiv Tentamen Lösningsförslag och kommentarer 1. Lösningsförslaget nedan förutsätter ingenting om filens innehåll och är alltså mer generell än nödvändigt: alfa= ABCDEFGHIJKLMNOPQRSTUVWXYZÅÄÖ

Läs mer

Idag: Dataabstraktion

Idag: Dataabstraktion Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? DA2001 (Föreläsning 7) Datalogi 1 Hösten 2013 1 / 16 Idag: Dataabstraktion Hur använder

Läs mer

Objektorienterad programmering i Racket

Objektorienterad programmering i Racket Objektorienterad programmering i Racket Rasmus Andersson lätt utökat av Anders M. L. Februari 2016 Innehåll 1 1 Inledning Detta kompendium är skrivet som en resurs för kursen TDDC74 Programmering - abstraktion

Läs mer

Imperativ programmering. Imperativ programmering konstruktioner i Lisp. Datastrukturer (kap ) arraystruktur poststruktur

Imperativ programmering. Imperativ programmering konstruktioner i Lisp. Datastrukturer (kap ) arraystruktur poststruktur Imperativ programmering konstruktioner i Lisp Imperativ programmering I den imperativa programmeringen skriver vi program satsvist. Datastrukturer (kap.-.) aystruktur poststruktur Iterativa uttryck (avs.)

Läs mer

TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017

TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 FÖRELÄSNING 1 TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 Introduktion till kursen Schemespråkets grunder Enkla exempel Jalal Maleki Institutionen för datavetenskap Linköpings universitet

Läs mer

Dagens föreläsning. Diverse Common Lisp. Konstanter, parametrar, globala variabler

Dagens föreläsning. Diverse Common Lisp. Konstanter, parametrar, globala variabler 21-1-2 1 Dagens föreläsning Hur fungerar ett Lisp system intern struktur av symbolen, tal, listan pekare - delade strukturer - eq minneshantering fri lista - sophämtning/garbage collection stack Diverse

Läs mer

Objektorienterad programmering i Racket

Objektorienterad programmering i Racket Objektorienterad programmering i Racket Rasmus Andersson och Anders M. L. Mars 2017 Ursprungligt utkast av R.A. inför kursen 2015. Innehåll 1 Inledning 2 1.1 Vad detta är, och inte är......................................

Läs mer

Dagens föreläsning Programmering i Lisp Fö 5

Dagens föreläsning Programmering i Lisp Fö 5 Anders Haraldsson 1 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.3) - Iteratorer - Egenskaper

Läs mer

Tentamen i. TDDA 69 Data och programstrukturer

Tentamen i. TDDA 69 Data och programstrukturer 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDA 69 Data och programstrukturer Torsdag den 14 januari 2009, kl 14-18 Hjälpmedel: Inga. Poänggränser: Maximalt

Läs mer

I dag: Blockstruktur, omgivningar, problemlösning

I dag: Blockstruktur, omgivningar, problemlösning Förra gången Förra gången: Rekursiva procedurer I dag I dag: Blockstruktur, omgivningar, problemlösning (define add-1 (define add-2 (lambda (a b) (lambda (a b) (if (= a 0) (if (= a 0) b b (+ 1 (add-1 (add-2

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga

TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga TDDC74 Programmering: Abstraktion och modellering Dugga 1, exempeldugga Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis i svårighetsordning.

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2 Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.) - Iteratorer

Läs mer

Funktionell programmering DD1361

Funktionell programmering DD1361 Funktionell programmering DD1361 Tupler Två eller fler (men ändligt) antal element. Elementen kan vara av olika typer. Ex: (1,2) :: (Integer, Integer) (( 2, hejsan ), True) ::? Tupel med två element ->

Läs mer

Symbolisk data. quote. (define a 1) (define b 2) (jacek johan david) (list a b)

Symbolisk data. quote. (define a 1) (define b 2) (jacek johan david) (list a b) Symbolisk data (1 2 3 4) (a b c d) (jacek johan david) ((jacek "jacek@cs.lth.se") (johan "johang@cs.lth.se") (david "dat99dpe@ludat.lth.se")) ((anna 13) (per 11) (klas 9) (eva 4)) (+ (* 23 4) (/ y x))

Läs mer

Börja med att kopiera källkoden till din scheme-katalog (som du skapade i Laboration 1).

Börja med att kopiera källkoden till din scheme-katalog (som du skapade i Laboration 1). Laboration 3 Grafiska figurer I den här laborationen skall du konstruera ett schemeprogram som kan rita rektanglar, punkter, cirklar, linjer och bilder som består utav en eller flera av nyss nämnda figurer.

Läs mer

FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION

FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION FÖRELÄSNING 2, TDDC74, VT2018 Begrepp och definitioner (delvis från föreläsning 1) Fallanalys som problemlösningsmetod Rekursivt fallanalys Rekursiva beskrivningar och processer de kan skapa Rekursiva

Läs mer

Några saker till och lite om snabbare sortering

Några saker till och lite om snabbare sortering Några saker till och lite om snabbare sortering Generellt om avbrott Generera avbrott Snabb sortering principer Snabb sortering i Scheme och Python QuickSort (dela städat slå ihop) Mergesort (dela slå

Läs mer

BEGREPP HITTILLS FÖRELÄSNING 2 SAMMANSATTA UTTRYCK - SCHEME DATORSPRÅK

BEGREPP HITTILLS FÖRELÄSNING 2 SAMMANSATTA UTTRYCK - SCHEME DATORSPRÅK FÖRELÄSNING 2 Viss repetition av Fö1 Rekursivt fallanalys Rekursiva beskrivningar BEGREPP HITTILLS Konstant, Namn, Procedur/Funktion, LAMBDA, Parameter, Argument, Kropp, Villkor/Rekursion, Funktionsanrop,

Läs mer

Datalogi, grundkurs 1 Övningsuppgifter i Scheme. Serafim Dahl, Carina Edlund, m.fl.

Datalogi, grundkurs 1 Övningsuppgifter i Scheme. Serafim Dahl, Carina Edlund, m.fl. Datalogi, grundkurs 1 Övningsuppgifter i Scheme Serafim Dahl, Carina Edlund, m.fl. Hösten 2004 Datalogi, grundkurs 1, hösten 2002 1 1. Vad blir det för resultat vid beräkningen av följande Scheme-uttryck.

Läs mer

Institutionen för datavetenskap, DAT060, Laboration 2 2 För denna enkla simulerings skull kommer handen att representeras som ett par tal μ värdet på

Institutionen för datavetenskap, DAT060, Laboration 2 2 För denna enkla simulerings skull kommer handen att representeras som ett par tal μ värdet på DAT 060 Laboration 2 I Malmös kasino Institutionen för datavetenskap 17 juni 2002 Per tänkte dryga ut sitt magra studielån genom att jobba som labbassistent på sommarkursen. Tyvärr fanns det redan tillräckligt

Läs mer

FÖRELÄSNING 1 PERSONAL TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 SYFTE EXAMINATION ORGANISATION

FÖRELÄSNING 1 PERSONAL TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 SYFTE EXAMINATION ORGANISATION TDDC74 PROGRAMMERING: ABSTRAKTION OCH MODELLERING VT 2017 Jalal Maleki Institutionen för datavetenskap Linköpings universitet jalal.maleki@liu.se FÖRELÄSNING 1 Introduktion till kursen Schemespråkets grunder

Läs mer

Datalogi, grundkurs 1. Lösningsförslag till tentamen

Datalogi, grundkurs 1. Lösningsförslag till tentamen Datalogi, grundkurs 1 Lösningsförslag till tentamen 6 maj 2000 1. För att proceduren sortera ska fungera som tänkt kan den se ut på följande sätt: const min = 1; max = 3; type tal = integer; index = min..max;

Läs mer

Lära dig analysera större och mer komplicerade problem och formulera lösningar innan du implementerar.

Lära dig analysera större och mer komplicerade problem och formulera lösningar innan du implementerar. Laboration 5 Mängder Syfte Lära dig analysera större och mer komplicerade problem och formulera lösningar innan du implementerar. Lära dig kombinera på ett lämpligt sätt de begrepp och metoder som du har

Läs mer

Användarhandledning Version 1.2

Användarhandledning Version 1.2 Användarhandledning Version 1.2 Innehåll Bakgrund... 2 Börja programmera i Xtat... 3 Allmänna tips... 3 Grunderna... 3 Kommentarer i språket... 4 Variabler... 4 Matematik... 5 Arrayer... 5 på skärmen...

Läs mer

Procedurer och villkor. Rekursiva procedurer. Exempel: n-fakultet

Procedurer och villkor. Rekursiva procedurer. Exempel: n-fakultet Procedurer och villkor Rekursiva procedurer (define lessorequal (lambda (x y) (or (< x y) (= x y)))) (define between (lambda (x y z) (and (lessorequal x y) (lessorequal y z)))) > (between 3 4 5) #t > (between

Läs mer

Procedurer och villkor

Procedurer och villkor Procedurer och villkor (define lessorequal (lambda (x y) (or (< x y) (= x y)))) (define between (lambda (x y z) (and (lessorequal x y) (lessorequal y z)))) > (between 3 4 5) #t > (between 3 2 5) #f DA2001

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 1

TDDC74 Programmering, abstraktion och modellering DUGGA 1 AID-nummer: Datum: 2011-02-04 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 1 Fredag 4 feb 14-16

Läs mer

Föreläsning 6: Metoder och fält (arrays)

Föreläsning 6: Metoder och fält (arrays) TDA 545: Objektorienterad programmering Föreläsning 6: Metoder och fält (arrays) Magnus Myréen Chalmers, läsperiod 1, 2015-2016 I (föregående och) denna föreläsning Läsanvisning: kap 2 & 13 meddelanden

Läs mer

Våra enkla funktioner eller procedurer

Våra enkla funktioner eller procedurer Föreläsning 3 Våra enkla funktioner eller procedurer Programmönster 1. Repetition 2. Högre-ordningens procedurer/programmönster - Procedurer som argument - Procedurer som returnerade värden 3. Scope och

Läs mer

Tentamen i Introduktion till programmering

Tentamen i Introduktion till programmering Tentamen i Introduktion till programmering Kurskod: Skrivtid: D0009E 09:00-13:00 (4 timmar) Totalt antal uppgifter: 7 Totalt antal poäng: 38 Tentamensdatum: 2014-05-17 Jourhavande lärare: Tillåtna hjälpmedel:

Läs mer

Uppgift 6A - Frekvenstabell

Uppgift 6A - Frekvenstabell Uppgift 6A - Frekvenstabell (defstruct par element antal) (defun unika-element (lista) (reduce #'(lambda (x y) (if (listp x) (if (find y x) x (cons y x)) (if (eq x y) x (list x y)))) lista)) (defun sortera-tabell

Läs mer

Imperativ och Funktionell Programmering i Python #TDDD73. Fredrik Heintz,

Imperativ och Funktionell Programmering i Python #TDDD73. Fredrik Heintz, Imperativ och Funktionell Programmering i Python #TDDD73 Fredrik Heintz, IDA fredrik.heintz@liu.se @FredrikHeintz Översikt Repetition: Satser och uttryck Variabler, datatyper, synlighet och skuggning Upprepning,

Läs mer

Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista

Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista Sökning och sortering Sökning och sortering - definitioner Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man

Läs mer

Sökning och sortering

Sökning och sortering Sökning och sortering Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data och många sökningar måste

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn D0017E Inledande programmering för ingenjörer Datum 2014-10-31 Material Tentamen Kursexaminator Betygsgränser Tentamenspoäng 3 14; 4??; 5?? 25/25

Läs mer

Agenda. Arrayer deklaration, åtkomst Makron Flerdimensionella arrayer Initiering Strängar Funktioner och arrayer. Övningar nu och då

Agenda. Arrayer deklaration, åtkomst Makron Flerdimensionella arrayer Initiering Strängar Funktioner och arrayer. Övningar nu och då Agenda Arrayer deklaration, åtkomst Makron Flerdimensionella arrayer Initiering Strängar Funktioner och arrayer Övningar nu och då 1 Motivering I de flesta problem ingår att hantera multipla data I de

Läs mer

Sökning i ordnad lista. Sökning och sortering. Sökning med vaktpost i oordnad lista

Sökning i ordnad lista. Sökning och sortering. Sökning med vaktpost i oordnad lista Sökning och sortering Sökning i oordnad lista Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data

Läs mer

TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15

TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15 TENTAMEN I PROGRAMSPRÅK -- DVG C01 140605 kl. 08:15-13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition Betygsgräns: Kurs: Max 60p, Med beröm godkänd 50p, Icke utan beröm godkänd

Läs mer

Språket Scheme. DAT 060: Introduktion till (funktions)programmering. DrScheme. uttryck. Jacek Malec m. fl. evaluering av uttryck.

Språket Scheme. DAT 060: Introduktion till (funktions)programmering. DrScheme. uttryck. Jacek Malec m. fl. evaluering av uttryck. DAT 060: Introduktion till (funktions)programmering. Jacek Malec m. fl. www.cs.lth.se/home/jacek Malec/dat060 Idag: 1. Kursens innehåll 2. Kursens organisation 3. Programmeringsspråket Scheme 4. Introduktion

Läs mer

Programmering II (ID1019) :00-11:00

Programmering II (ID1019) :00-11:00 ID1019 Johan Montelius Programmering II (ID1019) 2015-06-11 08:00-11:00 Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten. Svaren

Läs mer

Förra gången: Primitiva data

Förra gången: Primitiva data Förra gången: Primitiva data > 30 30 > 45.56 45.56 Variabler: > (define telnr 6000) > telnr 6000 DA2001 (Föreläsning 3) Datalogi 1 Hösten 2013 1 / 24 Förra gången: Procedurapplikation: > (+ 7900000 telnr)

Läs mer

Idag: Dataabstraktion

Idag: Dataabstraktion Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Planering Programmering grundkurs HI1024 HT TIDAA

Planering Programmering grundkurs HI1024 HT TIDAA Planering Programmering grundkurs HI1024 HT 2016 - TIDAA Föreläsning V35 Föreläsning 1 Programmering Kurs-PM Programmeringsmiljö Hello World! Variabler printf scanf Föreläsning 2 Operatorer Tilldelning

Läs mer

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga. Tentamen Programmeringsteknik II 2014-0-27 Skrivtid: 0800 100 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg

Läs mer

Typsystem. Typsystem... Typsystem... Typsystem... 2 *

Typsystem. Typsystem... Typsystem... Typsystem... 2 * Typsystem Typsystem finns i alla programmeringsspråk. Avsikten med typsystem är att kontrollera att uttryck är säkra i den bemärkelsen att innebörden i operanderna är klar och inte är motsägelsefull och

Läs mer

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254 Rekursion Rekursion är en grundläggande programmeringsteknik M h a rekursion kan vissa problem lösas på ett mycket elegant sätt Avsnitt 11 i kursboken: Att tänka rekursivt Att programmera rekursivt i Java

Läs mer

Modularitet och tillstånd. Stora system kräver en uppdelning. En lösning: modularitet. Basera programmets struktur på den fysiska systemets struktur:

Modularitet och tillstånd. Stora system kräver en uppdelning. En lösning: modularitet. Basera programmets struktur på den fysiska systemets struktur: Modularitet och tillstånd Stora system kräver en uppdelning. En lösning: modularitet Basera programmets struktur på den fysiska systemets struktur: En fysisk objekt en beräkningsobjekt Ett agerande en

Läs mer

if (n==null) { return null; } else { return new Node(n.data, copy(n.next));

if (n==null) { return null; } else { return new Node(n.data, copy(n.next)); Inledning I bilagor finns ett antal mer eller mindre ofullständiga klasser. Klassen List innehåller några grundläggande komponenter för att skapa och hantera enkellänkade listor av heltal. Listorna hålls

Läs mer

Typsystem. DA2001 (Föreläsning 23) Datalogi 1 Hösten / 19

Typsystem. DA2001 (Föreläsning 23) Datalogi 1 Hösten / 19 Typsystem Typsystem finns i alla programmeringsspråk. Avsikten med typsystem är att kontrollera att uttryck är säkra i den bemärkelsen att innebörden i operanderna är klar och inte är motsägelsefull och

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 229 PHP Hypertext Preprocessor Scriptspråk på serversidan Innebär att webbservern översätter php-scripten innan sidan skickas till webbläsaren,

Läs mer

Tentamen i Grundläggande Programvaruutveckling, TDA548

Tentamen i Grundläggande Programvaruutveckling, TDA548 Tentamen i Grundläggande Programvaruutveckling, Joachim von Hacht/Magnus Myreen Datum: 2017-08-14 Tid: 14.00-18.00 Hjälpmedel: Lexikon Engelskt-Valfritt språk. Betygsgränser: U: -23 3: 24-37 4: 38-47 5

Läs mer

Instuderingsfrågor, del D

Instuderingsfrågor, del D Uppgift 1. Instuderingsfrågor, del D Objektorienterad programmering, Z1 I vilka av nedanstående problem behöver man använda sig av fält för att få en elegant lösning? I vilka problem är det är det onödigt/olämpligt

Läs mer

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python TDDE24 Funktionell och imperativ programmering del 2

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python TDDE24 Funktionell och imperativ programmering del 2 Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python TDDE24 Funktionell och imperativ programmering del 2 Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok,

Läs mer

Deklarationer/definitioner/specifikationer

Deklarationer/definitioner/specifikationer Deklarationer/definitioner/specifikationer Konstantdefinitioner innebär att ett namn binds och sätts att referera till ett värde som beräknas vid kompileringen/interpreteringen och som under programmets

Läs mer