Sökning i ordnad lista. Sökning och sortering. Sökning med vaktpost i oordnad lista
|
|
- Andreas Ivarsson
- för 6 år sedan
- Visningar:
Transkript
1 Sökning och sortering Sökning i oordnad lista Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data och många sökningar måste man fundera över hur man organiserar sina data Riktigt stora mängder data organiseras i specialapplikationer som kallas databaser (en annan kurs) Vi tittar på det mest grundläggande, leta i mindre datamängder, sortera mindre datamängder för snabbare sökning För att förenkla resonemanget tittar vi på numeriska data som vi organiserar på enklast möjliga sätt, i listor Normalt så letar vi i listor med poster i någon form där en informationsbärande enhet är ett nyckelvärde och posten innehåller mer information, t.ex: { pnr : , förnamn : Sten, efternamn : Smart,...} där den självklara nyckeln är pnr while idx < last and location == None: DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 Sökning med vaktpost i oordnad lista Sökning i ordnad lista Man kan använda sig av ett trick för att förenkla villkoren i slingan. Man låter det finnas en extra plats (sista platsen + 1) där man lagrar det man söker. Då kan man söka utan att kolla index, man hittar ju senast på sista platsen. Man kallar det för att använda vaktpost (sentinel): lista.append(nyckel) while location == None: if location < last: while idx < last and location == None and lista[idx] <= nyckel: if location!= None and nyckel == lista[location]: Om listan är ordnad behöver vi inte söka igenom hela listan. Elementen i listan är i stigande ordning. DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19
2 Sökning med vaktpost i ordnad lista Sökning i sorterad lista binärsökning Även här kan man använda vaktpost men då blir det krångligare villkor för träff: Om vi söker i en sorterad indexerbar lista kan vi söka på ett smartare sätt: lista.append(nyckel) while location == None and lista[idx] <= nyckel: if location!= None and location < last and \ nyckel == lista[location]: Intervallhalveringsmetoden kallas vid sökning för binärsökning. 1. mitten = (vänster + höger) // 2 2. om nyckel < lista[mitten] så höger = mitten annars vänster = mitten 3. Om vänster < höger så fortsätt från 1 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 Binärsökning Sortering vänster = 0 höger = len(lista) - 1 while vänster < höger: mitten = (vänster + höger + 1) // 2 if nyckel < lista[mitten]: höger = mitten - 1 vänster = mitten if lista[vänster] == nyckel: return vänster Så gott som varje program innehåller delar för att sortera data Om vi söker ofta i våra data och om vi har mycket data blir sortering viktig Eftersom sortering är ett vanligt och tidskrävande moment i bearbetningen har mycket arbete lagts ner på att ta fram bra metoder Vi skall titta på tre enkla (långsamma) metoder. DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19
3 Urvalssortering Urvalssortering i Python 1. Sök reda på minsta elementet 2. Byt första och minsta elementen med varandra 3. Om det finns fler element: Sortera resten med samma metod def urvalssortering(lista): for i in range(len(lista)-1): m = i for j in range(i + 1, len(lista)): if lista[j] < lista[m]: m = j lista[i], lista[m] = lista[m], lista[i] DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 Urvalssortering i Scheme Utbytessortering 1. Gå igenom listan, jämför grannar och byt om de står fel 2. Sista elementet står rätt, räkna bort! 3. Om det finns fler element: Sortera med samma metod. (define (selection-sort lista) (define (sort lista sorterad-lista) (if (null? lista) sorterad-lista (let ((min (find-min (cdr lista) (car lista)))) (sort (delete min lista) (append sorterad-lista (list min)))))) (sort lista ())) DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19
4 Utbytessortering (bubbelsortering) Bättre utbytessortering def utbytessortering(lista): for i in range(len(lista), 1, -1): for j in range(i-1): if lista[j] > lista[j+1]: lista[j], lista[j+1] = lista[j+1], lista[j] Metoden kan förbättras genom att man avbryter om man inte utfört något byte under ett pass. def utbytessortering(lista): for i in range(len(lista), 1, -1): ready = True for j in range(i-1): if lista[j] > lista[j+1]: lista[j], lista[j+1] = lista[j+1], lista[j] ready = False if ready: break DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 Insättningssortering Insättningssortering 1. Betrakta listan som en redan sorterad del och en osorterad del. 2. Så länge den osorterade delen inte är tom ta ett tal ur den osorterade delen och sortera in i den sorterade delen def insättningssortering(lista): for i in range(len(lista)): j = i-1 key = lista[i] while (lista[j] > key) and (j >= 0): lista[j+1] = lista[j] j -= 1 lista[j+1] = key DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19
5 Insättningssortering i Scheme Hur bra är det här? I scheme blir det så här: (define (insertion-sort lista) (define (sortin element lista) (cond ((null? lista) (list element)) ((< element (car lista)) (cons element lista)) (else (cons (car lista) (sortin element (cdr lista)))))) (define (iter-sort lista elements) (if (null? elements) lista (iter-sort (sortin (car elements) lista) (cdr elements)))) (iter-sort () lista)) Metoderna fungerar lika bra för alla typer av element. Ev måste man definiera egna motsvarigheter till >, < och = men i övrigt som förut. Alla tre metoderna består av dubbelloop för jämförelse och flyttning av element. För varje element med index 1 i n För varje element i j n <operationer på listan> (n i + 1) = n Finns det bättre metoder? i + 1 = n 2 n n n = n2 2 + n 2 = O(n2 ) DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19 Enkel analys a<b a<c b<c c<b a<b a<c a<b b c a c<b a b a<c går inte c a<b a<c b går inte a<b<c Ja! Mer om det senare DA2001 (Föreläsning 17) Datalogi 1 Hösten / 19
Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista
Sökning och sortering Sökning och sortering - definitioner Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man
Sökning och sortering
Sökning och sortering Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data och många sökningar måste
Några saker till och lite om snabbare sortering
Några saker till och lite om snabbare sortering Generellt om avbrott Generera avbrott Snabb sortering principer Snabb sortering i Scheme och Python QuickSort (dela städat slå ihop) Mergesort (dela slå
Föreläsning 9 Exempel
Föreläsning 9 Exempel Intervallhalveringsmetoden DA2001 (Föreläsning 9) Datalogi 1 Hösten 2013 1 / 24 Föreläsning 9 Exempel Intervallhalveringsmetoden Newton-Raphsons metod DA2001 (Föreläsning 9) Datalogi
Hashing Bakom kulisserna på Pythons dictionary
Hashing Bakom kulisserna på Pythons dictionary Innehåll Några förenklingar Leta i listor Olika ideer om hashing I python förr Och nu DA2001 (Föreläsning 20) Datalogi 1 Hösten 2018 1 / 32 Några förenklingar
Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv.
Idag: Par och listor Symboler Hur hanterar man icke-numeriska problem? Hur hanterar man en samling av data? Hur konstruerar man sammansatta datastrukturer? Bra om du har läst följande avsnitt i AS: Pair
Föreläsning 9 Exempel. Intervallhalveringsmetoden. Intervallhalveringsmetoden... Intervallhalveringsmetoden...
Föreläsning 9 Intervallhalveringsmetoden Intervallhalveringsmetoden Newton-Raphsons metod Mer om rekursion Tidskomplexitet Procedurabstraktion Representation Bra om ni läst följande avsnitt i AS: Procedures
Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden
Sortering Brute-force Sortering Ordna element enligt relation mellan nyckelvärden Flera olika algoritmer med olika fördelar Brute-force Gå igenom alla permutationer och hitta den där elementen ligger i
Idag: Par och listor. Scheme. DA2001 (Föreläsning 6) Datalogi 1 Hösten / 29
Idag: Par och listor DA2001 (Föreläsning 6) Datalogi 1 Hösten 2010 1 / 29 Idag: Par och listor Hur hanterar man icke-numeriska problem? DA2001 (Föreläsning 6) Datalogi 1 Hösten 2010 1 / 29 Idag: Par och
Hashing Bakom kulisserna på Pythons dictionary
Hashing Bakom kulisserna på Pythons dictionary Innehåll Några förenklingar Olika ideer om hashing I python förr Och nu DA2001 (Föreläsning 20) Datalogi 1 Hösten 2018 1 / 32 Några förenklingar I början
Hashing Bakom kulisserna på Pythons dictionary. Leta i listor Osorterade listor. Leta i listor Sorterade listor
Hashing Bakom kulisserna på Pythons dictionary Några förenklingar I början av den här diskussionen kommer jag titta enbart på listor som innehåller numeriska värden. Innehåll Några förenklingar Olika ideer
Sökning. Viktiga algoritmer sökning och sortering. Sökning i en oordnad tabell:
Viktiga algoritmer sökng och sorterg När man sparar data (formation) gör man det alltid utifrån något behov av att senare använda det man har sparat. Det kan ju vara av juridiska krav på dokumentation
TDDC74 Lab 02 Listor, sammansatta strukturer
TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Tentamen 10 december 2008 konverterad till Python Hjälpmedel: Kommer att finnas i skrivsalarna, bl.a. Revised 6 Report on the Algorithmic Language Scheme och två olika s.k. Cheat
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Fiktiv Tentamen Lösningsförslag och kommentarer 1. Lösningsförslaget nedan förutsätter ingenting om filens innehåll och är alltså mer generell än nödvändigt: alfa= ABCDEFGHIJKLMNOPQRSTUVWXYZÅÄÖ
Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)
Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa
Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem
Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från
Python. Vi har ofta behov av att behandla datastrukturer på ett enhetligt sätt så att vi kan göra samma sak i flera olika program.
Moduler Vi har ofta behov av att behandla datastrukturer på ett enhetligt sätt så att vi kan göra samma sak i flera olika program. Vi har också ofta behov av att skapa överblick i våra program. Som ett
Föreläsning REPETITION & EXTENTA
Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder
n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean?
Tidigare TDDC74 Programming: Abstraktion och modellering Föreläsning 4 Symboler, Par, Listor Representation av par, Grafisk notation för par Representation av listor mha par Typiska listhanteringsprocedurer
Datalogi, grundkurs 1. Lösningsförslag till tentamen
Datalogi, grundkurs 1 Lösningsförslag till tentamen 6 maj 2000 1. För att proceduren sortera ska fungera som tänkt kan den se ut på följande sätt: const min = 1; max = 3; type tal = integer; index = min..max;
Erfarenheter från labben
Erfarenheter från labben Bra Jobbat! Lite ont om plats... Parprogrammering? Skillnad mellan program och funktion! Skillnad mellan uttryck och kommando! Välj bra variabelnamn! Vad göra om det blir fel?
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
GOTO och lägen. Några saker till och lite om snabbare sortering. GOTO och lägen (3) GOTO och lägen (2)
Några saker till och lite om snabbare sortering GOTO och lägen GOTO hemskt eller ett måste? CASE enkla val över diskreta värdemängder Snabb sortering principer Snabb sortering i Scheme och Pascal QuickSort
Rekursiva algoritmer sortering sökning mönstermatchning
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell
Datalogi, grundkurs 1. Lösningsförslag till tentamen
Datalogi, grundkurs 1 Lösningsförslag till tentamen 10 december 2008 1. a. Man testar med typiska värden, gränsvärden och värden utanför specificerad indatavärdemängd. Helst med alla permutationer av
Några saker till och lite om snabbare sortering
Några saker till och lite om snabbare sortering GOTO hemskt eller ett måste? CASE enkla val över diskreta värdemängder Snabb sortering principer Snabb sortering i Scheme och Pascal QuickSort (dela städat
Föreläsning ALGORITMER: SÖKNING, REGISTRERING, SORTERING
Föreläsning 11 12 ALGORITMER: SÖKNING, REGISTRERING, SORTERING Seminarier: Fredagsklubben för dig som tycker att programmering är svårt (0 eller möjligen 1 poäng på delmålskontrollen) inte avsedda för
Fredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
SORTERING OCH SÖKNING
Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm
F9 - Polymorfism. ID1004 Objektorienterad programmering Fredrik Kilander
F9 - Polymorfism ID1004 Objektorienterad programmering Fredrik Kilander fki@kth.se Polymorfism - flerformighet Vi vet vad metoden heter (signaturen) Men vi vet inte vid anropet exakt vilken metod som faktiskt
Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek
Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt
Grundläggande datalogi - Övning 4
Grundläggande datalogi - Övning 4 Björn Terelius November 21, 2008 Definitioner Olika mått på komplexitet Definition En funktion f sägs vara O(g) om det existerar konstanter c, N så att f (n) < cg(n) för
Tenta i Grundläggande programmering DD klockan
Tenta i Grundläggande programmering DD1331 2017-10-20 klockan 14.00 16.00 Marcus Dicander, KTH CST Tillåtna hjälpmedel: En Pythonbok, skrivmaterial, mat, medicin och vattenflaska. Otillåtna hjälpmedel:
Föreläsning 5 Innehåll
Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2012-01-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 10 januari
Datalogi för E Övning 3
Datalogi för E Övning 3 Mikael Huss hussm@nada.kth.se AlbaNova, Roslagstullsbacken 35 08-790 62 26 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1343/datae06 Dagens program Att skapa egna
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Symbolisk data. quote. (define a 1) (define b 2) (jacek johan david) (list a b)
Symbolisk data (1 2 3 4) (a b c d) (jacek johan david) ((jacek "jacek@cs.lth.se") (johan "johang@cs.lth.se") (david "dat99dpe@ludat.lth.se")) ((anna 13) (per 11) (klas 9) (eva 4)) (+ (* 23 4) (/ y x))
Föreläsningsanteckningar, Introduktion till datavetenskap HT S4 Datastrukturer. Tobias Wrigstad
1 Datatyper Tobias Wrigstad Det finns flera olika typer av (slags) data Olika datatyper har olika egenskaper. T.ex. är ett personnummer inte ett tal. (Den sista siffran skall stämma enligt den s.k. Luhnalgoritmen
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
KTH, NADA, Vahid Mosavat. 1. Flervalsfrågor (5p)
KTH, NADA, Vahid Mosavat 2D1343, TENTAMEN I DATALOGI FÖR ELEKTRO Onsdagen den 31 mars 2004 kl 8-13 Maxpoäng: tenta+bonus = 50+7. Betygsgränser: 25 poäng ger trea, 35 ger fyra, 45 ger femma. Otydliga/svårlästa
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 HT 2017 1 / 38 Sortering Varför
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering
Föreläsning 11 Innehåll
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Programmering för språkteknologer II, HT2014. Rum
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer
Dagens föreläsning Programmering i Lisp Fö 5
Anders Haraldsson 1 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.3) - Iteratorer - Egenskaper
Föreläsning 6: Introduktion av listor
Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
Idag: Dataabstraktion
Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? DA2001 (Föreläsning 7) Datalogi 1 Hösten 2013 1 / 16 Idag: Dataabstraktion Hur använder
Problemlösning och algoritmer
Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-06-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Fredag 10 juni
Ordnad lista. Listor... Ordnad lista... Ordnad lista typer
Listor... Ordnad lista Hur blir det om man skall sätta in och ta ut mitt i listan? Hur blir det om vi förutom referenser framåt också har referenser bakåt? Kan vi tänka oss annan organisation än linjära
Sätt att skriva ut binärträd
Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015
TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd
Föreläsning 13. Rekursion
Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Funktionell programmering DD1361
Funktionell programmering DD1361 Tupler Två eller fler (men ändligt) antal element. Elementen kan vara av olika typer. Ex: (1,2) :: (Integer, Integer) (( 2, hejsan ), True) ::? Tupel med två element ->
Lösningsförslag till exempeltenta 1
Lösningsförslag till exempeltenta 1 1 1. Beskriv hur binärsökning fungerar. Beskriv dess pseudokod och förklara så klart som möjligt hur den fungerar. 2 Uppgift 1 - Lösning Huvudidé: - Titta på datan i
Grundläggande Datalogi
s delar Grundläggande Datalogi s delar s delar s delar Dataabstraktion Rekursion Algoritmanalys s delar Sortering Trädstrukturer Grafalgoritmer Optimering Stavning Strängmatchning Datakompression Versionshantering
TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum:
TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Skriv tydligt så att inte dina lösningar missförstås. Använd väl valda namn på parametrar och indentera din kod. Även om det i
Föreläsning 18 Filer och avbildningar
Föreläsning 18 Filer och avbildningar Grundkurs i programmering Jan Lönnberg Institutionen för datateknik -universitetets högskola för teknikvetenskaper 15.11.2011 Avbildningar Hur skulle du göra en: Ordlista
Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.) - Iteratorer
DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011
DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Repetition i Python 3. Exemplen fac. Exemplen fac motivering. Exemplen fac i Python
Repetition i Python 3 Exemplen fac Orginalet I Scheme använde vi rekursion för all slags repetition. Efterom Scheme är ett funktionellt språk återsänder alla språkkonstruktioner ett värde men i Python
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Tentamen 9 dec 2014 Tillåtna hjälpmedel: Revised 6 Report on the Algorithmic Language Scheme och Tre olika s.k. Cheat Sheets för Scheme Sex olika s.k. Cheat Sheets för Python Tänk
Laboration: Whitebox- och blackboxtesting
Tilda11 höstterminen 2011 Laboration: Whitebox- och blackboxtesting Mål med laborationen Du ska lära dig begreppen white-box testing och black-box testing Du ska öva dig på att konstruera testfall Du ska
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 VT 2018 1 / 40 Sortering Varför
TDDC74 Programmering: Abstraktion och modellering. Provkod TEN1, Tid: kl 14-18, , Kåra
Tentamen Provkod TEN1, Tid: kl 14-18, 2013-06- 07, Kåra Läs alla frågorna först och bestäm dig för den ordning som passar dig bäst. Även om det i uppgi;en står a< du skall skriva en procedur/funk?on, så
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Hashtabeller! (& kanske lite sortering)
Datalogiövning 24/1 2007 Hashtabeller! (& kanske lite sortering) Allmänt om hashtabeller: Snabb lösning för sökningar, O(1). Man lagrar par av nycklar och värden. En hashfunktion beräknar ur nyckeln ett
Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering
2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Övning 4. Hashning, sortering, prioritetskö, bästaförstsökning. Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen?
Per Sedholm DD1320 (tilda12) 2012-09-20 Övning 4 Hashning, sortering, prioritetskö, bästaförstsökning 1. Perfekt hashfunktion Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen? Vi
Saker du ska kunna Föreläsning 13 & 14
Saker du ska kunna Föreläsning 13 & 14 LISTOR Ta bort element från en vektor Både sorterad och osorterad Söka upp element i en vektor Linjärsökning räcker (jag har även visat binärsökning) Registrering
Föreläsning 10 Datalogi 1 DA2001. Utskrift på skärmen. Syntax. print( Hej ) Hur är det? Hej. print( Hej,end= ) print( Hur är det? ) HejHur är det?
Föreläsning 10 Datalogi 1 DA2001 python introduktion Variabler Datatyp Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer på skärmen print( Hej ) print( Hur är det?
Övningsuppgifter #11, Programkonstruktion och datastrukturer
Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari
Deklarationer/definitioner/specifikationer
Deklarationer/definitioner/specifikationer Konstantdefinitioner innebär att ett namn binds och sätts att referera till ett värde som beräknas vid kompileringen/interpreteringen och som under programmets
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Ändringsbar (mutable compound) data. TDDC74 Programmering: abstraktion och modellering. Sätta - samman listor kopiering. Hitta sista cons-cellen
TDDC74 Programmering: abstraktion och modellering Ändringsbar (mutable comound) data Att göra strukturförändringar i listor Ändra car- och cdr-ekare SICP 3 (del ) Föreläsning 8 Anders Haraldsson (set-car!
7 Programmeringsteknik
7 Programmeringsteknik Att skriva ett program innebär att man skriver en plan för hur bearbetningen av data ska utföras. Vilken typ av data och vilken typ av bearbetning, som ska göras, ska vara bestämt
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Exempeltenta GruDat 2002/2003
Exempeltenta GruDat 2002/2003 Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ ger noll poäng på uppgiften. Obs: Den riktiga tentan kommer
Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet
Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter
Träd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
1 Standardalgoritmer. 1.1 Swap. 1.2 Sök minsta värdet i en array
1 Standardalgoritmer En algoritm är en beskrivning av en metod för att låsa någon uppgift. Man specificerar indata och utdata. Indatat ges av metodargument och utdata ges som regel av returtypen. 1.1 Swap
Måndag 13 mars 2017 kl Rita en KMP-automat för CAMCORDERCAMERA samt ange next-vektorn.
KTH CSC, Alexander Baltatzis DD1320/1325 TENTAMEN I TILLÄMPAD DATALOGI Måndag 13 mars 2017 kl 14 18 Hjälpmedel: Fem handskrivna formelblad. För betyg E krävs att alla E-uppgifter är godkända (upp till
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 2018-06-07, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp