Finaltävling i Stockholm den 22 november 2008
|
|
- Leif Eklund
- för 8 år sedan
- Visningar:
Transkript
1 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella med fyrhörningens diagonaler, som har längderna d 1 och d Beräkna längden av rombens sida, uttryckt i d 1 och d Lösning: Vi betecknar fyrhörningens hörn med A, B, C, D och antar att BD = d 1 och AC = d Rombens hörn, betecknade E, F, G, H, ligger på sidorna AB, BC, CD, DA resp Sätt = AE och y = ED och låt rombens sida vara a (se figuren) A E y D F d1 d H a a B G C Enligt topptriangelsatsen är (topp)triangeln AF E likformig med triangeln ABD, vilket ger sambandet AE F E = AD BD + y = a d 1 På samma sätt är (topp)triangeln DEH likformig med triangeln DAC, vilket leder till sambandet DE DA = EH y AC + y = a d Summering av identiteterna ger + y + y + y = a + a varav a( d 1 d, ) = 1 och vi får d 1 d a = d 1d d 1 + d Anm Harmoniska medelvärdet av två positiva tal u och v definieras som H = 1 1 ( 1 u + 1 v ) Längden av sidan a är alltså lika med halva harmoniska medelvärdet av diagonalernas längder Kommentar Förutsättningen att fyrhörningen är konve innebär att varje punkt på diagonalen BD resp diagonalen AC, förutom de båda ändpunkterna, ligger i det inre av fyrhörningen Diagonalerna skär följaktligen varandra i det inre av fyrhörningen
2 Man kan fråga sig om det alltid är möjligt att inskriva en parallellogram och speciellt en romb på nämnt sätt i en konve fyrhörning Men detta följer av ovanstående, eftersom topptriangeln AF E delar triangeln ABD i samma förhållande som topptriangeln CHG delar triangeln CDB Motsvarande gäller för de båda återstående topptrianglarna, DEH och BGF Det betyder att om E, F, G, H är punkter på de fyra sidorna så att F E och GH är parallella med den ena diagonalen, BD, så är EH och F G parallella med den andra diagonalen, AC Problem Bestäm det minsta heltal n 3 med egenskapen att man kan välja två av talen 1,,, n på ett sådant sätt att deras produkt är lika med summan av de övriga n talen Vilka är de två talen? Lösning: Låt de valda talen vara a och b, där vi utan inskränkning kan anta att a < b Eftersom summan av talen 1,,, n är n(n+1), kan vi uttrycka det givna villkoret som ab = n(n+1) (a + b), dvs som Det gäller att ab + a + b = n(n+1) (a + 1)(b + 1) = n(n+1) + 1 (1) a + 1 < b + 1 n + 1 Vi ställer upp en tabell och hoppas på att finna en lösning för ett inte alltför stort värde på n Låt g(n) = n(n+1) + 1 och beräkna värdet av g(n) för n = 1,,, 15 : n: g(n): (Vi noterar att g(n) = g(n 1)+n, vilket underlättar uppställandet av tabellen) För att (1) ska vara uppfyllt måste g(n) 6 (= 3) Vidare får g(n) inte vara primtal och ska kunna skrivas som en produkt av två olika heltal som båda är n + 1 Om g(n) 4 kan vi dessutom utesluta n-värden för vilka g(n) = p, där p är ett primtal, p ty då gäller nämligen att n+1 = g(n) n+1 > n, varav p > n + 1 I tabellen kan vi således direkt utesluta g(n)-värden för alla n utom 5, 10, 13, 15 Men n = 5 är inte möjligt, eftersom vid faktoriseringen av g(5) = 16 varken 8 (ingen faktor fick vara större än n + 1) 4 4 (faktorerna fick inte vara lika) fungerar För n = 10 däremot har vi en tillåten faktorisering: 56 = 7 8, dvs de båda talen a och b i uppgiften måste vara 6 och 7 resp med produkten 4, vilket ju är lika med summan av de övriga åtta talen, = 4 För övriga faktoriseringar av 56 är (1) inte uppfyllt Vi har alltså funnit att det minsta möjliga n-värdet är 10 Svar: Det minsta värdet på n är 10 och de båda talen är 6 och 7 Problem 3 Funktionen f() har egenskapen att f() är väande för > 0 Visa att f() + f(y) f( + y), för alla, y > 0 Lösning: Vi antar här att > 0 och y > 0 Enligt förutsättningen är f() f( + y) + y så att f() f( + y) + y
3 På samma sätt får vi f(y) y f( + y) + y Om de båda sistnämnda olikheterna adderas, erhålls och olikheten är visad f() + f(y) ( + y + y ) f( + y) = f( + y), + y Problem 4 En konve n-hörning har vinklar v 1, v,, v n (i grader), där alla v k (k = 1,,, n) är positiva heltal delbara med 36 a) Bestäm det största n för vilket detta är möjligt b) Visa att om n > 5, så måste två av n-hörningens sidor vara parallella Lösning: a) Låt yttervinklarna till n-hörningen, angivna medurs från något starthörn A 1, vara u 1, u,, u n Eftersom yttervinklarna är supplementvinklar till vinklarna i n-hörningen, har vi u i = 180 v i, i = 1,,, n (se figuren) Enligt förutsättningarna är mätetalen för n-hörningens vinklar, och därmed också för yttervinklarna, delbara med 36 och vi kan skriva u i = 36k i, där k i är heltal, 1 k i 4 A 1 u n u 1 A n v 1 v n u u 3 A A 3 v v 3 v 4 A 4 u 4 Vinkelsumman i n-hörningen är 180(n ) (n-hörningen kan indelas i n deltrianglar), medan vinkelsumman för yttervinklarna är 180n 180(n ) = 360, oberoende av värdet på n (n 3) Det följer att 360 = n u i = i=1 n 36k i i=1 n 36 = 36n, varav n 10 Vi har likhet för n = 10 när alla k i = 1, dvs alla u i = 36 och alla v i = 144 b) En sida i n-hörningen är parallell med en annan sida om den sammanlagda vinkeländringen dem emellan är delbar med 180 I figuren gäller att vinkeländringarna från sidan A n A 1 till sidorna A 1 A, A A 3, A 3 A 4, är resp u 1, u 1 + u, u 1 + u + u 3, (vi har här valt att uttrycka vinkeländringarna via yttervinklarna) Vi ska visa att det för n 6 alltid finns två sidor som är parallella, dvs för vilka vinkeländringen dem emellan är delbar med 180 Eftersom u i = 36k i, där k i = 1,, 3, 4, kan vi alternativt uttrycka vinkelförändringar som k-värdesändringar och vi ska således visa att det alltid finns två sidor för vilka k-värdesändringen är delbar med 5 Låt S m = k 1 +k + +k m för m = 1,, n Om S m är delbart med 5 för något värde på m är det hela klart Förändringen mellan sidan A n A 1 och sidan A m A m+1 är då delbar med 5 och vinkeländringen dem emellan delbar med 180 Om inte, följer det av lådprincipen att minst två av S m -värdena (det finns åtminstone se sådana) måste i=1
4 ge samma rest vid division med 5 Låt dessa delsummor vara S i och S j, i < j Vi skriver detta som S i S j (mod 5) Men det medför att S j S i = k i+1 +k i+ + +k j är delbart med 5, vilket kan skrivas S j S i 0 (mod 5), dvs k-värdesändringen från sidan A i A i+1 till sidan A j A j+1 är delbar med 5 och följaktligen är vinkeländringen dem emellan delbar med 180 Nämnda sidor är således parallella och påståendet är visat Svar: a) n = 10 Problem 5 Anna och Örjan spelar följande spel: de börjar med ett positivt heltal n > 1 som Anna skriver som summan av två andra positiva heltal, n = n 1 +n Örjan stryker ett av dem, n 1 n Om det återstående talet är större än 1 upprepas processen, dvs Anna skriver det som summan av två positiva heltal, n 3 + n 4, Örjan stryker ett av dem etc Spelet slutar när det återstående talet är 1 Örjan är vinnare om det finns två lika tal bland de tal som han har strukit, annars vinner Anna Vem vinner spelet om n = 008 och båda två spelar optimalt? Lösning: Vi ska visa att Anna alltid kan vinna om n är en potens, medan Örjan alltid kan vinna för övrigt Eftersom 008 inte är en tvåpotens, vinner Örjan om båda spelar optimalt Betrakta först fallet att n är en tvåpotens, n = k för något heltal k I första steget skriver Anna n som summan av två lika tal, n 1 = n = k 1 och Örjan stryker det ena Om k 1 skriver Anna nästa gång n/ = k 1 åter som summan av två lika tal, n 3 = n 4 = k Spelet slutar så småningom med att Örjan stryker talet 1 och talet 1 återstår Vi ser att de tal som Örjan stryker alla är olika, k 1, k,,, 1, vilket innebär att Anna vinner Betrakta nu fallet att n är skilt från en tvåpotens Vi ska visa att i detta fall kan Örjan alltid se till att vinna oavsett hur Anna spelar Vi visar påståendet med induktion Beviset består av två steg: (i) Vi visar att påståendet är sant för n = 3 (ii) Låt n > 3 vara ett heltal som inte är en tvåpotens Antag att det för varje starttal m n 1 som inte är en tvåpotens gäller att Örjan alltid vinner om båda spelar optimalt (induktionsantagande) Vi ska visa att Örjan då alltid vinner om starttalet är n och båda spelar optimalt Steg (i) Om n = 3 kan Örjan alltid se till att han stryker talet 1 två gånger, vilket innebär vinst för honom Steg (ii) Låt alltså n > 3 vara ett heltal som inte är en tvåpotens Om Anna i det första draget skriver n, som summan av två olika tvåpotenser (nu kan de inte vara lika), väljer Örjan den mindre tvåpotensen Om Anna skriver det återstående talet som en summa av två lika tvåpotenser och använder denna strategi genomgående tills spelet tar slut, kommer den tvåpotens som Örjan strök första gången att dyka upp igen och Örjan vinner För att undvika detta tvingas Anna, innan detta sker, att skriva aktuellt tal som en summa av tal där högst ett av talen är en tvåpotens Men inte h detta kan rädda Anna från förlust som vi stra ska se (Vi kan notera att om Örjan inledde med att stryka talet 1, kan Anna inte förhindra att Örjan får möjlighet att stryka talet 1 ytterligare en gång) Om Anna i första draget skriver n som två olika tal, där bara det ena talet är en tvåpotens, stryker Örjan detta tal Om Anna skriver det första talet som summan av två tal av vilka ingen är en tvåpotens, stryker Örjan det mindre talet I båda fallen kommer Anna i nästa steg att dela upp ett tal < n, som inte är en tvåpotens (vi kan uppfatta detta som ett startläge) och Örjan vinner enligt induktionsantagandet
5 Svar: Om n inte är en tvåpotens kan Örjan alltid vinna I specialfallet n = 008 vinner alltså Örjan om båda spelar optimalt Problem 6 En uppdelning av talet 100 ges av ett positivt heltal n och n positiva heltal 1 < < < n sådana att n = 100 Bestäm det största möjliga värdet av produkten 1 n, då n, 1,,, n varierar bland alla uppdelningar av talet 100 Lösning: Varje positivt tal N har en uppdelning, då talet N i sig innebär en uppdelning med n = 1 Då varje tal N har högst ändligt många uppdelningar, finns det minst en uppdelning av N som ger maimal produkt Låt oss säga att en uppdelning av N är optimal om den ger en maimal produkt Låt X N = { 1,,, n } vara en optimal uppdelning av N, N = 1,,, och låt P N vara motsvarande maimala produkt Vi söker P 100, men låt oss först studera det allmänna problemet för godtyckligt N 1 Vi finner att P N = N för N = 1,, 3, 4 I fortsättningen antar vi att N 5 Då är (N ) > N, dvs för en optimal uppdelning måste n Vi betraktar först uppdelningar som kan visas vara icke-optimala Vi delar in sådana uppdelningar av N i följande fall: 1) En uppdelning X N för vilken det eisterar två heltal i, j / X N sådana att 1 < i < j < n, kan inte vara optimal Vi kan utan inskränkning anta att k = i 1 och l = j + 1 Om vi i uppdelningen X N ersätter k med k + 1 och l med l 1 får vi en uppdelning av N med större produkt, efterom ( k + 1)( l 1) = k l + ( l k ) 1 k l > k l ) En uppdelning X N för vilken 1 = 1 kan inte vara optimal Om vi nämligen ersätter 1 och n med n + 1 får vi en uppdelning med n 1 element och med större produkt, ty 1 n < n + 1 3) En uppdelning X N för vilken 1 > 4 kan inte vara optimal Om vi ersätter 1 med och 1 får vi en uppdelning med n + 1 element och med större produkt, då ( 1 ) = 1 + ( 1 4) > 1 4) En uppdelning X N för vilken 1 = 4 kan inte vara optimal Om vi ersätter 1 och med, 1 1 och 1 får vi en uppdelning med n + 1 element och med större produkt, eftersom ( 1 1)( 1) = 1 ( 1 + ) + = 1 + ( 1 )( ) > 1 5) En uppdelning X N för vilken 1 = 3 kan inte vara optimal om det eisterar ett heltal i / X N sådant att 1 < i < n 1 Vi kan utan inskränkning anta att i + X N Om vi ersätter i + med och i får vi en uppdelning med n + 1 element och med större produkt, då i i > i + För att en uppdelning X N ska vara optimal, kan inte något av fallen 1 5 gälla En optimal uppdelning står följaktligen att finna bland uppdelningar med följande egenskaper: a) Det gäller att 1 = och det finns eakt ett heltal i / X N sådant att < i < n
6 b) Det gäller att 1 = 3 och det finns eakt ett heltal i / X N sådant att 3 < i < n, där i så fall i = n 1 c) Det gäller att 1 = 1 = 3 och uppdelningen ges av talen i den aritmetiska talföljden i, i + 1,, n + i 1, där alltså i = i = 3 Några andra uppdelningar av N finns inte Den optimala uppdelningen måste följaktligen bestå av n element som är fördelade enligt: {i, i + 1,, k 1, k + 1,, n + i}, där i = i = 3 och där k antar något av värdena, 3,, n + i med de undantag som anges under b) Sätt l n = n + (n + 1) = n(n + 3), n =, 3, De möjliga maimal uppdelningarna med n element är Uppdelning Summa {, 3,, n, n + 1} l n {, 3,, n, n + } l n + 1 {, 3,, n 1, n + 1, n + } l n + {, 4,, n, n + 1, n + } l n + n 1 {3, 4,, n, n + 1, n + } l n + n {3, 4,, n, n + 1, n + 3} l n + n + 1 Det gäller att l n+1 = l n +n+ och vi observerar att varje heltal i intervallet [l n, l n+1 ) uppträder som summa eakt en gång och alltså är motsvarande uppdelning optimal för varje summatal Vi noterar nu att 100 [l 1, l 13 ) = [90, 104) Eftersom l 13 = 104 = får vi summan 100 om vi utesluter termen 4, varför den optimala uppdelningen för N = 100 är {, 3, 5, 6, 7, 8, 9, 10, 11, 1, 13, 14} med produkten 14! 4 = Svar: Den maimala produkten är 14! 4 = , vilken erhålles för uppdelningen {, 3, 5, 6, 7, 8, 9, 10, 11, 1, 13, 14}
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Kvalificeringstävling den 26 september 2017
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna
Finaltävling i Umeå den 18 november 2017
KOLORNA MATEMATIKTÄVLING venska matematikersamfundet Finaltävling i Umeå den 18 november 017 1. Ett visst spel för två spelare går till på följande sätt: Ett mynt placeras på den första rutan i en rad
Finaltävling i Lund den 19 november 2016
SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka
Kvalificeringstävling den 30 september 2014
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,
Finaltävling i Uppsala den 24 november 2018
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Finaltävling i Uppsala den 4 november 018 1. Låt ABCD vara en fyrhörning utan parallella sidor, som är inskriven i en cirkel. Låt P och Q vara skärningspunkterna
Sidor i boken 8-9, 90-93
Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta
c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC.
Lösningar till några övningar i geometri Kapitel 2 1. Formuleringen av övningen är tyvärr inte helt lyckad (jag ska ändra den till nästa upplaga, som borde ha kommit för länge sedan). Man måste tolka frågan
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Kongruens och likformighet
Kongruens och likformighet Torbjörn Tambour 23 mars 2015 I kompendiet har jag tagit kongruens- och likformighetsfallen mer eller mindre som axiom, vilket jag nu tycker är olyckligt, och de här sidorna
Lösningar till utvalda uppgifter i kapitel 5
Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist
Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Matematiska uppgifter
Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =
MVE365, Geometriproblem
Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..
Inlämningsuppgift, LMN100
Inlämningsuppgift, LMN100 Delkurs 3 Matematik Lösningar och kommentarer 1 Delbarhetsegenskaper (a) Påstående: Ett heltal är delbart med fyra om talet som bildas av de två sista siffrorna är delbart med
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Matematisk kommunikation för Π Problemsamling
Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan
Kvalificeringstävling den 28 september 2010
SKOLORNS MTEMTIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 28 september 2010 Förslag till lösningar Problem 1 En rektangel består av nio smårektanglar med areor (i m 2 ) enligt figur
Matematisk kommunikation för Π Problemsamling
Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och
i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n
Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså
.I Minkowskis gitterpunktssats
1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,
Delbarhet och primtal
Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda
Hela tal LCB 1999/2000
Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Arbeta vidare med Junior 2010
Arbeta vidare med Junior 010 Känguruproblemen är kanske inte av samma karaktär som de problem eleverna möter i läroboken. De är inga rutinuppgifter utan bygger på förståelse och grundläggande kunskaper.
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
Matematiska uppgifter
Elementa Årgång 69, 1986 Årgång 69, 1986 Första häftet 3420. Två ljus av samma längd är gjorda av olika material så att brinntiden är olika. Det ena brinner upp på tre timmar och det andra på fyra timmar.
Uppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006
Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 (Enligt "nytt format" : fler och lättare uppgifter jämfört med hittills rådande tradition se sid.5. Alla uppgifter värda lika mycket.) 1. Lös
INDUKTION OCH DEDUKTION
Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk
Några satser ur talteorin
Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan
Kvalificeringstävling den 29 september 2009
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 29 september 2009 Förslag till lösningar Problem Visa att talet 2009 kan skrivas som summan av 7 positiva heltal som endast
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Matematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet
Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd
1 Talteori. Det här kapitlet inleder vi med att ta
1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens
Lösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.
Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
Lite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Enklare uppgifter, avsedda för skolstadiet
Elementa Årgång 1, 198 Årgång 1, 198 Första häftet 97. Ett helt tal består av 6n siffror. I var och en av de på varandra följande grupperna av 6 siffror angiva de 3 första siffrorna samma tresiffriga tal
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
Föreläsning 5: Summor (forts) och induktionsbevis
ht01 Föreläsning 5: Summor (forts) och induktionsbevis Några viktiga summor Det är inte alltid möjligt att hitta uttryck för summor beskriva med summanotation, men vi tar här upp tre viktiga fall: Sats:
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
Kapitel 8 Ledtrådar. = 111 p, för något Låt det sista talet man behöver addera vara x. Det ger: positivt heltal p.
Kapitel 8 Ledtrådar 800 Testa för mindre tal där du lättare kan kontrollera resultatet, försök sedan föra över resonemanget på problem med betydligt större tal Du inser att efter det första omloppet är
KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y
KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Matematiska uppgifter
Elementa Årgång 65, 982 Årgång 65, 982 Första häftet 3260. På var och en av rutorna på ett schackbräde (med 8 rutor) ligger en papperslapp. Kan man flytta papperslapparna så att samtliga kommer att ligga
Arbeta vidare med aritmetik 2018
Arbeta vidare med aritmetik 2018 I det här materialet har vi samlat problem inom aritmetik från flera olika tävlingsklasser, från Ecolier till Student. Årtal Varje år förekommer det problem som utgår från
1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta
Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
Kompendium om. Mats Neymark
960L09 MATEMATIK FÖR SKOLAN, Lärarlftet 2009-02-24 Matematiska institutionen Linköpings universitet 1 Inledning Kompendium om KÄGELSNITT Mats Nemark Detta kompendium behandlar parabler, ellipser och hperbler
Övningshäfte 1: Induktion, rekursion och summor
LMA100 VT2006 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 1: Induktion, rekursion och summor Övning A 1. Kan ni fortsätta följden 1,3,5,7,9,11,...? 2. Vilket är det 7:e talet i följden? Vilket är det 184:e?
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n)
Uppsala Universitet Matematiska institutionen Isac Hedén Algebra I, 5 hp Sammanfattning av föreläsning 9. Kongruenser Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att
Explorativ övning Geometri
Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 8906 BESKRIVNING AV GODA SVAR Examensämnets censorsmöte har godkänt följande beskrivningar av goda svar Av en god prestation framgår det hur examinanden har kommit fram till
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Matematiska uppgifter
Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,
Enklare matematiska uppgifter
Elementa Årgång 30, 947 Årgång 30, 947 Första häftet 500. Om (x 0 ; y 0 ; z 0 ) är en lösning till systemet cos x + cos y + cos z = 0, sin x+sin y+sin z = 0, så äro (x 0 +y 0 ; y 0 +z 0 ; z 0 +x 0 ) och
4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.
Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två
Enklare matematiska uppgifter
Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan
5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor
5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift
Geometriska konstruktioner
Stockholms Matematiska Cirkel Geometriska konstruktioner Lisa Nicklasson Gustav Zickert Institutionen för matematik KTH och Matematiska institutionen Stockholms universitet 2017 2018 Innehåll 1 Vad är
Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Diskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
4. I lagret finns 24, 23, 17 och 16 kg:s säckar. På vilket sätt kan man leverera en beställning på exakt 100 kg utan att öppna någon säck?
Grundskolans matematiktävling Finaltävling fredagen den 3 februari 2012 DEL 1 Tid 30 min Maximal poängsumma 20 Räknare används inte i denna del. Skriv ner beräkningar, rita bilder eller ange andra motiveringar
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på
Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av
Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Uppsalas Matematiska Cirkel. Geometriska konstruktioner
Uppsalas Matematiska Cirkel Geometriska konstruktioner Matematiska institutionen Uppsala universitet Våren 2019 Några ord om Uppsalas Matematiska Cirkel Uppsalas Matematiska Cirkel bildades hösten 2018
Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
Lösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
Explorativ övning Geometri
Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?
Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i
Lösningsförslag Junior 2018
Lösningsförslag Junior 2018 poäng 1. (C) 5 2. (C) 5 Av triangelolikheten följer att varje sida i en triangel är längre än differensen av övriga två sidor och kortare än dess summa. Den tredje sidan måste
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA001- Matematisk grundkurs Tentamen 016-10-8 - Lösningsskiss 1. a) 1 1 1 0 0 1 0 + 1 0 Sedvanligt teckenschema visar att detta är uppfyllt [,0[. Svar: [,0[. b) Vi löser ekvationen 1 = genom att studera
Planering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Enklare matematiska uppgifter
Årgång 47, 1964 Första häftet 2457. ABC är en fix liksidig triangel. Linjerna AD och BE är parallella och skär linjerna BC och AC i D resp. E. Vidare är A 1, D 1, B 1 och E 1 mittpunkterna på sträckorna
KOMBINATORIK. Exempel 1. Motivera att det bland 11 naturliga tal finns minst två som slutar på samma
Explorativ övning 14 KOMBINATORIK Kombinatoriken används ofta för att räkna ut antalet möjligheter i situationer som leder till många olika utfall. Den används också för att visa att ett önskat utfall
Högstadiets matematiktävling 2017/18 Kvalificeringstävling 14 november 2017 Lösningsförslag och bedömningsmall
Högstadiets matematiktävling 017/18 Kvalificeringstävling 14 november 017 Lösningsförslag och bedömningsmall Varje uppgift ger 0 3 poäng. Endast svar utan motivering ger 0 poäng såvida inte annat anges
inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Student 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp
Lösningar till utvalda uppgifter i kapitel 2
Lösningar till utvalda uppgifter i kapitel 2 2.15 Ett Venn-diagram över situationen ser ut så här: 10 5 A B C För att få ihop 30 element totalt så måste de tre okända fälten innehålla exakt 15 element
Enklare matematiska uppgifter
Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig