Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006
|
|
- Oskar Fredriksson
- för 8 år sedan
- Visningar:
Transkript
1 Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 (Enligt "nytt format" : fler och lättare uppgifter jämfört med hittills rådande tradition se sid.5. Alla uppgifter värda lika mycket.) 1. Lös ekvationen 2. Lös ekvationen log 3 x 3 +6log 9 (x 2) = 3 cos x cos 3x =6sin 2 x 3. Talföljden a 1,a 2,...,a n är aritmetisk, a 3 =8,a 5 =14och a 1 + a a n = 100. Bestäm n. 4. Beräkna arean av ett parallelltrapets ABCD med de parallella sidorna AB =15,CD=5och ben AD =9,BC= För triangeln ABC är sidorna AC =5,BC=7och omskrivna cirkelns radie R =7/ 3. Hur lång är AB? 6. Lös olikheten 2 2x+1 6 x 9 x < 0 7. För vilka värden på parametern a har följande ekvation en och endast en reell rot? x 3 ax 2 + ax 1=0 8. Betrakta alla de konvexa fyrhörningar ABCD, för vilka AB = 3,CD=1,AC=2 3 och ]BAC + ]ACD =90. Beräkna längderna AD, BC och BD hos den av dem som har störst area. 9. I den regelbundna fyrsidiga pyramiden ABCDM (med bas ABCD och topp M) är avståndet mellan linjerna AD och BM lika med 2, medan vinkeln mellan linjen AC och planet BCM är 30. Beräkna pyramidens volym. 10. Visa att graferna y = x 2 + x +1 och y = 1 x har en enda punkt gemensam och att denna punkts avstånd till origo är < 2. 1
2 Övningsprov 1 (Utlagt på www för att förbereda de potentiella kandidaterna på det nya formatet.) 1. Lös ekvationen 2. Lös ekvationen 3 x +2 2x 1 2x +1 = x +1 x 2 +3x +2 2x +2+ x =3 3. Triangeln ABC är rätvinklig med rät vinkel vid hörn C och AM =2 2,BN= 17, där M och N är mittpunkterna på kateterna BC resp. AC. Beräkna triangelns area. 4. I romben ABCD är ]BAD =60. Beräkna cos (]MAN), där M och N är mittpunkterna på sidorna BC resp. CD. 5. Lös olikheten x +lg(5 x 1) <xlg 2 + lg För en aritmetisk talföljd är känt att alla dess tal är heltal, att summan S 6 av de sex första talen inte skiljer sig med mer än 450 från summan av de sex efterföljande, samt att summan S 5 är större än såväl S 4 som S 6 med minst 6. Vilket är det första talet i följden? 7. Den spetsvinkliga triangeln ABC, vars höjder skär varandra i H, är sådan att den till 4ABH omskrivna cirkeln går genom mittpunkterna på sidorna AC och BC och har radie 2. Hur långa är triangelns sidor AB, BC och CA? 8. Genom hörn A i den tresidiga pyramiden ABCD går ett plan Π, som är parallellt med kanten CD och skär kanten BD i punkten M. Vad skall förhållandet BM : DM vara för att Π ska dela pyramiden i två delar med lika stora volymer? 9. För vilka värden på parametern a är det sant att minsta värdet av funktionen f (x) =2x 3 3ax 2 på intervallet [0, 1] är lika med största värdet av f (x) på intervallet [1, 2]? 10. Låt a, b, c vara sådana reella tal att ekvationen ax 2 + bx + c =0har reella rötter. Visa att, om r är ett reellt tal sådant att ar 2 + br + c <a, så har ovannämnda ekvation en rot i intervallet (r 1,r+1). 2
3 Övningsprov 2 1. Ekvationen x 2 2x + c =0har rötterna x 1 och x 2 och (x 1 x 2 ) 2 =16. Bestäm c. 2. Bestäm en formel för summan av de n första talen i följden 3. Visa att 1, 11, 111, 1111,.. 1 cos x +sinx 2 då 0 x π 2 4. Parallelltrapetset ABCD år sådant att ABkCD, diagonalerna skär varandra i O och areorna av trianglarna ABO och CDO är 25 resp. 9. Hur stor är hela trapetsets area? 5. Skriv polynomet x 3 + x 2 x +1på formen a (x 1) 3 + b (x 1) 2 + c (x 1) + d 6. I den tresidiga pyramiden ABCD är kanterna AD, BD och CD parvis vinkelräta och har längd 1, 3 resp. 4. Beräkna radien av pyramidens omskrivna sfär. 7. Från hörnen A och B till medelpunkten O för den till triangeln ABC inskrivna cirkeln är avstånden 21 resp. 7, medan ]ACB = 120. Beräkna avståndet från C till O. 8. Två arbetare, A och B, kontraktades för ett visst jobb med olika timlöner. A fick 2250 kr. medan B, som arbetade 2 timmar mindre än A, fick 1000 kr. Om i stället A hade arbetat lika många timar som B och B lika många timmar som A, hade de fått lika mycket. Hur många timmar arbetade var och en av dem? 9. För vilka värden på parametern a har följande ekvationssystem fyra olika reella lösningar? ½ x 2 +2ax a 2 +2a +4=0 y 2 +2y x =0 10. Bestäm vinklarna vid basen för den av alla trianglar med bas a och toppvinkel α som har störst omkrets. 3
4 Övningsprov 3 ("Hur 2005 års antagningsprov hade kunnat se ut i det nya formatet.") 1. Vilket är det största värdet som kan antas av funktionen f (x) =sin3x +4cos2x +8sinx 7? 2. För vilka värden på parametern a har ekvationen 1+sin2x = a 2 a någon lösning? 3. Den till triangeln ABC omskrivna cirkeln har radie R =25/6. Vidare är AC =8och AB 2 +BC 2 =50. Hur långa är sidorna AB och BC? 4. I den likbenta triangeln ABC (AC = BC) är höjden CD =8, medan medianen AE =5. Hur långa är triangelns sidor? 5. Hörnen till tetraedern ABCD ligger på en sfär med radie 129/3. Vidare är AB =2 6,BD=10/ 3 och ]ABD =90. Bevisa att ACD = I triangeln ABC med ]C =60 är D en punkt på sidan AB sådan att AD =2,BD=5och CD är höjd. Beräkna längden av CD. 7. Den fyrsidiga pyramiden ABCDM har som bas parallellogrammen ABCD med ]DAB < 90, AB =7och BC = 29. Vidare är MD AC, MC BD och planet ABM är vinkelrät mot basplanet. Beräkna basens area. 8. Låt a, b, c varataliintervallet[ 1, 1]. Bestäm min (1 + ab + bc + ca). 9. Låt f (x) =(x a)(x b)(x c), där a, b, c är tal från intervallet [ 1, 1]. Visa att max f 0 (x) över [ 1, 1] antas i någon av ändpunkterna, d.v.s. antingen i 1 eller Jag är idag dubbelt så gammal som du var, när jag var i din ålder. När du blir lika gammal som jag är nu, kommer summan av våra åldrar att vara 54. Hurgammalärvarochenavossnu? 4
5 Antagningsprov till teknisk högskola, Sofia, 29 april 2006 (Enligt det traditionella systemet med endast 4 uppgifter, värda 10 poäng var. Skrivtid: 5 timmar.) 1. Lös ekvationssystemet ½ 2 2x 2 2y =24 2 x +3 2 y = Betrakta för olika värden på den reella parametern α andragradsekvationen 2x 2 4 (cos α) x +cos2α 2sin2α 1=0 (a) För vilka α har ekvationen två olika reella rötter x 1 och x 2? (b) För vilka av dessa α är summan x x2 2 maximal? (c) Beräkna sin 2α och cos 2α för α i(b). 3. I trapetset ABCD är K och L mittpunkter på de parallella sidorna AB resp. CD, M och N är mittpunkter på benen AD resp. BC, medan P och Q är mittpunkter på diagonalerna AC och BD. DetärkäntattAB>CD,AD>BC,KL= 13,MN =5och PQ =4 samt att det går att inskriva en cirkel i trapetset. Beräkna längderna på trapetsets sidor samt dess area. 4. Trianglarna ABC och A 1 B 1 C ligger i olika plan, varvid A och B är de vinkelräta projektionerna av A 1 resp. B 1 på ABC:s plan. De två planen skär varandra längs bisektrisen CL till 4ABC. Låt a och b beteckna längderna på sidorna BC resp. AC, γ vinkeln ACB och θ vinkeln mellan de två planen (a) Uttryck i a, b, γ och θ volymerna av pyramiderna ACLA 1 och BCLB 1 samt ange förhållandet mellan dem på så enkel form som möjligt. (b) Beräkna a, b och tan θ ifalletdåγ =60,AB=26cm, A 1 C =45cm och B 1 C =24cm. Resultatstatistik (Med viss reservation för misstolkningar.) Poäng Antal % totalt antal skrivande :
6 Antagningsprov till vissa gymnasier (åk 8-11), 23 juni 2006 Skrivtid: 3 timmar. Antal skrivande: uppemot (över 30% av årskullen, tror jag) 1. En viss fruktdessert utgörs av en blandning av jordgubbar, bananer, mjölk och sirap. Mängden mjölk är m gram mer än jordgubbarna, bananerna är n gram mindre än mjölken, medan sirap finns lika mycket som jordgubbar. Talet m är rot till ekvationen (1 x) 2 (x 1) (x +1)=0 medan n är värdet av uttrycket ( 4) 4 ( 4) 3 20 (a) Finn m och n. (11p+5p) (b) Den enligt ovan tillagade desserten fördelas på 7 koppar i lika stora 200 grams portioner. Visa att mängden jordgubbar i en kopp, uttryckt i gram, (9p) är lika med det största heltalet som löser olikheten (5p) y 4y 3 > 16 3 Hur många gram socker innehåller sirapen från 2 koppar, om den utgörs av en 30%-ig lösning av socker i vatten? (2p) 2. Sidorna AB och BC i rektangeln ABCD förhåller sig som 3:2. Låt M ligga på AB så att AM =2BM, medan N är mittpunkt på AD. (a) Om P är mittpunkten på CM och BP är 2 cm, hur långa är CM och MN? (b) Visa att ]BCM + ]DCN =45 och ]DCN > 15. (10p+6p) (12p+4p) Från pressen dagen efter: Fruktdessert chockade gymnasiekandidaterna Upprörda föräldrar: Prov för bartendrar och kockar?! "Så fort jag såg texten till första uppgiften, hoppade jag över den och började med den andra." berättar Elena. Två år hade hon förberett sig med privatlektioner, men alla uppgifter hade handlat om bassänger, vattenledningar, vägar och kilometrar. "Har aldrig sett någon uppgift om desserter och kunde inte fatta vad som förväntas av mig.", förklarar hon. Oklar formulering, även om räkningarna inte var svåra, var den övervägande åsikten bland de skrivande. Föräldrarna å sin sida upprördes över att årets litteraturuppsats hade haft som tema ett krogtal och nu kommer en uppgift om dessertblandning som om det gällt utbildning av bartendrar och kockar. Utbildningsministern försvarade sig med att experterna konstruerat uppgifter med vardagsanknytning, för att man ska se matematiken i tillämpning. Har ingenting emot, men då måste även läroböckernas uppgifter vara av samma typ, kommenterade gymnasiekandidaterna. Enligt en annan tidning hade utbildningsministern sagt att han dagen innan löst alla de tre skrivningsvarianterna (ur vilka en lottas ut strax före skrivtidens början) och att geometriuppgiften i den variant som drogs var aningen svårare än i övriga två. 6
Enklare uppgifter, avsedda för skolstadiet
Elementa Årgång 1, 198 Årgång 1, 198 Första häftet 97. Ett helt tal består av 6n siffror. I var och en av de på varandra följande grupperna av 6 siffror angiva de 3 första siffrorna samma tresiffriga tal
MVE365, Geometriproblem
Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..
Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK
Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.
Enklare matematiska uppgifter
Årgång 27, 1944 Första häftet 1316. I vilka serier äro t1 3 +t3 2 +t3 3 + +t3 n = (t 1 +t 2 +t 3 + +t n ) 2 för alla positiva heltalsvärden på n? 1317. Huru stora äro toppvinklarna i en regelbunden n-sidig
Enklare matematiska uppgifter
Elementa Årgång 41, 1958 Årgång 41, 1958 Första häftet 143. I en given cirkel är inskriven en triangel ABC, i vilken b + c = ma, där m är ett givet tal > 1. Sök enveloppen för linjen BC, då hörnet A är
Enklare matematiska uppgifter
Årgång 35, 1952 Första häftet 1793. I en cirkel med centrum O och radien R är inskriven en spetsvinklig triangel ABC, vars höjder råkas i H. Bestäm maximum och minimum för summan av PO och PH, när punkten
Matematiska uppgifter
Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =
Enklare matematiska uppgifter
Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan
Enklare matematiska uppgifter
Årgång 17, 1934 Första häftet 654. Lös ekvationen sin x + cos x + tan x + cot x = 2. (S. B.) 655. Tre av rötterna till ekvationen x 4 + ax 2 + bx + c = 0 äro x 1, x 2 och x 3. Beräkna x 2 1 + x2 2 + x2
Enklare matematiska uppgifter. Årgång 21, Första häftet
Elementa Årgång 21, 1938 Årgång 21, 1938 Första häftet 957. En cirkel, en punkt A på cirkeln och en punkt B på tangenten i A äro givna. Att konstruera den punkt P på cirkeln, för vilken AP + BP är maximum.
KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y
KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och
Enklare matematiska uppgifter
Årgång 40, 1957 Första häftet 2082. I punkterna 0, v, 2v,... nv på enhetscirkeln placeras massorna ( n ( 0), n ) ( 1,..., n ) n resp. Hur långt från cirkelns medelpunkt ligger tyngdpunkten för detta massystem?
Enklare matematiska uppgifter
Elementa Årgång 30, 947 Årgång 30, 947 Första häftet 500. Om (x 0 ; y 0 ; z 0 ) är en lösning till systemet cos x + cos y + cos z = 0, sin x+sin y+sin z = 0, så äro (x 0 +y 0 ; y 0 +z 0 ; z 0 +x 0 ) och
Enklare matematiska uppgifter
Elementa Årgång 5, 94 Årgång 5, 94 Första häftet 04. Toppen i en pyramid utgöres av ett regelbundet n-sidigt hörn. Tre på varandra följande sidokanter ha längderna a, b och c. Beräkna de övrigas längd.
Enklare matematiska uppgifter
Elementa Årgång 6, 1943 Årgång 6, 1943 Första häftet 161 I en tresidig pyramid äro sidokanterna l cm, baskanterna a, b och c cm I topphörnet är kantvinklarnas summa 360 Visa, att a + b + c = 8l 16 Visa,
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Enklare matematiska uppgifter
Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större
Enklare matematiska uppgifter
Elementa Årgång 45, 1962 Årgång 45, 1962 Första häftet 2353. Triangeln ABC och punkterna P 1 och P 2 ligger i samma plan. Om triangeln ABC symmetriseras med avseende på P 1 och P 2, uppstår trianglarna
Enklare matematiska uppgifter
Årgång 34, 1951 Första häftet 1739. I varje triangel är abc : r a 3 : r a + b 3 : r b + c 3 : r c. 1740. I varje triangel är (1 + cos A) 2 (1 cos A) (1 + cos A). 1741. Sidorna AC och BC i triangeln ABC
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Enklare matematiska uppgifter
Elementa Årgång 42, 1959 Årgång 42, 1959 Första häftet 2193. Tre cirklar med radierna r 1, r 2 och r 3 skär varandra under räta vinklar två och två. Hur stor är ytan av den triangel, som har sina hörn
Enklare matematiska uppgifter
Elementa Årgång 36, 1953 Årgång 36, 1953 Första häftet 1848. Triangeln ABC är inskriven i cirkeln O, vars tangenter i B och C råkas i D. Sök sambandet mellan triangelns sidor, då punkterna A och D ligga
Finaltävling i Umeå den 18 november 2017
KOLORNA MATEMATIKTÄVLING venska matematikersamfundet Finaltävling i Umeå den 18 november 017 1. Ett visst spel för två spelare går till på följande sätt: Ett mynt placeras på den första rutan i en rad
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
Sidor i boken 8-9, 90-93
Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta
Matematiska uppgifter
Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Enklare matematiska uppgifter
Årgång 6, 9 Första häftet 575. En normalkorda i en parabel är given till längd och läge. Bestäm enveloppen för parabelns styrlinje. 576. Att genom en given punkt draga en sekant till två givna cirklar
Repetition inför kontrollskrivning 2
Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.
Enklare matematiska uppgifter
Årgång 18, 1935 Första häftet 75. En kub är given. Man betraktar de 4 plan, som vart och ett innehåller en kantlinje i kuben och mittpunkterna till två andra. Hur stor del av kubens volym utgör det sammanhängande
Repetition inför tentamen
Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8
Enklare matematiska uppgifter
Årgång 33, 1950 Första häftet 1679. Från punkten T dragas tangenterna till en parabel med brännpunkten F. Normalerna i tangeringspunkterna råkas i N. Visa, att T N 2 = NF 2 + 3T F 2. (R. Ingre.) 1680.
Enklare matematiska uppgifter
Elementa Årgång 46, 1963 Årgång 46, 1963 Första häftet 2405. På fokalaxeln till en hyperbel, vars ena brännpunkt är F, finns en punkt K så belägen, att PK 2 : PF PF har ett konstant värde, när P genomlöper
Enklare matematiska uppgifter
Årgång 19, 1936 Första häftet 809. I en storcirkel på ett klot med radien R är inskriven en triangel, vars inskrivna cirkel har radien r. Beräkna radien i det klot, som tangerar triangelns tre sidor och
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC.
Lösningar till några övningar i geometri Kapitel 2 1. Formuleringen av övningen är tyvärr inte helt lyckad (jag ska ändra den till nästa upplaga, som borde ha kommit för länge sedan). Man måste tolka frågan
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm
Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v
Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.
Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan
Enklare matematiska uppgifter. Årgång 20, Första häftet
Elementa Årgång 20, 97 Årgång 20, 97 Första häftet 882. I en triangel, vars alla sidor äro olika, dragas höjderna, bissektriserna och medianerna. Dessa linjers skärningspunkter med motstående sidor äro
Matematiska uppgifter
Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist
Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition
Enklare matematiska uppgifter
Årgång 31, 1948 Första häftet 1559. Varje lösning till systemet (x a) 2 + (y b) 2 x 2 + y 2 = (x c)2 + (y d) 2 (x 1) 2 + y 2 = (a c) 2 + (b d) 2 är rationell i a, b, c, d. 1560. Om kurvan y = a 0 x 5 +
Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.
Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
Enklare matematiska uppgifter
Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
Enklare matematiska uppgifter
Årgång 32, 1949 Första häftet 1619. Den ena basytan i ett prisma är ABCD... H. Sidokanterna äro AA 1, BB 1, CC 1, DD 1,..., H H 1. Punkterna A 1, B 1, C och H ligga i ett plan, som delar prismats volym
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n
Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså
x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2
Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =
Matematiska uppgifter
Elementa Årgång 58, 975 Årgång 58, 975 Första häftet 2984. Visa att om A, B och C är vinklar i en triangel så är tan A + tanb + tanc = cot A + cotb 2985. Visa att för alla positiva heltal n gäller att
Enklare uppgifter, avsedda för skolstadiet.
Årgång 11, 1927 Första häftet 265. Lös ekvationssystemet { x 3 5x + 2y = 0 y 3 + 2x 5y = 0 266. Visa att uttrycket na n+1 (n + 1)a n + 1 där a och n äro positiva hela tal och a > 2, alltid innehåller en
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
Enklare matematiska uppgifter
Elementa Årgång 4, 94 Årgång 4, 94 Första häftet 47. Om en triangels hörn speglas i motstående sidor, bilda spegelbilderna en liksidig triangel. Beräkna den ursprungliga triangelns vinklar. 48. Att konstruera
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
Enklare uppgifter, avsedda för skolstadiet
Första häftet 413. Eliminera x, y och z ur systemet x y + y z + z x = a x z + y x + z y =b ( x y + z )( x x y + y )( y z z + z ) =c x (A. H. P.) 414. Den konvexa fyrhörningen ABCD är omskriven kring en
Enklare matematiska uppgifter
Årgång 47, 1964 Första häftet 2457. ABC är en fix liksidig triangel. Linjerna AD och BE är parallella och skär linjerna BC och AC i D resp. E. Vidare är A 1, D 1, B 1 och E 1 mittpunkterna på sträckorna
Lösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Finaltävling i Uppsala den 24 november 2018
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Finaltävling i Uppsala den 4 november 018 1. Låt ABCD vara en fyrhörning utan parallella sidor, som är inskriven i en cirkel. Låt P och Q vara skärningspunkterna
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x.
TENTAMENSSKRIVNING Endimensionell analys, B1 010 04 06, kl. 8 1 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. 1. a) Lös ekvationen cos sin + 1 = 0. (0.) b) Lös
Finaltävling i Lund den 19 november 2016
SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka
Matematiska uppgifter
Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna
Enklare uppgifter, avsedda för skolstadiet
Årgång 13, 1929 30 Första häftet 337. Visa, att p=n 1 (n 1)sinnx = 2 sin px cos(n p)x. p=1 (C. A. Mebius.) 338. På hur många olika sätt kunna två fientliga drottningar uppställas på ett schackbräde utan
Repetitionsuppgifter. Geometri
Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
Kvalificeringstävling den 30 september 2014
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,
2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.
Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
Vektorgeometri och funktionslära
Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,
Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:
MATA15 Algebra, delprov, 6 hp Lördagen den 8:e december 01 Skrivtid: 800 100 Matematikcentrum Matematik NF Lösningsförslag 1 Ligger punkterna P 1 = (0, 1, 1), P = (1,, 0), P = (, 1, 1) och P 4 = (, 6,
Vektorgeometri. En inledning Hasse Carlsson
Vektorgeometri En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 01 Innehåll 1 Inledning Geometriska vektorer.1 Definition av vektorer........................
Kap Globala extremvärden, extremproblem med bivillkor.
Kap 13.2 13.3. Globala extremvärden, extremproblem med bivillkor. A 1001. Sök det största och minsta värdet av funktionen f(x,y) = x 2 + 2y 2 x på cirkeln x 2 + y 2 = 1. A 1002. Vilka värden kan funktionen
1 Diagrammet visar hur vattennivån i en hamn förändras under en viss dag. Under hur många timmar var vattennivån över 30 cm?
Kängurutävlingen 0 Student Trepoängsproblem Diagrammet visar hur vattennivån i en hamn förändras under en viss dag. Under hur många timmar var vattennivån över 0 cm? Water level (cm) 0 0 0 0 0 0 0 0 -
Kvalificeringstävling den 26 september 2017
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera
Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:
Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och
Föreläsning 1 5 = 10. alternativt
Föreläsning 1 101 a) Beräkna 5 + ( 8) = ( ) Kommentar: Vi använder parenteser för att förtydliga negativa tal, här ( 8) och ( ). 101 b) Beräkna 9 16 = 5 Kommentar: Egentligen borde man skriva 9 som ( 9),
===================================================
AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)
PRELIMINÄRPROV Kort matematik
PRELIMINÄRPROV Kort matematik 80 Lösningar och poängförslag Lös ekvationerna x 0 x 4 x,0 a) 0x b) c) a) Multiplikation med 0; x 00x, p 0 99 b) Division med ; : 4 9 9 x ( = =,5 ) p 4 8 8 8-99 x = 0, x 0
Lite sfärisk geometri och trigonometri
Lite sfärisk geometri och trigonometri Torbjörn Tambour 8 april 2015 Geometri och trigonometri på sfären är ett område som inte nämns alls i de vanliga matematikkurserna, men som ändå är värt att stifta
Matematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Tentamina efter Introduktionskursen i matematik Chalmers
Tentamina efter Introduktionskursen i matematik Chalmers 1990 000 Instutitionen för matematik Chalmers och Göteborgs universitet Göteborg 001, version 7 mars 001 G R E G E R C R O N Q U I S T R O L F P
Explorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Sidor i boken Figur 1: Sträckor
Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
Lösningsförslag till problem 1
Lösningsförslag till problem Lisa Nicklasson november 0 Att beskriva trianglar Vi ska börja med att beskriva hur trianglar kan representeras i x, y)-planet Notera att varje triangel har minst två spetsiga
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,