1 Diagrammet visar hur vattennivån i en hamn förändras under en viss dag. Under hur många timmar var vattennivån över 30 cm?
|
|
- Monica Viklund
- för 8 år sedan
- Visningar:
Transkript
1 Kängurutävlingen 0 Student Trepoängsproblem Diagrammet visar hur vattennivån i en hamn förändras under en viss dag. Under hur många timmar var vattennivån över 0 cm? Water level (cm) Time (hours) A: B: C: D: E:. I en lista med fem tal är det första talet och det sista. Produkten av de tre första talen är 0, produkten av de tre mittersta talen är 0 och produkten av de tre sista talen är 0. Vilket är det mittersta talet? A: B: C: D: E:. En klocka har tre visare av olika längd, en timvisare, en minutvisare och en sekundvisare. Vi vet inte vilken visare som visar vad men vi vet att klockan visar rätt tid. Klockan ::0 stod visarna i de positioner som bilden till höger visar. Vilken av bilderna A E visar klockan ::00? A B C D E
2 Kängurutävlingen 0 Student. Ett rektangulärt papper ABCD med måtten cm x cm viks längs linjen MN så att hörnet C möter hörnet A, se figuren. Vilken area har fyrhörningen ANMD? A D M D A: cm B: 0 cm C: cm D: cm E: cm B N C. Bilden visar en rabatt där man odlar rosor. Vita rosor odlas i de lika stora kvadraterna, röda rosor i den tredje kvadraten. Gula rosor odlas i den rätvinkliga triangeln. Rabatten får precis plats inom ett område som är m långt och m brett. Vilken area har rabatten? m A: m B: 0 m C: m D: m E: m m. Ett reellt tal x uppfyller olikheten x < < x. Vilket påstående är korrekt? A: 0 < x < B: - < x < C: x > D: - < x < E: x < -. Hur stor är vinkeln α i den regelbundna femuddiga stjärnan? A: B: 0 C: D: E: α. Min ålder är ett tvåsiffrigt tal som är en potens av. Min grannes ålder är ett tvåsiffrigt tal som är en potens av. Siffersumman av våra åldrar är ett udda tal. Vilken är sifferprodukten av våra åldrar? A: 0 B: 0 C: 0 D: 0 E: 00
3 Kängurutävlingen 0 Student Fyrapoängsproblem. En resebyrå erbjöd fyra olika utflyktsmål för en grupp turister. Varje utflyktsmål hade ett deltagande på 0 %. Vilken är den minsta möjliga andel turister som besökte alla fyra utflyktsmålen? A: 0 % B: 0 % C: 0 % D: 0 % E: %. I Slovakien har de en femgradig betygskala,, där är högsta betyg. På ett prov i en fjärde klass gick det inte bra, medelbetyget blev. Pojkarna var lite bättre, deras medelbetyg blev, medan flickornas medelbetyg blev,. Vilket av följande påståenden är korrekt? A: Det finns dubbelt så många pojkar som flickor i klassen. B: Det finns fyra gånger så många pojkar som flickor i klassen. C: Det finns dubbelt så många flickor som pojkar i klassen. D: Det finns fyra gånger så många flickor som pojkar i klassen. E: Det finns lika många pojkar som flickor i klassen.. Talet är lika med A: B: C: D: E:. Vilket är det största heltalet n för vilket n 00 < 00? A: B: C: D: E:. På en bio hade man sålt alla biljetterna till en föreställning. Platserna i salongen är konsekutivt numrerade från. Av misstag sålde man en extra biljett till en plats. Summan av alla platsnummer på sålda biljetter blev därför. Vilket nummer har platsen till vilken man sålt två biljetter? A: B: C: D: E:
4 Kängurutävlingen 0 Student. För vilken av följande funktioner gäller f ( ) = om x 0? x f(x) A: f(x) = x B: f(x) = x + C: f(x)=+ x D: f(x) = x E: f(x) =x + x. En kvadrat ABCD har sidlängd. E och F är mittpunkterna på sidorna AB respektive AD. G är en punkt på CF sådan att CG=GF. Vilken area har triangeln BEG? A: B: C: D: E:. En rätvinklig triangel har sidorna a, b och c. Vilken radie har den inskrivna halvcirkeln? a(c a) A: b ab D: a + b + c ab B: a + b + c ab E: a + c ab C: b + c a r r r c b Fempoängsproblem. Bildens klocka har formen av en rektangel. Vilket är avståndet x mellan talen och på urtavlan om avståndet mellan talen och är cm? cm x cm A: B: C: D: + E:
5 Kängurutävlingen 0 Student. En känguru vill klistra samman en rad av speltärningar så att de sidor som klistras samman har samma antal prickar. Han vill att summan av samtliga synliga prickar på tärningarnas yttersidor ska vara 0. Det sammanlagda antal prickar på en tärnings två motsatta sidor är alltid. Hur många tärningar behöver han? A: 0 B: C: D: E: Det är omöjligt att exakt 0 prickar kan vara synliga.. Vilken är den minsta möjliga storleken på en vinkel i en likbent triangel, som har en median som delar triangeln i två likbenta trianglar? A: B:, C: 0 D: E: 0. Två operationer får utföras på ett bråk:. att öka täljaren med. att öka nämnaren med Vi börjar med och efter att ha utfört totalt n sådana operationer i någon ordning får vi ett bråk med lika värde som det bråk vi startade med. Vilket är minsta möjliga värde på n? A: B: C: D: E: Det finns inget sådant värde.. En liksidig triangel rullar runt en kvadrat med sidan. P P Hur lång sträcka har den markerade punkten P rört sig när triangeln och P är tillbaka i utgångsläget? A: π B: π C: π D: π E: π
6 Kängurutävlingen 0 Student. På skärmen ser man grafen till funktionen y = x och 0 linjer parallella med linjen y = x. Var och en av linjerna skär parabeln i två punkter. Vilken är summan av x-koordinaterna för samtliga skärningspunkter? A: 0 B: C: 0 D: 0 E: Det är omöjligt att bestämma. I talföljden,, 0,, -, är de två första talen a = och a =. Det tredje talet är skillnaden mellan de två föregående talen, a = a a. Det fjärde är summan av de två föregående talen, a = a + a. Därefter är a = a a, a = a + a och så vidare. Vilken är summan av de 0 första talen i talföljden? A: 0 B: C: - D: 0 E: -. Ioana väljer ut två tal a och b från mängden {,,,, }. Produkten ab är lika med summan av de återstående talen. Vilken är den positiva differensen mellan a och b? A: B: C: D: E:
Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet
Känguru 2012 Student sid 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt
Trepoängsproblem. Kängurutävlingen 2012 Junior
Trepoängsproblem 1. M och N är mittpunkterna på de lika långa sidorna i en likbent triangel. Hur stor är arean av fyrhörningen markerad med X? : 3 : 4 C: 5 D: 6 E: 7 M? X 3 3 6 N 2. När lice skickar ett
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln
Avdelning 1, trepoängsproblem
vdelning 1, trepoängsproblem 1. Vilket av dessa resultat får man när 20102010 divideras med 2010? : 11 : 101 :1001 D: 10001 E: Kvoten är ej ett heltal 2. Ivan fick 85 % av totalpoängen på ett prov medan
Student. a: 5 b: 6 c: 7 d: 8 e: 3
Student Avdelning. Trepoängsproblem. Talen 3 och 4 samt två okända tal skrivs in i de fyra rutorna. Summan av talen i raderna blir 5 och 0 och summan av talen i den ena kolumnen blir 9. Vilket är det största
MVE365, Geometriproblem
Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..
Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,
Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E:
N G A RA Kängurutävlingen 2015 Cadet Trepoängsproblem 1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E: O O K 2. Rektangeln
A: måndag B: onsdag C: torsdag D: lördag E: söndag Grekland 2. Vilket av följande uttryck har högst värde?
Kängurutävlingen 208 Student Trepoängsproblem. Bilden visar ett månadsblad i Filips engelska almanacka. Oturligt nog välte Filip ut sitt bläckhorn över bladet och det mesta blev oläsligt. På vilken veckodag
Kängurutävlingen Matematikens hopp 2017 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2017 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c. Kängurutävlingen genomförs i år den 16 mars. Om den dagen inte
A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland
Trepoängsproblem 1. Några av bildens ringar bildar en kedja där den ring som pilen pekar på ingår. Hur många ringar finns det i denna kedja? A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland 2. I en triangel har två sidor
Avdelning 1, trepoängsproblem
vdelning, trepoängsproblem. Med hjälp av bilden bredvid kan vi se att + 3 + 5 + 7 = 4 4. Vad är + 3 + 5 + 7 + 9 +... + 7 + 9 + 2? : 0 0 : C: 2 2 D: 3 3 E: 4 4 2. Summan av talen i båda raderna är den samma.
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla
Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011
Trepoängsproblem 1 Vilket av följande uttryck har störst värde? 1 A: 2011 1 B: 1 2011 C: 1 2011 D: 1 + 2011 E: 2011 2 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen
Avdelning 1, trepoängsproblem
Avdelning, trepoängsproblem. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Stjärnan i figuren har bildats av 2 identiska, liksidiga trianglar. Stjärnans omkrets
Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?
Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i
Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11
Gymnasiets Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c:
Känguru 2019 Student gymnasiet
sida 0 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Kod (läraren fyller): Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt
Junior för elever på kurs Ma 2 och Ma 3
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Junior för elever på kurs Ma 2 och Ma 3 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Avdelning 1, trepoängsproblem
Avdelning, trepoängsproblem. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Stjärnan i figuren har bildats av 2 identiska, liksidiga trianglar. Stjärnans omkrets
Trepoängsproblem. Kängurutävlingen 2011 Junior
Trepoängsproblem 1 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen börjar och slutar med ett vitt streck. På Storgatan har ett övergångsställe totalt åtta vita
Avdelning 1, trepoängsproblem
vdelning 1, trepoängsproblem 1. Hur många symmetrilinjer har figuren? : 0 : 1 : 2 D: 4 E: oändligt många 2. Robert arbetar på leksaksfabriken. Han ska packa kängurur som ska fraktas till affärerna. Varje
= A: 0 B: 1 C: 2013 D: 2014 E: 4028
Trepoängsproblem 1. 2014 2014 2014 2014 = A: 0 B: 1 C: 2013 D: 2014 E: 4028 2. Kängurutävlingen hålls den tredje torsdagen i mars varje år. Vilket datum är det senaste som tävlingen kan hållas? A: 14 mars
A: mindre än 4 år. B: minst 4 år. C: exakt 4 år. D: mer än 4 år. E: inte mindre än 3 år. (Schweiz) A: 0 B: Oändligt många C: 2 D: 1 E: 3 (Italien)
Trepoängsproblem 1. Andrea föddes 1997 och hennes yngre syster Charlotte 2001. Skillnaden i ålder mellan systrarna är med säkerhet A: mindre än 4 år. B: minst 4 år. C: exakt 4 år. D: mer än 4 år. E: inte
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Matematiska uppgifter
Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som
Avdelning 1, trepoängsproblem
vdelning 1, trepoängsproblem 1. Hur många symmetrilinjer har figuren? : 0 : 1 : 2 : 4 E: oändligt många 2. Robert arbetar på leksaksfabriken. Han ska packa kängurur som ska fraktas till affärerna. Varje
Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9 Kängurutävlingen genomförs den 18 mars. Om den dagen inte passar kan hela veckan 19 26 mars användas, däremot
? A: -1 B: 1 C: 19 D: 36 E: 38 Belarus A: ROOT B: BOOM C: BOOT D: LOOT E: TOOT A: 1,5 B: 1,8 C: 2 D: 2,4 E: Vilket tal bör ersätta
Trepoängsproblem 1. Vilket värde har uttrycket 20 + 18 20 18? A: -1 B: 1 C: 19 D: 36 E: 38 2. Om bokstäverna i ordet MAMA skrivs vertikalt kan en symmetrilinje dras vertikalt längs bokstäverna. Vilket
Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?
Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c: 5 d: 6 e: 11
Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 009 Student för elever på kurs D och E. Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 0 7 mars användas, däremot
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet
Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt
Trepoängsproblem. Kängurutävlingen 2011 Student
Trepoängsproblem 1 Figuren visar en bild av grafén. Vid varje punkt ska ett tal skrivas. Summan av talen vid två närliggande punkter ska vara densamma. Två av talen är redan inskrivna. Vilket tal ska skrivas
A: 300 m B: 400 m C: 800 m D: 1000 m E: 700 m
Trepoängsproblem. Hur långt är sträckan från Maria till Bianca? 00 m Maria 8 4 2 Bianca A: 300 m B: 400 m C: 800 m D: 000 m E: 700 m 2. Den liksidiga triangeln har arean 9 cm 2. Linjerna inne i triangeln
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
Känguru 2017 Student gymnasiet
sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt
Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R
Junior vdelning 1. Trepoängsproblem 1. I fem lådor ligger kort. arje kort är märkt med en av bokstäverna,, R, O och. Peter ska plocka bort kort så att det blir ett enda kort kvar i varje låda och så att
Kängurutävlingen Matematikens hopp 2018 Benjamin
Kängurutävlingen Matematikens hopp 2018 Benjamin Trepoängsproblem 1 Bilden visar 3 pilar och 9 ballonger. När en pil träffar en ballong spricker ballongen, och pilen fortsätter vidare i samma riktning.
Kängurutävlingen Matematikens hopp 2011 Student för elever på kurs D och E
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 20 Student för elever på kurs D och E Kängurutävlingen genomförs 7 mars. Om den dagen inte passar går det bra den 8 mars eller veckan därpå,
Känguru 2012 Cadet (åk 8 och 9)
sid 1 / 7 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt svar ger minus 1/4
NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR
Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Känguru 2018 Student gymnasieserien i samarbete med Jan-Anders Salenius (Brändö gymnasium)
sida 0 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt ett svar korrekt. Felaktigt
A: måndag B: tisdag C: onsdag D: torsdag E: fredag. Vilken av följande bitar behöver vi för att det ska bli ett rätblock?
Trepoängsproblem 1 Doris gör en skylt till djurparken. På skylten ska det stå ordet KÄNGURUR. Hon målar en bokstav varje dag. Hon målar den första på en onsdag. Vilken dag kommer hon att måla den sista
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Kängurutävlingen Matematikens hopp 2019 Benjamin
Kängurutävlingen Matematikens hopp 2019 Benjamin Trepoängsproblem 1 Carrie har börjat att rita en katt. Hur kan hennes färdiga teckning se ut? (Norge) 2 Mayafolket skrev tal på ett annat sätt än vi gör.
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. Vilket av dessa tal är delbart med 3? A: 2009 B: 2 + 0 + 0 + 9 C: (2 + 0) (0 + 9) D: 2 9 E: 200 9 2. I ett akvarium finns det 200 fiskar varav 1 % är blå medan övriga är
Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
9 Geometriska begrepp
9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK
Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.
Lathund geometri, åk 7, matte direkt (nya upplagan)
Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8
Kvalificeringstävling den 26 september 2017
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
Cadet för gymnasiet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige)
Avdelning. Trepoängsproblem 007 + 0 + 0 + 7 = Cadet för gymnasiet a: 00 b: c: 3 d: 9 e: 3 (Sverige) Boris är född januari 00 och han är år och dag äldre än Irina. Vilken dag föddes Irina? a: januari 003
Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7 Tävlingen genomförs under perioden 21 mars 29 mars. Uppgifterna får inte användas tidigare. Sista
Steg 1 Klipp ut de figurer du behöver! Steg 2 Bygg din rymdraket! Matematikuppgift 1
Matematikuppgift 1 Rymdraketen - Nivå 1 Nu ska du bygga en rymdraket med hjälp av geometriska figurer. Det du måste börja med är att klippa ut de geometriska figurerna som du behöver för att bygga ihop
Planering Geometri år 7
Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande
2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.
Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 011 Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Därefter följer förslag till hur ni
Enklare matematiska uppgifter
Elementa Årgång 41, 1958 Årgång 41, 1958 Första häftet 143. I en given cirkel är inskriven en triangel ABC, i vilken b + c = ma, där m är ett givet tal > 1. Sök enveloppen för linjen BC, då hörnet A är
4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter
ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen
Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2017 Benjamin för elever i åk 5, 6 och 7 Tävlingen ska genomföras under perioden 16 mars 24 mars. Uppgifterna får inte användas tidigare.
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska
Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
Cadet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige) 2 Boris är född 1 januari 2002 och han är 1 år och 1 dag äldre än Irina. Vilken dag föddes Irina?
Cadet Avdelning. Trepoängsproblem 2007 2 + 0 + 0 + 7 = a: 00 b: c: 223 d: 9 e: 23 (Sverige) 2 Boris är född januari 2002 och han är år och dag äldre än Irina. Vilken dag föddes Irina? a: 2 januari 2003
Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006
Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 (Enligt "nytt format" : fler och lättare uppgifter jämfört med hittills rådande tradition se sid.5. Alla uppgifter värda lika mycket.) 1. Lös
geometri ma B 2009-08-26
OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4
Problemlösning med hjälp av nycklar
Problemlösning med hjälp av nycklar I denna problemavdelning finns förutom ett antal geometriproblem även förslag på ett arbetssätt som avser underlätta för elever att komma igång med problemlösning och
Matematiska uppgifter
Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6
Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
NÄMNARENs. problemavdelning
NÄMNARENs problemavdelning För problemavdelningen svarar denna gång Bernt Leonardsson och Bo Söderberg från Örebro. Problemen är snarare kluriga än svåra så ge inte upp i tron att du inte kan matematik.
Svar och arbeta vidare med Cadet 2008
Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet
Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist
Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Student 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp
Kvalificeringstävling den 30 september 2014
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Junior för elever på kurs Ma 2 och Ma 3
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Junior för elever på kurs Ma 2 och Ma 3 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Känguru 2016 Student gymnasieserien
sid 1 / 10 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex. svarar
Problem Svar
Känguru Benjamin, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt
Matematiska uppgifter
Årgång 55, 1972 Första häftet 2863. Lös ekvationssystemet { 2sin x cos x = 1 (Svar: π + 2nπ, n Z) 2864. Visa att (1,000001) 1000000 > 2. sin x 2cos x = 2 2865. Visa att ekvationen x 4 x 2 + 2x + 3 = 0
Enklare uppgifter, avsedda för skolstadiet
Elementa Årgång 1, 198 Årgång 1, 198 Första häftet 97. Ett helt tal består av 6n siffror. I var och en av de på varandra följande grupperna av 6 siffror angiva de 3 första siffrorna samma tresiffriga tal
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna
Repetitionsuppgifter 1
Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv
Kängurutävlingen Matematikens Hopp Benjamin 2003 Uppgifter
Kängurutävlingen Matematikens Hopp Uppgifter Arrangeras av Kungl. Vetenskapsakademien & NCM/Nämnaren 3-poängsuppgifter 1. Tomas har 9 hundrakronors-sedlar, 9 tiokronor och 10 enkronor. Hur mycket pengar
Trepoängsproblem. Kängurutävlingen 2019 Cadet. 1 Vilket moln innehåller endast jämna tal? A B C D E
Trepoängsproblem Vilket moln innehåller endast jämna tal? 5 0 4 0 58 En kub med kantlängden är byggd av enhetskuber. Några kuber tas bort rakt igenom, från vänster till höger, uppifrån och ner samt från
Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.
Repetition inför tentamen
Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8
Välkommen till Kängurutävlingen Matematikens hopp 2019 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b, eller 1c
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 0 Cadet för elever i åk 8, och för elever som läser kurs a, b, eller c Tävlingen genomförs under perioden mars mars. Uppgifterna får inte
Enklare matematiska uppgifter
Årgång 27, 1944 Första häftet 1316. I vilka serier äro t1 3 +t3 2 +t3 3 + +t3 n = (t 1 +t 2 +t 3 + +t n ) 2 för alla positiva heltalsvärden på n? 1317. Huru stora äro toppvinklarna i en regelbunden n-sidig
Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)
Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.
Explorativ övning Geometri
Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
Polygoner. Trianglar på tre sätt
Polygoner Trianglar på tre sätt Man kan skriva in punkter antingen via punktverktyget eller genom att skriva punktens namn och koordinater i inmatningsfältet. Då man ritar månghörningar lönar det sig att