Ett linjärprogrammeringsproblem på allmän form ser ut som
|
|
- Ulrika Lundgren
- för 6 år sedan
- Visningar:
Transkript
1 Linjärprogrammering Ett linjärprogrammeringsproblem på allmän form ser ut som Minimera n j=1 c jx j x j 0 n j=1 a ijx j b i i =1, 2,...,m Variant: Vi kan vilja maximera istället. Vi kommer att studera följande exempel flera gånger. Firman Fajo AB Firman Fajo tillverkar bandyklubbor och ishockeyklubbor. Det finns två produktionsmoment: Sågning och limning. Vi har följande tidsåtgång Sågning Limning Ishockey 7 16 (i minuter) Bandy Firman har kapacitet för 3600 minuters sågning och 5400 minuters limning per vecka. Klubborna kan säljas för Ishockey: 125 kr men har en produktionskostnad på 105 kr. Bandy: 115 kr men har en produktionskostnad på 97kr. Låt x 1 vara antalet tillverkade ishockeyklubbor och x 2 antalet tillverkade bandyklubbor. Vi får problemet Maximera z = 20x 1 +18x 2 7x 1 +10x x 1 +12x x 1,x 2 0 Obs: Kan överföras till allmän form genom att vi minimerar -20x 1-18x 2 1
2 En likhet som t.ex. 3x 1 +4x 2 = 100 kan skrivas som två olikheter 3x 1 +4x x 1 +4x Vi vill hitta en metod för att lösa LP-problem. Simplexmetoden Förberedelse: Vi går från allmän form till standardform. Standardform: Vi har likheter istället för olikheter. Ex: Minimera z = 3x 1 +5x 2 - x 3 x 1 x 2 +2x 3 =5 x 1 +2x 2 +4x 3 =12 x 1,x 2,x 3 0 Trick för att få likheter: Slackvariabler. Ex: Vi har först x 1 +3x 2 10 Vi sätter x 3 = 10- (x 1 +3x 2 ) x 3 är en ny slackvariabel. Vi får likheten x 1 +3x 2 + x 3 =10 Fajo-problemet på standardform blir 7x 1 +10x görs om till 7x 1 +10x 2 + x 3 = x 1 +12x görs om till 16x 1 +12x 2 + x 4 = 5400 Vi får Maximera z = 20x 1 +18x 2 2
3 7x 1 +10x 2 + x 3 = x 1 +12x 2 + x 4 = 5400 x 1, x 2, x 3, x 4 0 Abstrakt formulering av standardform Minimera z = n j=1 c jx j n j=1 a ijx j = b i i = 1,...,m x j 0 j = 1,...,n Genom att införa matriser kan vi skriva Minimera c T x A x = b x 0 Exempel: Fajo igen. ( ) A= x 1 x = x 2 x 3 x 4 20 c = b = ( ) Minimera ( ) ( ) x 1 x 2 x 3 x 4 ( ) x 1 x 2 x 3 x 4 3
4 x 1 0 x 2 x x 4 0 För enkelhets skull kan vi gå tillbaka till att maximera z = 20 x 1 +18x 2. Var finns den optimala lösningen? I Fajo-problemet måste 7 x 1 +10x 2 + x 3 = x 1 +12x 2 + x 4 = 5400 En möjlighet är att x 3 = x 4 =0 7 x 1 +10x 2 = x 1 +12x 2 = 5400 Lösning av systemet ger x x Det ger z 7520 Men vi kan också t.ex. sätta x 2 = x 4 =0 Det ger ekvationerna 7x 1 + x 3 = x 1 = 5400 Det ger x x Då blir z Det är sämre. Finns det fler möjligheter? Baslösning: Antag att det finns n variabler och m ekvationer. Antag att n-m variabler sätts till 0. Dåär de övriga m variablerna entydigt bestämda. Detta är en baslösning. Tillåten baslösning: Om alla variabler är 0 har vi en tillåten baslösning. 4
5 Lösningen till ett LP-problem är alltid en tillåten baslösning. Men vilken baslösning? Det finns många möjliga baslösningar att testa. Metod: Variabler som är 0 är icke-basvariabler. De övriga är basvariabler. Vi testar olika baslösningar genom att byta basvariablerna en i taget. Exempel: Minimera z = 2x 1 + x 2 3x 1 + x 2 =10 x 1,x 2 0 Sätt x 1 =0. Dåär x 2 =10 Dåär z = 10. Byt så attx 2 =0. Dåär x 1 3,33 Då blir z 6,67. Det är bättre. Hur vet man att man hittat den bästa baslösningen? Ex: Fajo x 1 = 142x 2 = 260z = 7520 Hur vet vi att den lösningen är bäst? Vi kan skriva x 3 = x 1-10x 2 x 4 = x 1-12x 2 x 1 = 0,158x 3-0,132x ,1 5
6 x 2 =-0,2x 3 + 0,092x ,5 Det ger z = 20x 1 +18x 2 = 20(0,15x 3-0,13x ,1) + 18( -0,21x 3 + 0,09x ,5) = ,62x 3-0,98x 4 Vi ser att det inte lönar sig att öka x 3 eller x 4. Alltså måste varje ändring vara en försämring. Strategi för Simplexmetoden Antag att vi har ett maximeringsproblem och att vi har en baslösning med y 1, y 2,..., y m som basvariabler och v 1, v 2,..., v n m som icke-basvariabler. Vi har sattv 1 = v 2 =... = v n m =0 Det går att skriva y 1, y 2,..., y m som funktioner av v 1, v 2,..., v n m y 1 = f 1 (v 1,...,v n m ) y 2 = f 2 (v 1,...,v n m )... Dågår det att skriva z på formen z=c 1 v 1 + c 2 v c n m v n m + z 0 Om alla c i är < 0så har vi en optimal lösning. Om något c i > 0 t.ex. c 1 > 0sålönar det sig att öka v 1. Dåmåste värden på y-variablerna ändras. Hur mycket? Om vi har ett minimeringsproblem lönar det sig att öka variabler med c i < 0. I övrigt är problemet och metoden precis densamma. Ex: Minimera z = 2x 1 +2x 2 + x 3 x 1 + x 2 + x 3 =5 x 1 x 2 +2x 3 =8 x 1,x 2,x 3 0 En lösning är x 3 = 0 (icke-basvariabel). Det ger 6
7 x 1 + x 2 =5 x 3 x 1 x 2 =8 2x 3 2x 1 =13 3x 3 x 1 = x 3 2x 2 = 3 x 3 x 2 = x 3 z=2( x 3 )+2( x 3)+x 3 = 10-x 3 Det lönar sig att öka x 3.Menhurmycket? x 1 och x 2 måste vara 0. x 1 = x 3 Det betyder att x x 2 = x 3 Det betyder att x 3-3 Det ger begränsningen x för ökning av x 3. Om x 3 = 13 3 är x 1 =0. x 2 blir = 2 3 Skriv nu x 2, x 3 som funktioner av x 1. x 3 = x 1 x 2 = x 3 = ( x 1)= x 1 z=10-x 3 = x 1 = x 1 Här lönar det sig inte att öka x 1.Viär klara. Simplexmetoden med tablåräkning Ex: Minimera z = 30x 1 +2x 2 7
8 2x 1 + x 2 + x 3 = 100 x 1 + x 2 + x 4 =80 x 1 + x 5 =40 x 1, x 2, x 3, x 4, x 5 0 Vi startar med x 1 = x 2 =0. Dåär x 3 = 100, x 4 = 80, x 5 = 40. z=30x 1 +20x 2 Vi sätter z - 30x 1-20 x 2 =0 Vi sammanställer i en starttablå. z x 1 x 2 x 3 x 4 x 5 b x x x Positioner som är 0 har inte skrivits ut. Vi ser att det lönar sig att öka x 1 eller x 2. Vi ökar x 1. Begränsningen är 100-2x x x 1 0 Den snävaste begränsningen är den sista. Vi sätter x 1 = 40. Dågäller x 5 =0 x 1 utgår ur basen och x 5 ingår. Gör följande i tablån: Tag sista raden och dra från 4:de och 3:dje. Tag 2* sista raden och dra från 2:a. Tag 3* sista raden och lägg till 1:a. Det ger tablån 8
9 z x 1 x 2 x 3 x 4 x 5 b x x x Tolkningen är z = x 2-30x 5 x 3 =20-x 2 +2x 5 x 4 =40-x 2 + x 5 x 1 =40-x 5 Nu lönar det sig att öka x 2 Begränsningen är 20,40,40. Vi ser att 20 är minst. Det betyder att x 3 utgår ur basen och att x 2 ingår. Tag 20* 2:a raden och lägg till 1:a. Tag 2:a raden och drag från 3:dje. Det ger tablån z x 1 x 2 x 3 x 4 x 5 b x x x Nu lönar det sig att öka x 5. Begränsningarna är 20,40. x 4 utgår ur basen och x 5 ingår. En beräkning av liknande slag ger tablån z x 1 x 2 x 3 x 4 x 5 b x x x Nu lönar det sig inte att ändra mer. Vi har fått en lösning med z = 1800 x 2 =60x 5 =20x 1 =20x 3 = x 4 =0 9
10 Generell beskrivning av metoden Vi antar att vi har ett maximeringsproblem. z x 1 x b 1 c 1 c b 0 b Hitta icke-basvariabler med c-värde < 0. (Välj största c-värde.) Antag att det t.ex. är x 8 x c a i8.. b i Hitta det värde i som gör bi a i8 minimalt fast 0. Antag t.ex. att det är i=5. Dåskallx 8 in i basen och x 5 ut ur basen. Reducera så attkolumn8består av 1 raden som motsvarar x 5. Fortsätt tills ingen icke-basvariabel har negativt c-värde. 10
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
Läs mer1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Läs merFöreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
Läs merLösningar till SF1852 Optimeringslära för E, 16/1 08
Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,
Läs merLinjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
Läs merLösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Läs merLösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
Läs merLaboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
Läs merLösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Läs merTentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Läs mer1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
Läs merVinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Läs merLaboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
Läs merUppgift 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Uppgift a) Här ses direkt att kan ökas obegränsat utan att bryta mot några bivillkor vilket i sin tur betyder att problemet har obegränsad lösning. b) Lös med Simple-algoritmen (t.e. med matris-metoden).
Läs merVinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Läs merFöreläsning 6: Transportproblem (TP)
Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:
Läs mer1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Läs merTentamensinstruktioner
Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar
Läs mer1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Läs merLösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016
Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that
Läs merMIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Läs merLaborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information
Läs merTENTAMEN Tillämpad Systemanalys 5hp
Tentamenskod (6 siffror) (alt. namn och personnummer) Utbildningsprogram Termin och år då du först registrerades på kursen Bordsnummer Klockslag för inlämning TENTAMEN Tillämpad Systemanalys 5hp Tid: 2012-0-11,
Läs merDe optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
Läs merOptimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
Läs merLösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x
Läs merLösningar till tentan i SF1861 Optimeringslära, 1 juni 2017
Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the
Läs merSats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen.
Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen. Betrakta kvadratiska delmatriser av storlek n n, dar n m, och anvand induktion med avseende
Läs merTNK049 Optimeringslära
TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)
Läs merLP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Läs merTENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
Läs merTentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Läs merTentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
Läs merFöreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.
Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:
Läs merLösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
Läs merTentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Läs merTNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
Läs merFöreläsning 6: Nätverksoptimering
Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem
Läs mertentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn T7005N Operationsanalys Datum LP2 13/14 Material Kursexaminator Sammanfattning Björn Samuelsson Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning
Läs merTentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
Läs merTAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:
2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering
Läs merLinjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
Läs merTAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Läs merTentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
Läs merTentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Läs merVårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Läs merMIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
Läs merFlöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Läs merTentamensinstruktioner
TNSL05 1(11) TENTAMEN Datum: 14 januari 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12
Läs merOptimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Läs merTentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Läs merFlöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Läs merOptimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
Läs merLösningsförslag Tentamen i Optimering och Simulering MIO /5 2006
Lösningsförslag Tentamen i Optimering och Simulering MIO /5 Uppgift a) svar: 9 8 b) Svar: Δ b < c) Svar : 5 Δ c < d) Svar: ma st 8 8 Uppgift a) Dualen (D) till det primala problemet (P) är: Ma y 5y y y
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merOptimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
Läs merMIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Läs merMIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Läs merOptimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merLösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
Läs merTentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merTNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Läs merSpeciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Läs merTNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Läs merTentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Läs merTentamen TMA946/MAN280 tillämpad optimeringslära
Tentamen TMA946/MAN80 tillämpad optimeringslära 01081 1. Uppgift: min z 3x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Skriv på standardform m.h.aṡlackvariabler min z 3x 1 + x Då x 1 + x s 1 6 x 1 x + s x 1, x,
Läs merLineära system av differentialekvationer
Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems
Läs merSolutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
Läs merFlöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Läs merLösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.
Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden
Läs merOptimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.
Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Läs mer5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
Läs merCHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor
Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Läs merTentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merOptimeringslära för T (SF1861)
Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation
Läs merTNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Läs merOptimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Läs merTentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merTENTAMEN Tillämpad Systemanalys 5hp
TETAME Tillämpad Systemanalys 5hp Tid: 2012-12-17, 14.00-17.00. OBS: kort skrivtid! Plats: Bergsbrunnagatan 15, Sal 1. Ansvarig lärare: Håkan Lanshammar,. Håkan kommer och svarar på frågor ungefär kl 15.30.
Läs merTENTAMEN Tillämpad systemanalys 5hp 1RT242
TENTAMEN Tillämpad systemanalys 5hp 1RT242 Tid: 2017-01-10, 14.00 19.00. Plats: Bergsbrunnagatan 15, sal 1. Ansvarig lärare: Hans Rosth Tillåtna hjälpmedel: Ett A4-papper med egna anteckningar (båda sidor),
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 10 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Läs merreella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga
. Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merExaminator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Läs mer