Lösningar till 5B1762 Optimeringslära för T, 24/5-07

Storlek: px
Starta visningen från sidan:

Download "Lösningar till 5B1762 Optimeringslära för T, 24/5-07"

Transkript

1 Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen Addition av gånger andra raden till första raden, samt addition av gånger andra raden till tredje raden, ger till resultat matrisen = U Nu är A överförd till trappstegsform med två trappstegsettor En bas till R(A) erhålls genom att som basvektorer välja de kolonner i A som svarar mot trappstegsettor i U, kolonnerna och i A De två vektorerna och utgör alltså en bas till R(A) En bas till N (A) kan bestämmas enligt följande: Sätt x 3 = (den enda variabel som inte svarar mot en trappstegsetta) och bestäm sedan x och x (variablerna svarande mot trappstegsettor) så att Ux = Det ger den första och enda basvektorn till N (A) Fortsättning på nästa sida

2 Nu använder vi Gauss Jordans metod på matrisen A T = Addition av gånger första raden till andra raden ger till resultat matrisen Addition av gånger andra raden till första raden, samt addition av gånger andra raden till tredje raden, ger till resultat matrisen = Ũ Nu är A T överförd till trappstegsform med två trappstegsettor En bas till R(A T ) erhålls genom att som basvektorer välja de kolonner i A T som svarar mot trappstegsettor i Ũ, kolonnerna och i A T De två vektorerna och utgör alltså en bas till R(A T ) En bas till N (A T ) kan bestämmas enligt följande: Sätt y 3 = (den enda variabel som inte svarar mot en trappstegsetta) och bestäm sedan y och y (variablerna svarande mot trappstegsettor) så att Ũy = Det ger den första och enda basvektorn till N (A T )

3 Uppgift (b) Inför följande beslutsvariabler: x j = antal kg av produkten P j som blandas till per vecka y i = antal kg av råvaran R i som köps in per vecka Då kan företagets frågeställning formuleras som följande LP-problem i variablerna x j och y i : maximera då n m c j x j b i y i j= i= n a ij x j y i, j= x j d j, j =,, n i =,, m y i e i, i =,, m Kommentar: n j= a ijx j anger hur mycket som går åt av råvaran R i per vecka, och man måste köpa in minst så mycket Å andra sidan är det bortkastat att köpa in mer än man behöver, så vi kan utgå från att y i = n j= a ijx j i varje optimal lösning Med hjälp av detta samband kan variablerna y i elimineras ur problemet, varvid följande LP-problem i enbart variablerna x j erhålls: maximera då n k j x j j= n a ij x j e i, j= i =,, m x j d j, j =,, n, där konstanterna k j i målfunktionen ges av k j = c j m b i a ij Den första formuleringen är nog att föredra Det finns ingen anledning att välja en formulering med så få variabler som möjligt i= 3

4 Uppgift (a) Eftersom alla c j = 3 så är töjningsenergiminimeringsproblemet ekvivalent med QP-problemet minimera f T H f då R f = p, där H = 3, R = 3, p = 8 Matrisen H är positivt definit, ty för varje vektor z IR 4 med z är z T Hz = 3 (z + z + z 3 + z 4 ) > Därmed är QP-problemet ekvivalent med det linjära ekvationssystemet H f R T u =, R f = p Ur H f R T u = erhålls att f = 3 R T u, som insatt i R f = p ger ekvationssystemet 3 RR T u = p, u u =, med lösningen u = 3 u Normalkrafterna i stängerna ges sedan av ˆf = 3 R T u = 3 = 4 Med den givna lastvektorn blev det alltså dragkraft i alla fyra stängerna Uppgift (b) p x 7 6 Om p = p y så blir enligt ovan u = u y = 3 p z u z u x p x p y p z / Vidare blir ˆf ˆf + ˆf 3 ˆf 4 = (,,, )ˆf = 3 (,,, ) R T u = = (,,, ) u x u x u y = (,, ) u y = u z u z 4

5 Uppgift 3(a) Om vi inför slackvariabler x 5 och x 6, för att överföra olikhetsbivillkoren till likhetsbivillkor, så får vi ett LP-problem på standardformen där A = minimera [ ], b = c T x då Ax = b, x, ( ) 8 och c 4 T = ( 3, 4,, 5,, ) Startlösningen ska ha basvariablerna x 5 och x 6, β = (5, 6) och δ = (,, 3, 4) [ ] [ ] Motsvarande basmatris ges av A β =, medan A δ = Basvariablernas värden i baslösningen ges av x β = b, där vektorn b beräknas ur ekvationssystemet A β b = b, [ ] ) ( ) ) ( ) ( b 8 ( b =, med lösningen b 4 b 8 = = b 4 Vektorn y med simplexmultiplikatorerna värden erhålls ur systemet A [ ] ( ) ( ) ( ) ( ) T β y = c β, y y =, med lösningen y = = y Reducerade kostnaderna för icke-basvariablerna [ ges av ] r T δ = ct δ yt A δ = ( 3, 4,, 5) (, ) = ( 3, 4,, 5) Eftersom r δ = r = 3 är minst, och <, ska vi låta x bli ny basvariabel Då behöver vi beräkna vektorn ā ur systemet A β ā = a, [ ] ) ( ) ) (ā (ā =, med lösningen ā = = ā y ā ( ) Det största värde som den nya basvariabeln x kan ökas till ges av { } { bi 8 t max = min ā i > = min i ā i, 4 } = 4 = b ā Minimerande index är i =, varför x β = x 6 inte längre får vara kvar som basvariabel Dess plats tas av x Nu är alltså β = (5, ) och δ = (6,, 3, 4) Motsvarande basmatris ges av A β = [ ] [ ], medan A δ = Basvariablernas värden i baslösningen ges av x β = b, där vektorn b beräknas ur ekvationssystemet A β b = b, [ ] ) ( ) ) ( ) ( b 8 ( b =, med lösningen b 4 b 4 = = b 4 5

6 Vektorn y med simplexmultiplikatorerna värden erhålls ur systemet A [ ] ( ) ( ) ( ) ( ) T β y = c β, y y =, med lösningen y = = 3 3 y Reducerade kostnaderna för icke-basvariablerna [ ges av ] r T δ = ct δ yt A δ = (, 4,, 5) (, 3) = (3,,, ) Eftersom r δ så är den aktuella baslösningen optimal Därmed är punkten x = 4, x =, x 3 =, x 4 = optimal till det ursprungliga problemet Optimalvärdet är z = Uppgift 3(b) Antag nu att c T = ( 3, 4,,,, ) i stället för ( 3, 4,, 5,, ) Om vi startar från slutlösningen ovan, med β = (5, ) och δ = (6,, 3, 4), så gäller fortfarande att [ ] [ ] ( ) ( ) 4 A β =, A δ =, b = och y = 4 3 Men reducerade kostnaderna för icke-basvariablerna ges nu av [ ] r T δ = ct δ yt A δ = (, 4,, ) (, 3) = (3,,, ) Eftersom r δ4 = r 4 = är minst, och <, ska vi låta x 4 bli ny basvariabel Då behöver vi beräkna vektorn ā 4 ur systemet A β ā 4 = a 4, [ ] ) ( ) ) (ā4 (ā4 =, med lösningen ā 4 = = ā 4 y ā 4 ( ) Eftersom ā 4 så kan x 4 öka obegränsat, varvid målfunktionsvärdet går mot Därmed saknar problemet ändligt optimalvärde och algoritmen avbryts Extra kommentar (som inte krävs): Om man sätter x 4 = t och låter t öka från, medan de övriga ickebasvariablerna ligger kvar vid, så påverkas målfunktionen enligt z = z + r 4 t = t, medan basvariablernas ( ) ( ) ( ) värden påverkas enligt x β = b x5 4 ā 4 t, = t x 4 x (t) 4 x (t) Detta kan skrivas x(t) = x 3 (t) x 4 (t) = + t = x + t d x 5 (t) 4 x 6 (t) Då är Ax(t) = b och x(t) för alla t, x(t) är en tillåten lösning för varje t, medan c T x(t) = c T x + t c T d = t då t + 6

7 Uppgift 3(c) Om primala problemet är på standardformen minimera c T x då Ax = b, x, så är det duala problemet på formen: maximera b T y då A T y c, som här blir: maximera 8y + 4y då y + y 3, y y 4, y + y, y y 5, y, y Om man ritar upp det tillåtna området till detta problem i en figur med y och y på axlarna så ser man att det blir en femhörning med hörnen i koordinaterna ( 5, 5), (, 3), (, 4), ( 5, 45) och ( 5, 35) Uppgift 3(d) I figuren ovan ska vi nu byta ut bivillkoret y y 5 mot bivillkoret y y Men då ser man direkt att det inte finns något y som uppfyller både y + y 3 och y y (Vilket även inses om man adderar dessa båda olikheter) Alltså saknar det duala problemet tillåtna lösningar, vilket är vad vi väntade oss eftersom det primala problemet hade tillåtna lösningar men saknade (ändlig) optimallösning 7

8 Uppgift 4 Vi har ett kvadratiska optimeringsproblem med linjära olikhetsbivillkor på formen där H = minimera xt Hx + c T x då Ax b, 5, c = 4, A = och b = Vi ska lösa problemet med den metod som finns kortfattat sammanfattad på formelbladet (i form av ett antal Steg ) I den givna startpunkten x = (,, ) T är all tre bivillkoret uppfyllda med likhet Därför startar vi med α = (,, 3) och γ tom 5 Då är H x + c = 4 och A α =, och därmed A T α = Vi får svaret JA i Steg, ty H x + c = A T αū med ū = ( 5, 4, ) T, så vi går till Steg Här konstateras att ū < (och minst), varför α = flyttas över till γ vektorn [ ] Sedan går vi till Steg 3 med α = (, 3), γ = () och A α = I Steg 3 ska vi minimera dt Hd + (H x + c) T d under bivillkoret A α d =, minimera d + d + d 3 + d d + d d 3 + d d 3 5d 4d d 3 då d = och d 3 = Insättning av d = d 3 = i målfunktionen leder till att vi ska minimera d 5d med avseende på d Detta enkla envariabelproblem har den optimala lösningen ˆd = Vi får alltså att ˆd = Eftersom x + ˆd = uppfyller alla bivillkor låter vi denna punkt bli nästa iterationspunkt x och går till Steg Nu är α = (, 3) och γ = () Vidare är 5 [ x =, H x + c = 5, A α = 5 ], A T α = Vi får svaret JA i Steg, ty H x + c = A T αū med ū = ( 5, 5) T, så vi går till Steg Här konstateras att ū < (och minst), varför α = flyttas över till γ vektorn Sedan går vi till Steg 3 med α = (3), γ = (, ) och A α = [ ] 8

9 I Steg 3 ska vi minimera dt Hd + (H x + c) T d under bivillkoret A α d =, minimera d + d + d 3 + d d + d d 3 + d d 3 5d + 5d 3 då d 3 = Insättning av d 3 = i målfunktionen leder till att vi ska minimera d + d + d d 5d med avseende på d och d, utan några bivillkor Detta konvexa kvadratiska tvåvariabelproblem är ekvivalent med ekvationssystemet [ ] ( ) ( ) d =, med lösningen d 5 = 5, ˆd = 5 Vi får alltså att ˆd = Eftersom x + ˆd = uppfyller alla bivillkor låter vi denna punkt bli nästa iterationspunkt x och går till Steg Nu är α = (3) och γ = (, ) Vidare är x =, H x + c =, A α = [ ], A T α = Vi får svaret JA i Steg, ty H x + c = A T αū med ū =, så vi går till Steg Här konstateras att ū, varför den aktuella iterationspunkten x =, tillsammans med vektorn ŷ =, uppfyller optimalitetsvillkoren, H x + c = A T ŷ, A x b, ŷ och ŷ T (A x b) = Vi stannar därför här 9

10 Uppgift 5(a) Problemet kan skrivas på formen: minimera f(x) då g i (x), i =,, 3, där f(x) = c x 4x x 3, g (x) = x + x, g (x) = x + x 3, g 3(x) = x + x 3 Målfunktionen är linjär, och därmed även konvex De kvadratiska bivillkorsfunktionerna har andraderivatsmatriserna, och, som samtliga är positivt semidefinita Därmed är även bivillkorsfunktionerna konvexa, varför det betraktade problemet är ett konvext optimeringsproblem Vidare uppfyller exempelvis x = (,, ) T samtliga bivillkor med strikt olikhet, så det betraktade problemet är ett regulärt konvext problem Det betyder att en punkt ˆx är en globalt optimal lösning till problemet om och endast om ˆx är en KKT-punkt Uppgift 5(b) Lagrangefunktionen kan skrivas L(x, y) = f(x) + 3 i= y ig i (x) = = c x 4x x 3 + y (x + x ) + y (x + x 3 ) + y 3(x + x 3 ) KKT-villkoren kan delas upp i fyra grupper enligt följande (KKT ) L/ x j = för j =,, 3 : c + x (y + y ) =, 4 + x (y + y 3 ) =, + x 3 (y + y 3 ) = (KKT ) Tillåten punkt, g i (x) för i =,, 3 : x + x, x + x 3, x + x 3 (KKT 3) Lagrangemultiplikatorerna icke-negativa: y, y, y 3 (KKT 4) Komplementaritetsvillkor, y i g i (x) = för i =,, 3 : y (x + x ) =, y (x + x 3 ) =, y 3 (x + x 3 ) = Uppgift 5(c) Antag först att x = (4,, ) T Då är x + x =, x + x 3 =, x + x 3 < Komplementaritetsvillkoren ger då att y 3 =, varefter villkoren KKT kan skrivas c + 8(y + y ) =, 4 + 4(y + ) =, + 4(y + ) = Vi ser att detta system saknar lösning om c 4 Om c = 4 så uppfyller x = (4,, ) T, tillsammans med y = (, 5, ) T, samtliga KKT-villkor, varvid x är en global optimallösning till problemet

11 Uppgift 5(d) Antag nu att x = (,, ) T Då är x + x =, x + x 3 =, x + x 3 = Villkoren KKT kan nu skrivas y + y = 5 c, y + y 3 =, y + y 3 = Lösningen till detta ekvationssystem i y blir, med utnyttjande av den givna räknehjälpen, y 5 c y = = 5 c = c + 4 c y 3 c + 6 Vi ser att villkoren KKT 3 blir uppfyllda om och endast om 6 c För dessa värden på konstanten c så uppfyller x = (,, ) T, tillsammans med ( c y =, c, 6 + c ) T, samtliga KKT-villkor, varvid x är en global optimallösning 4 4 4

Lösningar till SF1852 Optimeringslära för E, 16/1 08

Lösningar till SF1852 Optimeringslära för E, 16/1 08 Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,

Läs mer

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013 Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)

Läs mer

Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017

Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017 Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the

Läs mer

Lösningar till SF1861 Optimeringslära, 28 maj 2012

Lösningar till SF1861 Optimeringslära, 28 maj 2012 Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +

Läs mer

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016 Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that

Läs mer

Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015

Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015 Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O

Läs mer

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,

Läs mer

1 Ickelinjär optimering under bivillkor

1 Ickelinjär optimering under bivillkor Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

1 Minkostnadsflödesproblem i nätverk

1 Minkostnadsflödesproblem i nätverk Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa

Läs mer

Solutions to exam in SF1811 Optimization, June 3, 2014

Solutions to exam in SF1811 Optimization, June 3, 2014 Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

Linjärprogrammering (Kap 3,4 och 5)

Linjärprogrammering (Kap 3,4 och 5) Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna

Läs mer

Tentamen TMA946/MAN280 tillämpad optimeringslära

Tentamen TMA946/MAN280 tillämpad optimeringslära Tentamen TMA946/MAN80 tillämpad optimeringslära 01081 1. Uppgift: min z 3x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Skriv på standardform m.h.aṡlackvariabler min z 3x 1 + x Då x 1 + x s 1 6 x 1 x + s x 1, x,

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och

Läs mer

5B1817 Tillämpad ickelinjär optimering. Optimalitetsvillkor för problem med linjära bivillkor.

5B1817 Tillämpad ickelinjär optimering. Optimalitetsvillkor för problem med linjära bivillkor. 5B1817 Tillämpad ickelinjär optimering Föreläsning 2 Optimalitetsvillkor för problem med linjära bivillkor. A. Forsgren, KTH 1 Föreläsning 2 5B1817 2006/2007 Optimalitetsvillkor för ickelinjära programmeringsproblem

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder

5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder 5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Föreläsning 6: Nätverksoptimering

Föreläsning 6: Nätverksoptimering Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 UPPGIFT (1) Låt V vara mängden av vektorer (x 1, x 2, x 3 ) i R 3 som uppfyller

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Extrempunkt. Polyeder

Extrempunkt. Polyeder Optimum? När man har formulerat sin optimeringsmodell vill man lösa den. Dvs. finna en optimal lösning, x, till modellen. Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan bättre. Upprepa, tills

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Ett linjärprogrammeringsproblem på allmän form ser ut som

Ett linjärprogrammeringsproblem på allmän form ser ut som Linjärprogrammering Ett linjärprogrammeringsproblem på allmän form ser ut som Minimera n j=1 c jx j x j 0 n j=1 a ijx j b i i =1, 2,...,m Variant: Vi kan vilja maximera istället. Vi kommer att studera

Läs mer

Optimeringslära för T (SF1861)

Optimeringslära för T (SF1861) Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation

Läs mer

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information

Läs mer

Laboration 1 - Simplexmetoden och modellformulering

Laboration 1 - Simplexmetoden och modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen

Läs mer

5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts.

5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts. 5B1817 Tillämpad ickelinjär optimering Föreläsning 5 Metoder för problem utan bivillkor, forts. A. Forsgren, KTH 1 Föreläsning 5 5B1817 2006/2007 Lösningar För en given metod blir en lösning den bästa

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

Hemuppgift 1, SF1861 Optimeringslära, VT 2017

Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas i Matematiks svarta postlåda (SF) för inlämningsuppgifter,

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:

TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: 2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Hemuppgift 1, SF1861 Optimeringslära för T

Hemuppgift 1, SF1861 Optimeringslära för T Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt

Läs mer

1 Positivt definita och positivt semidefinita matriser

1 Positivt definita och positivt semidefinita matriser Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida

Läs mer

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Några övningsexempel i Optimeringslära

Några övningsexempel i Optimeringslära Några övningsexempel i Optimeringslära Avdelningen för Optimeringslära and systemteori, KTH, Feb 03 Innehåll Övningsexempel. Linjär optimering. Flöden i nätverk 7 3. Konvexitet 4. Ickelinjär optimering

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s

Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s Tekniska Högskolan i Linköping Optimering av realistiska sammansatta s Matematiska Institutionen Lösning till tentamen Optimeringslära 2014-01-15 Kaj Holmberg Lösningar/svar Uppgift 1 1a: (Detta problem

Läs mer

Uppgift 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Uppgift 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Uppgift a) Här ses direkt att kan ökas obegränsat utan att bryta mot några bivillkor vilket i sin tur betyder att problemet har obegränsad lösning. b) Lös med Simple-algoritmen (t.e. med matris-metoden).

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Facit/lösningsförslag

Facit/lösningsförslag Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l

Läs mer

SF1545 Laboration 1 (2015): Optimalt sparande

SF1545 Laboration 1 (2015): Optimalt sparande Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.

Läs mer

Laboration 1: Optimalt sparande

Laboration 1: Optimalt sparande Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t. 1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats. Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Här är ett antal uppgifter, en del tagna från gamla tentamina, som handlar om basbyte. respektive B = uttryckta i basen A

Här är ett antal uppgifter, en del tagna från gamla tentamina, som handlar om basbyte. respektive B = uttryckta i basen A Problem om asbyte Mikael Forsberg, 8 februari 0 Här är ett antal uppgifter, en del tagna från gamla tentamina, som handlar om basbyte.. Vi har baserna A och, givna som kolonnerna till matriserna T-00 A

Läs mer

Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen.

Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen. Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen. Betrakta kvadratiska delmatriser av storlek n n, dar n m, och anvand induktion med avseende

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer