Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform."

Transkript

1 Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning 2 Simplexmetoden - Ulf Jönsson & Per Enqvist

2 Repetition av den geometriska Simplexmetoden Produktplaneringsproblemet maximera 200x + 400x 2 då 40 x + x 2 x + x 2 x k 0, k =, 2 x 2 40 c x 2 = 0.5x x Föreläsning 2 2 Simplexmetoden - Ulf Jönsson & Per Enqvist

3 Idén bakom Simplexmetoden är att söka iterativt utefter kanter till hörn med allt bättre målfunktionsvärde. Bestäm initial hörnpunkt Är hörnpunkten optimal? Ja KLART Nej Finn bättre intilliggande hörnpunkt Föreläsning 2 3 Simplexmetoden - Ulf Jönsson & Per Enqvist

4 Sökning med den geometriska simplexmetoden c x2 x2 c x d d 2 c d d d 20 0 d x x x c T d < 0 c T d < 0 c T d 2 > 0 c T d 2 > 0 välj riktning d 2 välj riktning d 2 c T d < 0 c T d 2 < 0 optimal HP Föreläsning 2 4 Simplexmetoden - Ulf Jönsson & Per Enqvist

5 Standardformen för produktplaneringsexemplet. maximera 200x + 400x 2 då 40 x + x 2 x + x 2 x k 0, k =, 2 = minimera 200x 400x 2 då 40 x + x 2 + x 3 = x + x 2 + x 4 = x k 0, k =, 2, 3, 4. Hur är hörnpunkter representerade i standardformen? Föreläsning 2 5 Simplexmetoden - Ulf Jönsson & Per Enqvist

6 Geometrisk tolkning för LP på standardform: 2D x 2 x 2 α α x β x Bivillkor: a x + a 2 x 2 = b. F är ett halv-oändligt (blått) eller ändligt linjesegment (rött) Det optimala ˆx = (0,α), (β, 0), eller så har problemet ingen ändlig lösning. Föreläsning 2 6 Simplexmetoden - Ulf Jönsson & Per Enqvist

7 Geometrisk tolkning för LP på standardform: 3D γ x 3 x α β x 2 Bivillkor: a x + a 2 x 2 + a 3 x 3 = b. F är skärningen av ett plan och den första kvadranten. (grönt) Det finns tre hörnpunkter x () = (α, 0, 0), x (2) = (0,β, 0), x (3) = (0, 0,γ), Föreläsning 2 7 Simplexmetoden - Ulf Jönsson & Per Enqvist

8 Geometrisk tolkning för LP på standardform: 3D x 3 γ β x α α2 x 2 Bivillkor: a x + a 2 x 2 + a 3 x 3 = b. a 2 x + a 22 x 2 + a 23 x 3 = b 2. F är skärningen av en linje och den första kvadranten (grön) Det finns två hörnpunkter x () = (α,β, 0), x (2) = (α 2, 0,γ), Notera: # nollskilda element i x (k) = # bivillkor, i dessa exempel. Föreläsning 2 8 Simplexmetoden - Ulf Jönsson & Per Enqvist

9 Produktionsplaneringsexemplet Bivillkoret i standardform är Ax = b där A = [a a 2 a 3 a 4 = 0 40 b = 0 Detta kan skrivas som 4 a k x k = a x + a 2 x 2 + a 3 x 3 + a 4 x 4 = b k=0 Om vi sätter t.ex. x 2 = x 3 = 0 så har vi att a x + a 4 x 4 = A β x β = b, där A β = [a a 4 = 0 40, x β = x x 4 Föreläsning 2 9 Simplexmetoden - Ulf Jönsson & Per Enqvist

10 Vi beräknar därefter x β = x x 4 = A β b = 40 5 Dessa värden på x och x 4, tillsammans med x 2 = x 3 = 0, ger en tillåten lösning, d.v.s., Ax = b, där (x,x 2 ) = (40, 0). Detta är en hörnpunkt. Övriga lösningar motsvarande kombinationer av två kolumner i A finns representerade i tabellen på nästa sida. Föreläsning 2 0 Simplexmetoden - Ulf Jönsson & Per Enqvist

11 Geometrisk illustration av baslösningarna x 2 (2,4) (2,3) (3,4) 0 (,2) (,4) (,3) x β A 2 β 3 x 2 β 3 (x, x 2 ) 2 3 (3,4) (2,4) (,4) (2,3) (,3) (,2) Det gäller allmänt att hörnpunkter svarar mot så kallade baslösningar. Föreläsning 2 Simplexmetoden - Ulf Jönsson & Per Enqvist

12 LP-problem på standardform minimera då n c j x j j= n a ij x j = b i, i =,...,m j= x j 0, j =,...,n = minimera c T x då Ax = b x 0 där A = a.... a n. [ = a... a n,b = b.,c = c.,x = x. a m... a mn b m c n x n Föreläsning 2 2 Simplexmetoden - Ulf Jönsson & Per Enqvist

13 Simplexalgoritmen För given basindexvektor och icke-basindexvektor β = (β,...,β m ) ν = (ν,...,ν l ), l = n m definierar vi A β = [a β... a βm, A ν = [a ν... a νl, c β = c β., x β = x β. c ν = c ν., x β = x ν. c βm x βm c νl x νl Föreläsning 2 3 Simplexmetoden - Ulf Jönsson & Per Enqvist

14 Definition. Baslösningen svarande mot β ges av A β x β = b x β = A β x β baslösningen är tillåten (TBL) om x β 0 En tillåten baslösning kallas icke-degenererad om x β > 0 En tillåten baslösning kallas degenererad om x βk = 0 för något index β k. Föreläsning 2 4 Simplexmetoden - Ulf Jönsson & Per Enqvist

15 Produktplaneringsexemplet x 2 (2,4) (2,3) (3,4) 0 (,2) (,4) (,3) x β A β x β ν x ν (3,4) (, 2) (2,4) (, 3) 0 (,4) (2,3) (,3) (,2) (2, 3) (, 4) (2, 4) (3, 4) 0 30 Villka baslösningar är tillåtna? Jämför med den geometriska tolkningen. Föreläsning 2 5 Simplexmetoden - Ulf Jönsson & Per Enqvist

16 Sats. Om det finns en optimal lösning så finns det en optimal tillåten baslösning. Satsen motiverar följande simplexalgoritm Bestäm initial TBL TBL optimal? Ja KLART Nej Byt bas De olika blocken kan implementeras med linjär algebraoperationer. Föreläsning 2 6 Simplexmetoden - Ulf Jönsson & Per Enqvist

17 Initial TBL β = β,..., β m ) ν = (ν,..., ν l ) Beräkna (y,r ν, b) A T β y = c β r ν = c ν A T ν y A β b = b r ν 0 Nej Ja Optimal lösning x = b, x ν = 0 z = y T b Tag ν q så att r ν q < 0 Lös A β ā k = a k ; k = ν q ā k 0 Obegränsat problem Lösning saknas ( ) b t max i = min ā ik > 0 ā ik ν = ν q, ν q = β p, β p = ν = b p ā pk Föreläsning 2 7 Simplexmetoden - Ulf Jönsson & Per Enqvist

18 Simplex för produktionsplaneringsexemplet Standardformen för produktplaneringsexemplet. minimera c T x då Ax = b x 0 där A = c T = 40 [ , 0 0 b = Vi vill lösa detta med simplex. När man har infört slackvariabler kan man visa att om man väljer dessa som startbasvariabler så bildar det en TBL. (Givet att b 0) Föreläsning 2 8 Simplexmetoden - Ulf Jönsson & Per Enqvist

19 Låt β = {3, 4} och ν = {, 2}, Simplex A β = 0 /40 /, A ν = 0 / / [ [ c T β = 0 0, c T ν = Då blir baslösningen x β = b = A β b = [ tillåten. Simplexmultiplikatorerna ges av ekvationen A T β y = c β och reducerade kostnader ges av r T ν = c T ν y T A ν, d.v.s. y = 0 [ T [ [, och r T 0 /40 / ν = [ = 0 / / Föreläsning 2 9 Simplexmetoden - Ulf Jönsson & Per Enqvist

20 Simplex Eftersom de reducerade kostnaderna är negativa så är den aktuella TBL inte optimal. r ν2 är minst, så låt x ν2 = x 2 bli ny basvariabel. Vilken variabel ska ut ur basen? [ b bestäms från A β b = b, d.v.s. b = A β b = ā 2 bestäms från A β ā 2 = a 2, d.v.s. ā 2 = A β a 2 = Nu ska x 2 väljas så stor som möjligt då x β är icke-negativ: [ / / x β = b ā 2 x 2 = / / x 2 0 Det största möjliga värdet på x 2 är, varvid x β2 = x 4 = 0. Alltså ska x 4 ersattas av x 2 i nästa baslösning. Föreläsning 2 20 Simplexmetoden - Ulf Jönsson & Per Enqvist

21 Simplex: Iteration 2 Låt β = {3, 2} och ν = {, 4}, A β = /, A ν = / / / [ [ c T β = 0 400, c T ν = [ Då blir baslösningen x β = b = A β b = tillåten. 5/6 0 [ [ = /6 Simplexmultiplikatorerna ges av ekvationen A T β y = c β y = A T β c β = 5/6 0 T = Föreläsning 2 2 Simplexmetoden - Ulf Jönsson & Per Enqvist

22 Simplex: Iteration 2 Reducerade kostnader ges av r T ν = c T ν y T A ν, d.v.s. T [ 0 r T ν = /40 0 = / [ Eftersom de reducerade kostnaderna är positiva så är den aktuella TBL optimal x 2 (2,4) (2,3) (3,4) 0 (,2) (,4) (,3) x Vi startade i origo med basvariabler (3,4) och bytte sedan till basvariablerna (3,2), dvs punkten (0,), vilken vi geometriskt motiverade är optimal. Föreläsning 2 22 Simplexmetoden - Ulf Jönsson & Per Enqvist

23 Initial tillåten baslösning Ibland kan det vara icke-trivialt att hitta en initial TBL. Då kan man lösa problemet i två faser. Här antar vi att b 0. Fas Lös LP-problemet minimera e T v då Ax + Iv = b x 0, v 0 [ T. där I är enhetsmatrisen och e =... Låt initial TBL svara mot variablerna i v. Om optimallösningen är ˆv = 0 så har man hittat en initial TBL till fas 2. Fas 2 Lös ursprungliga problemet på standardform med basvariabler från Fas. Föreläsning 2 23 Simplexmetoden - Ulf Jönsson & Per Enqvist

24 Läsanvisningar I Optimeringskompendiet kap. 4 och 5. Gamla Materialet: Linjär Optimering, Gröna häftet, sidan Linjar Algebra för optimerare, Gula häfte, sidan Föreläsning 2 24 Simplexmetoden - Ulf Jönsson & Per Enqvist

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

Optimeringslära för T (SF1861)

Optimeringslära för T (SF1861) Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Föreläsning 6: Nätverksoptimering

Föreläsning 6: Nätverksoptimering Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem

Läs mer

Föreläsning 6: Transportproblem (TP)

Föreläsning 6: Transportproblem (TP) Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:

Läs mer

Linjärprogrammering (Kap 3,4 och 5)

Linjärprogrammering (Kap 3,4 och 5) Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016 Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

1 Minkostnadsflödesproblem i nätverk

1 Minkostnadsflödesproblem i nätverk Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering

TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats. Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen.

Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen. Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen. Betrakta kvadratiska delmatriser av storlek n n, dar n m, och anvand induktion med avseende

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod. Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:

TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: 2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015

Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015 Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar

Läs mer

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

Lösningsförslag Tentamen i Optimering och Simulering MIO /5 2006

Lösningsförslag Tentamen i Optimering och Simulering MIO /5 2006 Lösningsförslag Tentamen i Optimering och Simulering MIO /5 Uppgift a) svar: 9 8 b) Svar: Δ b < c) Svar : 5 Δ c < d) Svar: ma st 8 8 Uppgift a) Dualen (D) till det primala problemet (P) är: Ma y 5y y y

Läs mer

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13 LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris

Läs mer

Extrempunkt. Polyeder

Extrempunkt. Polyeder Optimum? När man har formulerat sin optimeringsmodell vill man lösa den. Dvs. finna en optimal lösning, x, till modellen. Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan bättre. Upprepa, tills

Läs mer

Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.

Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

1. Vad är optimering?

1. Vad är optimering? . Vad är optimering? Man vill hitta ett optimum, när något är bäst, men att definiera vad som är bäst är inte alltid så självklart. För att kunna jämföra olika fall samt avgöra vad som är bäst måste man

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

Modellering och optimering av schemaläggning vid en ridskola

Modellering och optimering av schemaläggning vid en ridskola Modellering och optimering av schemaläggning vid en ridskola En fallstudie i heltalsprogrammering Kandidatarbete inom civilingenjörsutbildningen vid Chalmers Rasmus Einarsson Patrik Johansson Oskar Redlund

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

Tentamen TMA946/MAN280 tillämpad optimeringslära

Tentamen TMA946/MAN280 tillämpad optimeringslära Tentamen TMA946/MAN80 tillämpad optimeringslära 01081 1. Uppgift: min z 3x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Skriv på standardform m.h.aṡlackvariabler min z 3x 1 + x Då x 1 + x s 1 6 x 1 x + s x 1, x,

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

1 Ickelinjär optimering under bivillkor

1 Ickelinjär optimering under bivillkor Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få

Läs mer

Exempelsamling. Optimeringslära 1 januari 2013. TAOP07 Optimeringslära grundkurs för Y

Exempelsamling. Optimeringslära 1 januari 2013. TAOP07 Optimeringslära grundkurs för Y Linköpings tekniska högskola Optimeringslära grundkurs för Y Matematiska institutionen Exempelsamling Optimeringslära 1 januari 2013 Exempelsamling TAOP07 Optimeringslära grundkurs för Y 1. Låt mängderna

Läs mer

Optimering med hjälp av Lego. Mathias Henningsson

Optimering med hjälp av Lego. Mathias Henningsson Optimering med hjälp av Lego Mathias Henningsson Vem är jag? Mathias Henningsson Lärare Optimeringslära 1996-2007 Produktionsekonomi 2008- Bokförfattare Optimeringslära övningsbok (Studentlitteratur) Arbetar

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 26 augusti 2014 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2 Flervariabelanals I Vintern Översikt öreläsningar läsvecka Denna vecka ägnas nästan uteslutande åt problemet att hitta största och minsta värden till en unktion av lera variabler. Vi kommer att studera

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Linjär Algebra, Föreläsning 20

Linjär Algebra, Föreläsning 20 Linjär Algebra, Föreläsning 20 Tomas Sjödin Linköpings Universitet Symmetriska avbildningar, repetition F : E E sägs vara symmetrisk om (F (u) v) = (u F (v)) gäller för all u, v i det Euklidiksa rummet

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn T7005N Operationsanalys Datum LP2 13/14 Material Kursexaminator Sammanfattning Björn Samuelsson Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0 1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen a 1 x 1 + a 2 x 2 + a n x n = b, med givna tal a 1,..., a n och b. Ett linjärt ekvationssystem

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Föreläsning 7. Felrättande koder

Föreläsning 7. Felrättande koder Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

Linjär algebra förel. 10 Minsta kvadratmetoden

Linjär algebra förel. 10 Minsta kvadratmetoden Linjär algebra förel. 10 Minsta kvadratmetoden Niels Chr. Overgaard 015-09- c N. Chr. Overgaard Förel. 9 015-09- logoonly 1 / 17 Data från 1 vuxna män vikt (kg) längd (m) 58 1,69 83 1,77 80 1,79 77 1,80

Läs mer