Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.

Storlek: px
Starta visningen från sidan:

Download "Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer."

Transkript

1 Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson 1995 Håkan Lanshammar 1998

2

3 Inledning Denna laboration/inlämningsuppgift avser att visa hur praktiskt arbete med optimering på dator kan gå till. Utgångspunkten är att du behöver lösa vissa optimeringsproblem och därför har fått tillgång till lämplig programvara. Det är nu din uppgift att sätta dig in i hur denna fungerar och med hjälp av denna lösa dina problem. Uppgifterna behandlar LP- och IP-problem samt ger en del ny kunskap. Den programvara som ska användas är Microsoft Excel Solver. Detta är ett optimeringspaket utvecklat av Frontline Systems, Inc. Man hittar den under Tools i Excel, och detta program finns också för de andra kalkylprogrammen Lotus 123 och Borland Quattro Pro. Här nedan ges en kort introduktion till hur Solver används. Mer information finns i Excels hjälpsystem och på Frontline s www-hemsida: Som exempel löser vi problemet: Max( f ) = 20x + 20x x1 + 2x2 80 3x 1 + 2x2 120 x1, x2 0 Generellt på matrisform: T Max( f ) = c x Ax b x Problemet kan skrivas in i Excel: A B C D E F 1 x1 x2 2 Variabler Värde 4 Kriterium c Bivillkor A Värdekolumnen (F) innehåller aktuellt värde på kriteriefunktionen respektive bivillkoren. Detta kan lämpligen skrivas med funktionen SUMPRODUCT. I cellen F4 står =SUMPRODUCT(C$2:D$2;C4:D4). Denna kan sedan kopieras till 1

4 F6 och F7. ($-tecknet ger en absolut referens, och ligger fast vid kopiering, medan t ex C4 flyttar med vid kopieringen). Starta nu Solver som finns i Tools-menyn. Följande fönster dyker upp: Här fylls nödvändig information i: Set Target Cell: $F$4 By changing: $C$2:$D$2 Subject to the constraints: $C$2:$D$2>=0 $F$6<=80 $F$7<=120 Under Options kan man ställa in att problemet är ett LP-problem, vilket gör att Simplexmetoden används. Om en eller flera variabler är heltal, så lägger man till ett bivillkor att variabeln är av typ Int (Olikhetstecknet ersätts med int). När problemet väl är definierat trycker man på Solve I ovanstående exempel får man: A B C D E F 1 x1 x2 2 Variabler Värde 4 Kriterium c Bivillkor A För att studera lösningen och analysera denna väljer man olika Rapporter, Reports: Answer, Sensitivity, Limits Samtliga filer du skapar hamnar på C:\STUDENT. Om du vill spara dem kan du kopiera dem därifrån till en egen diskett på två sätt: 1. I DOS: Skriv copy C:\STUDENT\FILNAMN A: 2. I Windows: Använd filhanteraren (Explorer) För godkänd uppgift krävs att uppgifterna är gjorda och ifyllda. Uppgifterna ska vara redovisade i snyggt och LÄSBART skick. 2

5 3

6 Uppgift 1 a) Lös problemet max f = x + 2x 1 2 då 1.5x 1 + 2x 2 6 x 1 + 4x x 1 + 6x 2 15 x 1 + x 2 1 x 1,x 2 0 b) Rita en figur över bivillkoren och markera var max ligger. c) Vilket bivillkor begränsar ej det tillåtna området, och kan således tas bort? 4

7 Uppgift 2 a) Lös problemet max f = 2x + 3x x x då x 1 + x 2 + x 3 2x 4 4 x 1 + x 2 + x 3 x 4 1 x 1 + x 4 3 x 1, x 2, x 3, x 4 0 b) Konstruera det duala problemet och skriv ner detta samt ange lösningen. c) Jämför den optimala lösningen till det duala problemet med den optimala lösningen erhållen i uppgift a). Kommentar:... 5

8 Uppgift 3 Formulera följande blandningsproblem som ett LP-problem och använd Excel Solver för att lösa det. Antag att en tillverkare av kreatursfoder vill framställa en produkt med följande egenskaper. Min Max Megakalorital Råproteinhalt Växttrådhalt I produkten får råvaror användas enligt nedanstående tabell. Råvara Min inblandningsprocent Havre Soja Rapsmjöl 2 9 Kokos Bomull 0 3 Max inblandningsprocent Pris och innehåll för råvarorna framgår av följande tabell. Råvara Pris (kr/dt) Mkalori Råprotein Växttråd Havre Soja Rapsmjöl Kokos Bomull Vi skall beräkna ett recept som uppfyller produktkraven till lägsta kostnad. Problemet kan då formuleras på följande sätt. 6

9 Vi inför variabler. xh = andelen havre i receptet xs = andelen soja i receptet osv... Blandningens råproteinhalt kan då uttryckas som 11xH + 40xS + 32xR + 20xK + 35xB Villkoret på råproteinhalten ger följande: xH + 40xS + 32xR + 20xK + 35xB 15.8 På motsvarande sätt formuleras de andra villkoren. Vi kan nu ställa upp tablån. xh xs xr xk xb Kostnad Mkalorimin Mkalorimax Råprot.min Råprot.max Växttr.min Balans = 1 Min Max Balansekvationen uttrycker att andelarnas summa skall vara ett. Använd variabelnamnen HAVRE; SOJA osv från texten så att resultatet kommer i "klartext" (alltså ej X1, X2... vilket försvårar tolkningen). Bivillkoren ska också anges i klartext: MCALMIN, MCALMAX osv. 7

10 Vad blev den minimala kostnaden och vad svarar detta mot för proportioner av de olika ingredienserna? Inom vilka gränser för kostnaderna på de ingående ingredienserna är denna lösning optimal? Vilka bivillkor är begränsande och vad är marginalpriserna för dessa? Vad betyder detta i klartext? (Ledtråd: Vad innebär en ändring av bivillkoren med en enhet?) 8

11 Uppgift 4 Formulera och lös följande transportproblem. Denna modelltyp användes tidigt av bl a livsmedelsindustrin i USA för att optimera varuflöden från fabriker till regionallager och är en vanlig LPtillämpning. Ett flygbolag skall under en tidsperiod försörja fyra av de flygplatser bolaget trafikerar med bränsle. Bränslebehovet uppskattas härvid enligt tabellen nedan. Flygplats Behov (1000-tal liter) Man har från tre olika bränsleleverantörer fått offerter om leveranskapacitet och en prisoffert för leverans till varje flygplats. Leverantör Leveranskapacitet (1000-tal liter) Följande priser i kronor per 1000 liter har offererats: Flygplats Leverantör Det gäller att bestämma en inköps- och leveransplan, som ger minsta totala bränslekostnad under perioden. Följande variabler införs 9

12 xij = levererad mängd bränsle, i 1000-tal liter, från leverantör i till flygplats j. Vi kan nu ställa upp villkoret för att kapaciteten hos t ex leverantör 1 inte överskrids: x11 + x12 + x13 + x På motsvarande sätt garanterar villkoret x13 + x23 + x33 = 300 att flygplats 3 får sitt behov tillgodosett. Vi sammanfattar problemet i en tablå. x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 Kostnad Kap lev Kap lev Kap lev Beh flp = 100 Beh flp = 300 Beh flp = 300 Beh flp = 400 Leveranser från leverantör 1 Leveranser från leverantör 2 Leveranser från leverantör 3 Anmärkning: Detta sk enkla transportproblem brukar räknas till klassen av flödesproblem. Ett flödesproblem är en viss typ av LP-problem med en naturlig geometrisk illustration. Figuren på följande sida illustrerar vårt exempel. Problemet kan ses som att bestämma ett kostnadsminimerande varuflöde från leverantör till flygplatserna. 10

13 Kapacitet Behov Leverantör Flygplats Även här ska du använda "klartext", tex "KOSTNAD". Mängden levererat bränsle från LEVERANTÖR i till FLYGPLATS j kan du kalla Xij. Vad är den minimala kostnaden för leveranserna och vilka leveranser svarar detta mot? Svara med en graf där de levererade mängderna är angivna på pilarna mellan respektive LEVERANTÖR och FLYGPLATS. Plats för graf 11

14 Vilka leverantörer får utnyttja hela sin kapacitet? Vad hade det inneburit i extra kostnad om LEVERANTÖR 1 bara kunnat leverera 249 tusen liter (i stället för 250 tusen)? Ange också hur du fått ditt svar. 12

15 Uppgift 5 En problemtyp som kan lösas med heltalsprogrammering (eller med dynamisk programmering) är det så kallade kappsäcksproblemet. Utgångspunkten är här att man vill ta med ett antal saker vilka representerar olika värden men också kräver olika mycket ifråga om t ex vikt eller utrymme. Kappsäcksproblemet kan uppstå när man väljer bland olika verktyg eller reservdelar till en expedition, när man vill utnyttja utrymmet i en transport för maximal överföring i värde eller då man planerar vilka varor en begränsad yta i ett varuhus bör innehålla. Kappsäcksproblemet får då formen: Maximera f = x e då x i v i b i alla x i heltal i i i xi är då antalet av produkten i med värdet ei och vikten eller volymen vi. b är den totala vikten eller volymen som finns till förfogande. Lös följande kappsäcksproblem. Tänk på att variablerna är heltalsvariabler. Lägg till bivillkor där du anger att variablerna är int! En inbrottstjuv med alltför liten kappsäck står inför problemet att packa denna så att värdet av stöldgodset maximeras då volymen är begränsad. Varje föremål har ett känt värde ei och kräver en känd volym vi. Kappsäckens totala volym är 60 liter. Föremålen är listade i följande tabell: Föremål (i) Värde (ei) Volym (vi) (Vi antar att det finns många föremål av varje typ) Vilka föremål ger en kappsäck med störst värde och vilket är detta värde? 13

16 Uppgift 6 Ett bemanningsschema för en personalgrupp (läkare, flygledare,...) för ett företag (sjukhus, flygplats...) som är igång dygnet runt visas i nedanstående tabell. Period Tid Minimiantal Efter period 6 följer cykliskt period 1 igen. Varje person arbetar två pass i följd (= 8 timmar). Bestäm ett bemanningsschema som uppfyller kraven med minimalt antal personer. Hur ser detta schema ut och hur många personer behövs? (Hjälp: Beteckna antal personer som arbetar period med I12, osv) 14

17 Uppgift 7 Man önskar öppna ett dagbrott inom en begränsad kvadratisk yta. På grund av rasrisk kan sidorna inte tillåtas att luta mer än 45 grader. Man har därför delat in marken i kuber av 25 meter enligt figuren nedan. Nivå 1 (ytan) Nivå 2 Nivå 3 De block som är möjliga att bryta ligger alltså i en upp- och nedvänd tredimensionell trapp-pyramid. Genom provborrningar har man beräknat malminnehållet (i procent) hos de olika blocken och fått resultaten i nedanstående tabeller Nivå 1 (ytan) Nivå 2 Nivå 3 Värdet av ett block är proportionellt mot malminnehållet. Ett block med 1% malm är värt kronor. Kostnaden att utvinna ett block ökar med djupet enligt: Nivå 1: kronor/block Nivå 2: kronor/block Nivå 3: kronor/block Ett block kan naturligtvis inte brytas förrän de fyra blocken i lagret ovanför är avlägsnade. Det gäller nu att bestämma vilka block som ska brytas för att vinsten ska bli så stor som möjligt. 15

18 Hjälp: Numrera blocken nerifrån med 1 på nivå 3, 2-5 för nivå 2 samt 6-14 för nivå 1. Vi får då 14 block som kan brytas eller lämnas orörda. Vi betecknar block i med bi som är 1 om blocket brytes och annars 0. Det djupaste blocket, nummer 1 på nivå 3 kan brytas endast om de fyra blocken på nivå 2 först brutits. Detta villkor kan formuleras som: 4b1 - b2 - b3 - b4 - b5 0 Vilka block behöver brytas (strecka dessa i figuren på föregående sida) och vad blir vinsten för hela dragbrottet? Hur många bivillkor behövde du använda i modellen? 16

19 Uppgift 8 (teoriuppgift) Betrakta följande LP-problem: T max f = c x då Ax b x 0 A där x c n b m A m, R, R, R n. Antag att problemet har en optimal tillåten baslösning för basen xb och att vi är intresserade av vad som händer om vi adderar en störning b till högerledet i bivillkoren. Svara på följande frågor genom att utnyttja matrisformuleringen av Simplexmetoden. a) Under vilka villkor kommer den tidigare basen att vara tillåten efter störningen? b) Om baslösningen är tillåten efter störning, kommer den då också att fortfarande vara optimal? (På nästa sida finns det plats för lösning.) 17

20 Uppgift 9 (teoriuppgift) Besvara följande frågor. a) Hur många optimala lösningar har ett LP-problem? (Ange alla möjligheter.) b) Om ett LP-problem har en ändlig lösning, vad gäller då för det duala problemets optimala lösning? c) Betrakta lösningarna till det primala och det duala problemet i uppgift 2. Det finns nämligen alltid ett släktskap mellan lösningen till ett problem och marginalpriserna till det duala problemets lösning. Vilken? 18

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013

Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013 Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)

Läs mer

Introduktion till att använda sig av GLPK

Introduktion till att använda sig av GLPK Introduktion till att använda sig av GLPK 1. Det finns inget grafiskt gränssnitt, som i Minitab eller Excel, utan man kör direkt i ett kommandofönster. 2. Programmet glpsol.exe och dess drivrutin (glpk44.dll-fil)

Läs mer

Föreläsning 6: Nätverksoptimering

Föreläsning 6: Nätverksoptimering Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem

Läs mer

Optimeringslära för T (SF1861)

Optimeringslära för T (SF1861) Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 26 augusti 2014 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats. Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

Laboration 1 Introduktion till Visual Basic 6.0

Laboration 1 Introduktion till Visual Basic 6.0 Laboration 1 Introduktion till Visual Basic 6.0 Förberedelse Förbered dig genom att läsa föreläsningsanteckningar och de kapitel som gåtts igenom på föreläsningarna. Läs även igenom laborationen i förväg.

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Dokumenttyp Dokumentbeteckning Diarienummer Sida

Dokumenttyp Dokumentbeteckning Diarienummer Sida KRAVSPECIFIKATION KRAVSPEC 7.2 BILAGA 8 LSU2014-0028 1 (8) INNEHÅLLSFÖRTECKNING 1 BESKRIVNING AV INNEHÅLLET... 2 2 HANDLEDNING FÖR UTRYMMESVERKTYG... 3 3 HANDLEDNING FÖR NAMNRUTA LSU_ST1 OCH LSU_ST5...

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Föreläsning 6: Transportproblem (TP)

Föreläsning 6: Transportproblem (TP) Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Tema Linjär optimering

Tema Linjär optimering Tema Linjär optimering Du behöver för detta tema ha goda färdigheter om Linjära ekvationer från modul Algebra (sid.37), Linjära ekvationssystem från modul Analytisk geometri (sid.13) Modell Linjära olikheter

Läs mer

RSI Road Status Information A new method for detection of road conditions

RSI Road Status Information A new method for detection of road conditions WP 5 Sida 1 av 15 RSI Road Status Information A new method for detection of road conditions Användarmanual för RSI WP 5 Sida 2 av 15 Användarmanual för RSI Om detta dokument Detta dokument är en användarmanual

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 10 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

Lektion isoperimetrisk optimering

Lektion isoperimetrisk optimering Lektion isoperimetrisk optimering Lektionens namn: Isoperimetrisk optimering Kurs: Ma2a, Ma2b, Ma2c Längd: 85 min Inledning Lektionen behandlar ett klassiskt maximeringsproblem (Euklides och Zenodorus):

Läs mer

Linjärprogrammering (Kap 3,4 och 5)

Linjärprogrammering (Kap 3,4 och 5) Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade

Läs mer

Att hämta raps-data via Internet

Att hämta raps-data via Internet Att hämta raps-data via Internet I detta kapitel visas hur man kan hämta hem statistik från raps internetdatabas och bearbeta uppgifterna i programmet PC-Axis. 69 Figur.1 Flyttningsöverskott per LA-region

Läs mer

Optimering. Optimering

Optimering. Optimering TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov, William

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean. 17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

UPPGIFT 1 FORTSÄTT TALFÖLJDEN

UPPGIFT 1 FORTSÄTT TALFÖLJDEN UPPGIFT 1 FORTSÄTT TALFÖLJDEN Att fortsätta en påbörjad talföljd är en vanlig sorts uppgift i såväl matteböcker som IQ-tester. Men det smartaste måste väl ändå vara att skriva ett datorprogram som löser

Läs mer

ANVÄNDARMANUAL SKÖVDE GRAVYR BESTÄLLNINGSPROGRAM. Gustav Adolfs g. 46 541 45 Skövde Tel: 0500-484555 Fax: 0500-484547 Mail: info@skovdegravyr

ANVÄNDARMANUAL SKÖVDE GRAVYR BESTÄLLNINGSPROGRAM. Gustav Adolfs g. 46 541 45 Skövde Tel: 0500-484555 Fax: 0500-484547 Mail: info@skovdegravyr ANVÄNDARMANUAL SKÖVDE GRAVYR BESTÄLLNINGSPROGRAM Gustav Adolfs g. 46 541 45 Skövde Tel: 0500-484555 Fax: 0500-484547 Mail: info@skovdegravyr Innehåll Starta programmet... 2 Flikarna...2 Fliken Material...

Läs mer

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde Algoritmer och Komplexitet ht 08. Övning 5 Flöden. Reduktioner Förändrat flöde a) Beskriv en effektiv algoritm som hittar ett nytt maximalt flöde om kapaciteten längs en viss kant ökar med en enhet. Algoritmens

Läs mer

CdsComXL. Excel-tillägg för hantering och analys av CDS-data. ComXL-020/S, 0102. Stråk 9 014.700. Stråk 7 014.680. Stråk 5 014.660. Stråk 3 014.

CdsComXL. Excel-tillägg för hantering och analys av CDS-data. ComXL-020/S, 0102. Stråk 9 014.700. Stråk 7 014.680. Stråk 5 014.660. Stråk 3 014. Excel-tillägg för hantering och analys av CDS-data CdsComXL 100 50 0 Stråk 9 014.700 Stråk 7 014.680 014.660 014.640 Stråk 3 Stråk 5 014.620 Stråk 1 014.600 ComXL-020/S, 0102 Innehåll 1. Installation-------------------------------------------------------------------------------------------------1

Läs mer

1. Vad är optimering?

1. Vad är optimering? . Vad är optimering? Man vill hitta ett optimum, när något är bäst, men att definiera vad som är bäst är inte alltid så självklart. För att kunna jämföra olika fall samt avgöra vad som är bäst måste man

Läs mer

Finaltävling i Stockholm den 22 november 2008

Finaltävling i Stockholm den 22 november 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella

Läs mer

Grundkurs 1 IKT Filhantering

Grundkurs 1 IKT Filhantering Filhantering Dan Haldin Ålands lyceum I N N E H Å L L S F Ö R T E C K N I N G Innehållsförteckning... 2 Filhantering med Windows... 3 Skapa Mappar... 4 Spara rätt... 5 Öppna sparade filer... 7 Flytta och

Läs mer

Grundkurs 2 IKT. Dan Haldin Ålands lyceum

Grundkurs 2 IKT. Dan Haldin Ålands lyceum Grundkurs 2 IKT Dan Haldin Ålands lyceum KALKYLERING MED MICROSOFT OFFICE EXCEL... 4 Användning av funktioner i Microsoft Excel... 4 LETARAD FUNKTIONEN... 5 OM funktionen... 8 Mer Diagramhantering...10

Läs mer

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Syfte Laboration 1. Objektorienterad programmering, Z1 Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i

Läs mer

Excel Övning 1 ELEV: Datorkunskap Sida 1 Niklas Schilke

Excel Övning 1 ELEV: Datorkunskap Sida 1 Niklas Schilke Datorkunskap Sida 1 Niklas Schilke Excel Inledning Microsoft Excel är ett kalkylprogram som ingår i Microsoft Office. Kalkyl betyder här beräkning så vi kan säga att Excel är ett program som används för

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Processidentifiering och Polplacerad Reglering

Processidentifiering och Polplacerad Reglering UmU/TFE Laboration Processidentifiering och Polplacerad Reglering Introduktion Referenser till teoriavsnitt följer här. Processidentifiering: Kursbok kap 17.3-17.4. Jämför med det sista exemplet i kap

Läs mer

Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1. Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter

Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1. Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter RIGMOR SANDER EXCEL START 1 1 (5) Kolumn A och rad 1 kallas A1 Kolumn B och rad 1 kallas B1 Klicka i cell A1 Skriv 100 i cell A1 och tryck Enter Innehållet i den cell som är markerad syns i formelfältet

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

FileMaker. Köra FileMaker Pro 10 på Terminal Services

FileMaker. Köra FileMaker Pro 10 på Terminal Services FileMaker Köra FileMaker Pro 10 på Terminal Services 2004 2009, FileMaker, Inc. Med ensamrätt. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, Kalifornien 95054, USA FileMaker, filmappslogotypen,

Läs mer

UPPGIFT 2 KVADRATVANDRING

UPPGIFT 2 KVADRATVANDRING UPPGIFT 1 LYCKOTAL Lyckotal är en serie heltal, som hittas på följande sätt. Starta med de naturliga talen: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13... Sök upp det första talet i serien, som är större

Läs mer

NMCC Sigma 8. Täby Friskola 8 Spets

NMCC Sigma 8. Täby Friskola 8 Spets NMCC Sigma 8 Täby Friskola 8 Spets Sverige 2016 1 Innehållsförteckning Innehållsförteckning... 1 Inledning... 2 Sambandet mellan figurens nummer och antalet små kuber... 3 Metod 1... 3 Metod 2... 4 Metod

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Föreläsning 11. Giriga algoritmer

Föreläsning 11. Giriga algoritmer Föreläsning 11 Giriga algoritmer Föreläsning 11 Giriga algoritmer Användning Växelproblemet Kappsäcksproblemet Schemaläggning Färgläggning Handelsresandeproblemet Uppgifter Giriga algoritmer (Greedy algorithms)

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling tillhandahålls i tentamenslokalen.

Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling tillhandahålls i tentamenslokalen. Operativ Verksamhetsstyrning/ Produktionslogistik Provmoment: Ladokkod: Tentamen ges för: TentamensKod: 7,5 högskolepoäng Skriftlig tentamen 41I32O, 51PL01 Affärsingenjör - inriktning bygg, Affärsingenjör

Läs mer

UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET.

UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET. UPPGIFT 1 TVÅPOTENSER. 2 ½ ¾ = 5575186299632655785383929568162090376495104 n = 142 är det minsta värde på n för vilket 2 Ò inleds med siffrorna 55. Uppgiften består i att skriva ett program som tar emot

Läs mer

Datorövning 1 Statistik med Excel (Office 2007, svenska)

Datorövning 1 Statistik med Excel (Office 2007, svenska) Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

TB DEL II BILAGA 3.1 UTREDNING - MÖJLIGHET ATT LÄMNA SID

TB DEL II BILAGA 3.1 UTREDNING - MÖJLIGHET ATT LÄMNA SID TB DEL II BILAGA 3.1 UTREDNING - MÖJLIGHET ATT LÄMNA SID UTREDNING 2011-04-20 01.00 D 2011-006261 2(14) 1 SAMMANFATTNING... 3 2 BEGREPPET - ATT LÄMNA SID... 3 3 ATT LÄMNA SID VID EN BULLERNIVÅ 70 DB(A)

Läs mer

Inledning till OpenOffice Calculator Datorlära 2 FK2005

Inledning till OpenOffice Calculator Datorlära 2 FK2005 Inledning till OpenOffice Calculator Datorlära 2 FK2005 Mål Lära sig att skapa och använda ett räkneblad med OpenOffice Calculator Beräkna medelvärde och standardavvikelsen med räknebladet Producera en

Läs mer

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016 Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that

Läs mer

Innehåll i detta dokument

Innehåll i detta dokument Läs igenom hela dokumentet innan du startar. Kopiera över allt på CD-skivan till din hårddisk. Din dator kommer behöva startas om en gång vid installationen av CodeSys. Du måste ha rättigheter att installera

Läs mer

PC-teknik, 5 p LABORATION ASSEMBLERINTRODUKTION

PC-teknik, 5 p LABORATION ASSEMBLERINTRODUKTION PC-teknik, 5 p LABORATION ASSEMBLERINTRODUKTION Laborationsansvarig: Anders Arvidsson Utskriftsdatum: 2005-08-31 Laborant(er): 1 Syfte Laborationen ska ge studenten möjlighet att genom assemblerinlägg

Läs mer