TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
|
|
- Linnéa Lundberg
- för 7 år sedan
- Visningar:
Transkript
1 TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering
2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion Beslutsvariabler Bivillkor Formulering av modeller Grafisk illustration av optimeringsproblem Användning av indexering och summering
3 Idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden Analysera och dra slutsatser från känslighetsanalys för linjära optimeringsproblem och optimeringsproblem med nätverksstruktur Förklara den grundläggande matematiska teorin på vilka modeller och algoritmer bygger Dra slutsatser från optimeringsmetoder för linjära optimeringsproblem (Simplexmetoden) samt för optimeringsproblem med nätverksstruktur (Simplex för minkostnadsflödesproblem och Dijkstras algoritm för billigasteväg problem)
4 Metodik för modellering Vad kan varieras (påverkas, styras, beslutas)? (Besluts)variabler Vad är målsättningen, och hur påverkas den av det som kan varieras Målfunktion Vilka restriktioner begränsar det som kan varieras Bivillkor
5 Exempel på ett optimeringsproblem Linus har kommit på att pannkakor och sockerkakor säljer bra i Norrköping. En pannkaka ger honom 8 kronor i vinst och en sockerkaka 15 kronor. En pannkaka tar 4 minuter att göra, medan en sockerkaka tar 10 minuter. Eftersom Linus även studerar på universitetet, har han högst 2 timmar varje dag i sin firma. Hemligheten bakom hans goda pannkakor och sockerkakor är äggen han köper av en bonde i Askeby, och saltet hämtas ur Gullmarsfjorden. Bonden kan bara sälja 20 ägg per dag till Linus. Varje sockerkaka kräver 2 ägg och varje pannkaka 1/3 ägg. Det nordliga klimatet gör att han bara kan få fram 20 kryddmått salt per dag. Varje pannkaka innehåller ett kryddmått salt. Formulera Linus (vinstmaximerings)problem!
6 Exempel på grafisk lösning Skriv upp den matematiska modellen Rita koordinatsystem Rita villkoren Sätt ena variabeln=0 Vad får den andra för värde? Ger en skärningspunkt Samma med andra variabeln 2 punkter ger en linje Är Origo (eller ev. annan punkt) tillåtet? Det ger vilken sida som är tillåtet Rita målfunktionen Bestäm sedan ett värde för målfunktionen (t.ex. z=0) Hitta två punkter som har det värdet (t.ex. origo och en till punkt) Rita linjen Linjen skall sedan parallellförflyttas åt något håll, så långt det går inom det tillåtna området Hitta en punkt som INTE är på linjen Har punkten större målfknvärde än linjens, och man skall maximera, ger det hållet linjen skal» Annars skall man flytta åt andra hållet Motsvarande för minimering
7 x2 x1
8 Olika klasser av optimeringsproblem Beroende på relationer mellan beslut, mål och begränsningar kan optimeringsproblem delas upp i olika klasser Vi kommer att arbeta med optimeringsproblem med linjära samband: Linjära optimeringsproblem med kontinuerliga variabler (LP) Linjära optimeringsproblem med heltaliga (diskreta) (och kontinuerliga) variabler (HP) Optimeringsproblem med nätverksstruktur (Minkostnadsflödeproblem, MKF) Andra klasser där icke-linjära samband används
9 Exempel summering/indexering
10 Avslutning Idag har vi: Diskuterat matematisk modellering Metodik för modellering Variabler Målfunktion Bivillkor Terminologi Generell bivillkorsformulering Summa Index
11 Nästa föreläsning Matematisk modellering, LP Ett verkligt exempel från Kelloggs produktionsplanering: Implementerades i sin första form 1989 för Nordamerika (5 fabriker, 7 distributionsanläggningar, 80 produkter) och har successivt utvecklats sen dess. Beräknade besparingar (jämfört med tidigare planering) på uppemot 500 miljoner kr/år för produktionen i Nordamerika. Gerald Brown, Joseph Keegan, Brian Vigus, Kevin Wood, (2001) The Kellogg Company Optimizes Production, Inventory, and Distribution. Interfaces 31(6):1-15
12
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
TNSL05 Optimering, Modellering och Planering. Föreläsning 1
TNSL05 Optimering, Modellering och Planering Föreläsning 1 2018-11-05 2 Föreläsning 1, dagordning Kursadministration Lärare Mål Kurshemsida Kursmoment Gruppindelningar Examination Litteratur Optimering
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2010 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010 1 Kursmål & innehåll 1.1 Mål med
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)
TNSL05 Optimering, Modellering och Planering. Föreläsning 9
TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Optimering av olika slag används inom så vitt skilda områden som produktionsplanering,
Anders Johansson Linjär optimering Exempel på användning av analoga och digitala verktyg i undervisningen Kursavsnittet linjär optimering i Matematik 3b kan introduceras med såväl analoga som digitala
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 1 Kursintroduktion Ämnesintroduktion Terminologi Tillämpningar Agenda Vilka personer medverkar i kursen? Kursupplägg Lärobok Laborationer Återkoppling
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola
MIO310 Optimering & Simulering 2015 Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2 Rek.
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson, Produktionsekonomi, Lunds tekniska högskola
MIO310 Optimering & Simulering 2013 Kursansvarig: Universitetslektor Fredrik Olsson, Produktionsekonomi, Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TNSL05 Övningsuppgifter modellering
TNSL05 Övningsuppgifter modellering 1) Ett företag tillverkar och säljer två olika typer av bord. Grundversionen, med skiva i trä, tar 0.6 timmar att sätta ihop, har fyra ben och säljs med 1500 kr i vinst.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
Optimering med hjälp av Lego. Mathias Henningsson
Optimering med hjälp av Lego Mathias Henningsson Vem är jag? Mathias Henningsson Lärare Optimeringslära 1996-2007 Produktionsekonomi 2008- Bokförfattare Optimeringslära övningsbok (Studentlitteratur) Arbetar
Optimeringslära för T (SF1861)
Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
TNSL05, Optimering, Modellering och Planering Gruppuppgift 3
ITN/KTS Joakim Ekström/Marcus Posada Gruppuppgift 3 TNSL05, Optimering, Modellering och Planering, HT2018 TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 1 Gruppspecifika uppgifter 1.1 Kursmomentet
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Optimering. TAOP88 Optimering för ingenjörer. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov Roghayeh
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Linjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
Optimering. TAOP86 Kombinatorisk optimering med miljötillämpningar. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP86 Kombinatorisk optimering med miljötillämpningar Examinator: Kaj Holmberg kaj.holmberg@liu.se http://courses.mai.liu.se/gu/taop86 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Björn Morén
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
Optimering. Optimering
TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov, William
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 11 mars 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimering och simulering: Hur fungerar det och vad är skillnaden?
Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 08 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
MVE235 Matematisk orientering. Matematisk optimering en introduktion till ämnet och verksamhet vid MV
MVE235 Matematisk orientering Matematisk optimering en introduktion till ämnet och verksamhet vid MV biträdande professor i matematisk optimering http://www.chalmers.se/sv/personal/sidor/ann-brith-stromberg.aspx
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TNK049 Optimeringslära
TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Kortsiktig produktionsplanering med hjälp av olinjär programmering
Kortsiktig produktionsplanering med hjälp av olinjär programmering S. Velut, P-O. Larsson, J. Windahl Modelon AB K. Boman, L. Saarinen Vattenfall AB 1 Kortsiktig produktionsplanering Introduktion Optimeringsmetod
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
MICROECONOMICS Mid Sweden University, Sundsvall (Lecture 2) Peter Lohmander &
MICROECONOMICS 2018 Mid Sweden University, Sundsvall (Lecture 2) Peter Lohmander www.lohmander.com & Peter@Lohmander.com NYTT MÖTE: Diskutera Ert förslag till lämpligt problem med kursledaren (Peter Lohmander)
Matematik och grafik i mikroekonomiska modeller
Matematik och grafik i mikroekonomiska modeller Hur bestäms resursfördelningen i en marknadsekonomi? Utbud, efterfrågan priser Bakom detta ligger i sin tur beslut av enskilda företag och hushåll, marknadskrafterna
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
OSE gruppen vid Åbo Akademi är en tvärvetenskaplig forskargrupp inom optimering och systemteknik
OSE gruppen vid Åbo Akademi är en tvärvetenskaplig forskargrupp inom optimering och systemteknik 2 10 Introduktion Ledningsgrupp Prof. Tapio Westerlund Anläggnings- och systemteknik Prof. Jukka Corander
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 24 oktober 204 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
FÖRSVARSHÖGSKOLAN C-UPPSATS :2074. Hur kan effektiviteten i planeringen av svensk pilotutbildning ökas?
Mj Robert Persson 2005-11-23 FÖRSVARSHÖGSKOLAN C-UPPSATS Författare Förband Mj Robert Persson F 7 FHS handledare Stefan Johansson (MTI), övlt Folke Sundqvist (MTI) Uppdragsgivare Beteckning FHS, KVI 19
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING