Grundläggande aerodynamik

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Grundläggande aerodynamik"

Transkript

1 Grundläggande aerodynamik Introduktion Grundläggande aerodynamik Lyftkraft Aerodynamiska grunder Vingprofiler Historik Sedan urminnes tider har människan blickat upp mot himlen Förekomst inom mytologin: Ikaros, Pegasus, gripar etc. Fåglar var inspirationskällan många förtida bortgångar till följd Ersattes av mekaniska konstruktioner, ex. Ornitopter (da Vinci) Första riktiga flygningen: Paris 1783 br. Montgolfier 1

2 Bakgrund Sir George Cayley Första som skiljde på lyftkraft och framdrivning 1799: Första flygplanet; fast vinge, paddlar för framdrivning, stjärtsektion för stabilitet 1804: Fungerande modell med justerbart stjärtparti On Aerial Navigation viktigt aerodynamiskt dokument tog upp teoretisk och tillämpad aerodynamik; tryckskillnader, välvda profiler, styrning etc. Bakgrund, forts. Mellan hände inte mycket utvecklingsmässigt 1891: Otto Lilienthal Tysk ingenjör gav ut många aerodynamiska klassiker Första lyckade glidflygningen Byggde en kulle; havererade 1896 och dog

3 Bakgrund, forts. Två amerikanska bröder, cykelreparatörer, följde Lilienthals förehavanden De studerade bl a fåglar; styrning wing warping Hade egen vindtunnel som de experimenterade i Kitty Hawk, NC, 17:e dec 1903 flög de 36 m på 1 s med Wright Flyer I Ledde till explosionsartad utveckling av flyget Aerodynamik Luftens egenskaper Tryck, p luftmolekylernas stötar mot föremål Densitet, ρ antalet molekyler i viss volym Temperatur, T molekylernas rörelse Förhållandet mellan dessa fås ur allmänna gaslagen Ex: ökad temperatur leder till ökat tryck osv. Vid flygning är densiteten en viktig faktor, då den direkt påverkar lyftkraft och motstånd Ur allm. gaslagen fås även att komprimering utvecklar värme 3

4 Grundläggande aerodynamik Lite basics som tillämpas inom aerodynamiken Dess lagar bygger på tillämpningar av grundläggande fysikaliska principer Kontinuitetsekvationen Konservering av massa (m kan varken skapas eller förstöras) Betyder att: massan som flödar vid 1 = massan som flödar vid För massflödet vid : För massflödet vid 1: dm m& 1 = ρ1a1 V1 dt m& = ρ AV Grundl. aerodyn., forts. Kontinuitetsekvationen Konservering av massa ger: Eller m & = & 1 m ρ = (Ekv. 4.) 1 A1 V1 ρ A V Uttrycket relaterar ρ, V och A mellan olika sektioner Kont.ekv. används flitigt vid strömningsberäkningar på kanaler och rör, ex. vindtunnlar 4

5 Kompressibel/inkompr. strömning Uppdelning av flöde inom aerodynamiken Kompressibel strömning Inkompressibel strömning Komprimering ger densitetsökning För hastigheter under M 0,3 är densitetsförändringarna så små att de kan försummas Alltså: Inkompressibel strömning = densiteten konstant Rörelsemängdslagen Kontinuitetsekvationen omfattar endast ρ, V och A, ej p Rörelsemängdslagen tar fram sambandet mellan tryck och hastighet Rörelsemängdslagen utgår från Newton II: F = m a (Ekv. 4.4) Genom tillämpning av rörelsemängdslagen på ett litet element luft i rörelse (friktion och gravitation bortses) leder denna fram till Eulers diff.ekvation dp = ρv dv (Ekv. 4.8) Som ger relationen mellan tryck och hastighet 5

6 Rörelsemängdslagen, forts. Enl. figur: Två punkter längs en strömlinje Tillämpning/integrering av Eulers ekv. Mellan punkterna ger följande V V1 p + ρ = p1 + (Ekv. 4.9a) V p + ρ = konstant längs strömlinje (Ekv. 4.9b) som kallas för Bernoullis ekvation (stor inom aerodynamiken!) OBS! Ekv. gäller endast för inviskös/ inkompressibel strömning Lyftkraft Bernoullis ekvation ger samband mellan tryck och hastighet Enl. ekv: En höjning av trycket ger en minskning av hastigheten Ett bra exempel är en konvergent-divergent kanal 1 V ρ Termen i ekvationen kallas vanligtvis för dynamiskt tryck och utgör luftens kinetiska energi Det dynamiska trycket har en direkt inverkan på lyftkraften Detta gör att ekvationen även kan uttryckas som P tot = P stat + P dyn Används vid ex. fartmätning genom Pitot-rör 6

7 Lyftkraft, forts. För ett flygplan i oaccelererad planflykt (jämvikt) gäller följande: Lyftkraften balanserar ut tyngden Dragkraften balanserar ut motståndet, eller L = W resp. T = D Lyftkraft, forts. L = W och T = D gäller ej vid andra flygtillstånd Ex. vid sväng, upptag från dykning etc. Därför definieras lyftkraften enl.: En kraft som verkar vinkelrätt mot flygriktningen Notera att flygplanets nos inte alltid pekar i flygriktningen 7

8 Lyftkraft, forts. Lyftkraften genereras genom tryckskillnader runt vingen Sett mot omgivande statiska tryck uppstår ett högre tryck på undersidan och ett lägre tryck på vingens ovansida Vingen både sugs och trycks uppåt Ovansidan står för ca /3 av lyftet och undersidan för ca 1/3 Alternativa/missvisande förklaringar till lyftkraft: Newtons 3:e rörelselag Equal transit times Lyftkraft, forts. För att uppnå tryckskillnader fordras att en bärande yta förses med välvning och/eller vinklas mot luftströmmen Fysikaliskt sett sker hastighetsökningen pga. tryckminskningen Lyftkraften uppstår pga. luftens viskositet 8

9 Lyftkraft, forts. Viskositetens inverkan Inviskös (nedre): Strömningen är symmetrisk, motsvarande tryckskillnader på ovan- och undersidan. Ger netto = 0 Viskös (övre): Strömning på ovan- resp. undersidan går samman i bakkant, ingen symmetri vilket ger tryckskillnader = lyftkraft Sammanströmning i bakkant kallas Kutta-villkoret Strömning kring vingprofil Strömning kring en vingprofil med liten anfallsvinkel Delande strömlinjen anger där luften väljer väg över/under vingen Tar slut vid stagnationspunkten (notera dess placering) Vid stagnationspunkten stagnerar luften innan den delar på sig 9

10 Tryckfördelning kring vingprofil Jämnare tryckfördelning eftersträvas idag Ger strukturella/aerodynamiska fördelar Högst tryck vid stagnationspunkten Notera den stora tryckminskningen på vingframkanten När luften lämnar stagnationspunkten mot ovansidan måste den först röra sig framåt och göra en skarp sväng Betyder att ett stort undertryck måste råda på vingens framkant Vingprofiler De första profilerna var tunna och välvda hölls uppe med stag och vajrar Farten ökade; vajrarna gav för stort motstånd + bättre hållfasthet krävdes = vingar med bärande balk Ledde till tjockare profiler (med aerodynamiska fördelar) 10

11 Vingprofiler, forts. Olika typer av profiler Välvda/tjocka: Allmänflyg, låg fart Symmetriska: Aerobaticflygplan, låg fart Tunna: Stridsflygplan, hög fart Undantag: Superkritisk vingprofil används på trafikflygplan (transoniska fartområdet) Superkritisk profil 11

Grundläggande aerodynamik, del 2

Grundläggande aerodynamik, del 2 Grundläggande aerodynamik, del 2 Mer om vingprofiler Kort om flygplanets anatomi Lyftkraft/lyftkraftskoefficienten, C L Alternativa metoder för lyftkraftsalstring Vingar 1 Vingprofiler Välvd/tjock profil

Läs mer

Aerodynamik - Prestanda

Aerodynamik - Prestanda Aerodynamik - Prestanda Syfte/mål med föreläsningarna: Förståelse för digram och ekvationer Förståelse för vad som styr design 1 Innehåll Vad ska vi gå igenom? C L /C D -polarkurva Rörelseekvationer Flygning

Läs mer

Grundläggande aerodynamik, del 5

Grundläggande aerodynamik, del 5 Grundläggande aerodynamik, del 5 Motstånd Totalmotstånd Formmotstånd Gränsskiktstypens inverkan på formmotstånd 1 Motstånd Ett flygplan som rör sig genom luften (gäller alla kroppar) skapar ett visst motstånd,

Läs mer

Grundläggande aerodynamik, del 6

Grundläggande aerodynamik, del 6 Grundläggande aerodynamik, del 6 Motstånd Laminära profiler Minskning av inducerat motstånd Förhållande mellan C D,0 och C D,i Höghastighetsströmning 1 Laminära profiler Enl. tidigare: Typen av gränsskikt

Läs mer

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin Aerodynamik Swedish Paragliding Event 2008 1-2 november Ori Levin Monarca Cup, Mexico, foto Ori Levin Behöver man förstå hur man flyger för att kunna flyga? 2008-10-31 www.offground.se 2 Nej 2008-10-31

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

Svängprestanda & styrning

Svängprestanda & styrning Svängprestanda & styrning Svängprestanda Hur påverkas flygplanet vid sväng? Begrepp: lastfaktor, vingbelastning Styrning av flygplan Flygplanets sex frihetsgrader Styrning av flygplan Olika metoder för

Läs mer

Grundläggande aerodynamik, del 3

Grundläggande aerodynamik, del 3 Grundläggande aerodynamik, del 3 Vingar - planform Vingens virvelsystem Downwash/nedsvep Markeffekt Sidoförhållandets inverkan Vingplanform - stall 1 Vingar Vår betraktelse hittills av 2D-natur (vingprofiler)

Läs mer

Aerodynamik - översikt

Aerodynamik - översikt Aerodynamik - översikt Vingprofil Luftens egenskaper Krafter Lyftkraft Motståndskrafter Glidtal Polardiagram Sväng Prestanda 2009-11-22 www.offground.se 1 Aerodynamik vingprofil 2009-11-22 www.offground.se

Läs mer

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt): BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

6.5 Effektbehov för oaccelererad planflykt

6.5 Effektbehov för oaccelererad planflykt 6.5 Effektbehov för oaccelererad planflykt Jetmotorn levererar dragkraft (anges i Newton el. pounds) En kolvmotor levererar effekt (anges i kw el. hästkrafter) Medan dragkraftskurvor (T R och T A ) fungerar

Läs mer

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Ulf Ringertz Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Korda Tjocklek Medellinje Läge max tjocklek Roder? Lyftkraft,

Läs mer

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa. BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

Hur kan en fallskärm flyga?

Hur kan en fallskärm flyga? Umeå Universitet Institutionen för fysik Hur kan en fallskärm flyga? Vardagsmysterier förklarade 5p Sommarkurs 2006 Elin Bergström Inledning En fallskärm finns till för att rädda livet på den som kastar

Läs mer

Grundläggande aerodynamik, del 4

Grundläggande aerodynamik, del 4 Grundläggande aerodynamik, del 4 Gränsskiktet Definition/uppkomst Friktionsmotstånd Avlösning/stall Gränsskiktets inverkan på lyftkraften Gränsskiktskontroll Höglyftsanordningar 1 Bakgrund Den klassiska

Läs mer

GRUNDLÄGGANDE AERODYNAMIK INNEHÅLLSFÖRTECKNING

GRUNDLÄGGANDE AERODYNAMIK INNEHÅLLSFÖRTECKNING GRUNDLÄGGANDE AERODYNAMIK INNEHÅLLSFÖRTECKNING Introduktion 1. 8.1 Atmosfärens fysik 3. Atmosfärens skiktning 4. Temperaturen 5. Lufttrycket 6. Luftens densitet 6. ICAO:s Standardatmosfär 7. Högtryck och

Läs mer

Flygplan Av: Mathilda & Leona

Flygplan Av: Mathilda & Leona Flygplan Av: Mathilda & Leona Första skisserna av glidflygplanet Runt 1800-talet så började hela tanken med att skapa ett flygplan. Människor på flera ställen runt om i världen började med olika skisser.

Läs mer

6.12 Räckvidd och uthållighet

6.12 Räckvidd och uthållighet Prestanda Uthållighet och räckvidd För propeller- respektive jetdrivet flygplan Start- och landningsprestanda Innefattar acceleration 1 6.1 äckvidd och uthållighet Designaspekter räckvidd ( range ) Ta

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

printed: October 19, 2001 last modied: October 19, 2001 Laborationen avser en undersokning av stromningen kring en tva-dimensionell vingprol vid olika

printed: October 19, 2001 last modied: October 19, 2001 Laborationen avser en undersokning av stromningen kring en tva-dimensionell vingprol vid olika Bestamning av lyftkraft pa en symmetrisk vingprol. printed: October 19, 2001 last modied: October 19, 2001 1 Laborationens innehall Laborationen avser en undersokning av stromningen kring en tva-dimensionell

Läs mer

HYDRAULIK (ej hydrostatik) Sammanfattning

HYDRAULIK (ej hydrostatik) Sammanfattning HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Institutionen för Energivetenskaper, LTH

Institutionen för Energivetenskaper, LTH Institutionen för Energivetenskaper, LTH MMV05/11 Strömningslära LABORATION 1 Omströmmade kroppar MÅLSÄTTNING (1) Förstå hur kroppsform och ytråhet påverkar krafterna på en omströmmad kropp () Förstå hur

Läs mer

Nutidens flygplan Leonardo Da Vincis

Nutidens flygplan Leonardo Da Vincis Nutidens flygplan Leonardo Da Vincis Flygplanens utveckling Det första uppgifter om ritningar och flygförsök var av Ibn Firnasi det islamska Spanien år 875. I Europa skissade Leonardo Da Vinci på de första

Läs mer

LEONARDO DA VINCI ( )

LEONARDO DA VINCI ( ) LEONARDO DA VINCI (1452 1519) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet.

Läs mer

Kraft, tryck och rörelse

Kraft, tryck och rörelse Kraft, tryck och rörelse Kraft En kraft kan ändra form, fart och rörelseriktning hos föremål. Kraft mäts i Newton, N. Enheten är uppkallad efter fysikern Isaac Newton som levde på 1600- talet. 1 N är ungefär

Läs mer

Aerodynamik eller Flygningens grundprinciper. Ivan Hedin

Aerodynamik eller Flygningens grundprinciper. Ivan Hedin Aerodynamik eller Flygningens grundprinciper Ivan Hedin m F a Newton: F = m x a Bernoulli Bernoulli forts. Lyftkraft Newton: Kraft: F = m x a För varje kraft som verkar på en kropp, bildas en lika stor

Läs mer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer 1 Beräkningsuppgift I Vi skall studera ett flygplan som rör sig i xz planet, dvs vi har med de frihetsgrader som brukar kallas de longitudinella. Vi har ett koordinatsystem Oxyz fast i flygplanet och ett

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-03-8 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Alpin Aerodynamik. Åk fortare. Dr Fredrik Hellström. Christian Jansson. Aerodynamikrådgivare. Landslagsåkare S1

Alpin Aerodynamik. Åk fortare. Dr Fredrik Hellström. Christian Jansson. Aerodynamikrådgivare. Landslagsåkare S1 Alpin Aerodynamik Åk fortare Dr Fredrik Hellström Aerodynamikrådgivare Christian Jansson Landslagsåkare S1 En föreläsning om att åka fort och om förluster! Agenda Målsättning Introduktion till Speedskiing

Läs mer

Några myter.. Som ska avfärdas

Några myter.. Som ska avfärdas Några myter.. Som ska avfärdas Centrifugalkraften Sväng i medvind G-kraft funktion av lutning Stall steget Muchan Sväng i medvind Myten Om man svänger från motvind till medvind tappar man fart och riskerar

Läs mer

Trycket är beroende av kraft och area

Trycket är beroende av kraft och area Vad är tryck? Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Bestämning av lyftkraft på en symmetrisk vingprofil.

Bestämning av lyftkraft på en symmetrisk vingprofil. Bestämning av lyftkraft på en symmetrisk vingprofil. November 5, 2002 1 Laborationens innehåll Laborationen avser en undersökning av strömningen kring en tvådimensionell vingprofil vid olika anfallsvinklar.

Läs mer

Två gränsfall en fallstudie

Två gränsfall en fallstudie 19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som.

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som. Föreläsning 2. 1 Materiell erivata ätskor och gaser kallas me ett sammanfattane or för fluier. I verkligheten består fluier av partiklar, v s atomer eller molekyler. I strömningsmekaniken bortser vi från

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

Två typer av stabilitet: statisk och dynamisk

Två typer av stabilitet: statisk och dynamisk Stabilitet Två typer av stabilitet: statisk och dynamisk Statisk stabilitet: hur flygplanet reagerar på störning vindbyar, hastiga spakrörelser, turbulens etc. Statisk längd- och tvärstabilitet Dynamisk

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

1 Navier-Stokes ekvationer

1 Navier-Stokes ekvationer Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan

Läs mer

Tryck. www.lektion.se. fredag 31 januari 14

Tryck. www.lektion.se. fredag 31 januari 14 Tryck www.lektion.se Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer

Läs mer

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc Lab. 1 Mätning av ytspänning och kontaktvinkel Mätning av ytspänning. Många olika metoder finns för att

Läs mer

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto Prototyp Produktion i samarbete med MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto FYSIK SNACKS Kraft och motkraft............... 4 Raketmotorn................... 5 Ett fall för Galileo Galilei............

Läs mer

Saker som flyger. Klubbmaterial för åk 4-6 Camilla Levander och Erik Holm

Saker som flyger. Klubbmaterial för åk 4-6 Camilla Levander och Erik Holm Saker som flyger Klubbmaterial för åk 4-6 Camilla Levander och Erik Holm Innehållsförteckning 1. Inledning 2. Målsättningar 3. Flygfarkoster 3.1.Flygfarkostens historia 3.2.Lufttryck 3.3.Varifrån kommer

Läs mer

Trycket är beroende av kraft och area

Trycket är beroende av kraft och area Tryck Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte uppleva

Läs mer

FYSIKALISKA APTITRETARE

FYSIKALISKA APTITRETARE FYSIKALISKA APTITRETARE Ett sätt att börja en fysiklektion och genast försöka fånga elevernas intresse, är att utföra ett litet experiment eller en demonstration. Kraven som ställs på ett sådant inledande

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Teori för vinschbehörighet

Teori för vinschbehörighet Teori för vinschbehörighet Ori Levin 2011-08-16 www.offground.se 1 Teorikursens innehåll Materialkunskap Vind och väder Aerodynamik Startteknik och kommunikation Flyglära 2011-08-16 www.offground.se 2

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

VINGTEORI. C L = C L 1+2/AR, C D = C D + C2 L C L och C D gäller oändligt bred vinge (2-D, AR ) L = C L A p ρu 2 /2, D = C D A p ρu 2 /2

VINGTEORI. C L = C L 1+2/AR, C D = C D + C2 L C L och C D gäller oändligt bred vinge (2-D, AR ) L = C L A p ρu 2 /2, D = C D A p ρu 2 /2 VINGTEORI Flygplansvinge sedd uppifrån Planarea (vingyta), A p Vingbredd, b Medelkorda, C = A p /b Aspect Ratio, AR = b/c Vingtvärsnitt Fart, U Anfallsvinkel rel. kordalinje, α Max. välvning, h Max. tjocklek,

Läs mer

Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar

Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar Sensorer, effektorer och fysik Mätning av flöde, flödeshastighet, nivå och luftföroreningar Innehåll Volymetriska flödesmätare Strömningslära Obstruktionsmätare Mätning av massflöde Mätning av flödeshastighet

Läs mer

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 Brandsäker rökkanal Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 1 Introduktion Det är bra att anpassa skorstenen efter eldstadens behov. Risken för överhettning till följd av för stora

Läs mer

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)

Läs mer

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C. STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater gäller:

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

FÖRSVARSHÖGSKOLAN VIKTENS INVERKAN PÅ JAKTFLYGPLANET. Kandidatuppsats. Kadett Juha Hakkarainen. Kadettkurs 98 Luftstridslinjen

FÖRSVARSHÖGSKOLAN VIKTENS INVERKAN PÅ JAKTFLYGPLANET. Kandidatuppsats. Kadett Juha Hakkarainen. Kadettkurs 98 Luftstridslinjen FÖRSVARSHÖGSKOLAN VIKTENS INVERKAN PÅ JAKTFLYGPLANET Kandidatuppsats Kadett Juha Hakkarainen Kadettkurs 98 Luftstridslinjen Mars 2014 FÖRSVARSHÖGSKOLAN Kurs Kadettkurs 98 Skribent Kadett Juha Hakkarainen

Läs mer

Flygplanskonstruktion för framtidens luftfart

Flygplanskonstruktion för framtidens luftfart Flygplanskonstruktion för framtidens luftfart Ulf Ringertz 1 Bakgrund och historik I början var flygplanens fart låg och det var fokus på att bygga lätt även om luftmotståndet blev högt bara för att komma

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med

Läs mer

Flyglära. Vi börjar med den grundläggande delen

Flyglära. Vi börjar med den grundläggande delen Flyglära Vi börjar med den grundläggande delen Det rent hantverksmässiga manövrerandet av flygplanet. Roderhantering osv. Den rent taktiska manövreringen. Hur vi flyger i varvet osv. Innan vi börjar!!

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Det totala motståndet kan beräknas med hjälp av ekvation (6.13), som lyder:

Det totala motståndet kan beräknas med hjälp av ekvation (6.13), som lyder: Uppgift 6. FYGPANSDATA W 40N V 89,m / s S 8,6m AR 8,5 e 0,9 ρ,5kg / m (ISA havsnivå) Vid ovannämnda hastighet flyger flygplanet i ( D). Uppgift: Beräkna flygplanets totala motstånd! Det totala motståndet

Läs mer

Elektroakustik Något lite om analogier

Elektroakustik Något lite om analogier Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka

Läs mer

AERODYNAMISKA BERÄKNINGSMETODER

AERODYNAMISKA BERÄKNINGSMETODER AERODYNAMISKA BERÄKNINGSMETODER Utvecklingen på Saab 1965 1990 Utdrag ur Saab-Minnen Del 22-24 Av Bert Arlinger & Yngve Sedin Copyright by the authors: Bert Arlinger & Yngve Sedin: Ur Saab-Minnen del 22-24

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT

KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT Stationär, endimensionell strömning, perfekt gas, konstant tvärsnitt. Inget tekniskt eller visköst arbete, försumbara variationer i potentiell

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt

YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt Under föreläsningarna 8 och 9 kommer vi att gå igenom ett antal koncept som är viktiga i ytkemi och försöka göra en termodynamisk beskrivning

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m)) Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

färdigt plan. Det är en hobby som passar folk från alla klasser.

färdigt plan. Det är en hobby som passar folk från alla klasser. ANDREAS JOHANSSON, EMIL NERSTEDT PROJEKTARBETE NVNV3 ALSTRÖMERGYMNASIET 2005-02-01 BYGGE AV RADIOSTYRT FLYGPLAN Byggandets gång och dess baktankar Inledning Ända sedan bröderna Wright lyfte sitt Flyer

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde:

Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde: Termodynamik FL5 MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM Konserveringslag för materie Massabalans (materiebalans): Massa är konserverad och kan varken skapas eller förstöras under en process. Slutna

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

WALLENBERGS FYSIKPRIS 2014

WALLENBERGS FYSIKPRIS 2014 WALLENBERGS FYSIKPRIS 2014 Tävlingsuppgifter (Finaltävlingen) Riv loss detta blad och lägg det överst tillsammans med de lösta tävlingsuppgifterna i plastmappen. Resten av detta uppgiftshäfte får du behålla.

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Text & foto: Daniel Karlsson

Text & foto: Daniel Karlsson 60 år med Fly Med J 29 skapade Saab ett av världens vassaste stridsflygplan. Med sin pilvinge och starka jetmotor var planet i klass med ryssarnas MiG-15 och amerikanarnas F-86. Under J 29-epoken nådde

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

Pedagogisk planering

Pedagogisk planering Pedagogisk planering Årskurs 6 Ämne: Rörelse och konstruktion (NTA-låda) Period: Vecka 39 ca: vecka 51 Det här ska vi träna på: (Syfte) Hur framgångsrik en teknisk produkt är beror på den vetenskap som

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Kraft och rörelse åk 6

Kraft och rörelse åk 6 Kraft och rörelse åk 6 Kraft En kraft kan ändra farten eller formen hos ett föremål. Krafter kan mätas med en dynamometer. Den består av en fjäder och en skala. Enhet för kraft är Newton, N. Dynamometer

Läs mer

Trycket är beroende av kraft (tyngd) och area

Trycket är beroende av kraft (tyngd) och area Vad är tryck? Trycket är beroende av kraft (tyngd) och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer