Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan"

Transkript

1 Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan

2 Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb, 0 feb). Avsnittet omfattar sidorna i fysikboken samt vissa uppgifter med start på sidan 00. Dessutom kommer räkneuppgifter och en laboration på separata papper. Varje lektion, utom lektion 1 och 3, kommer att inledas med ett skriftligt läxförhör, som även kan komma att innehålla någon uppgift på något i avsnittet tidigare behandlat moment. Prov kommer att ges senare under terminen, dock tillsammans med avsnittet atomfysik. Lektion 1: Likformig rörelse och dess representation i s-t och v-t-diagram. Enhetsomvandlingar mellan fartenheter. Medelfart, även grafisk metod Skillnad mellan fart och hastighet Tröghet Sid Tillhörande uppgifter: 1 6 och Lektion : Acceleration (inklusive rotation) Vad det är Vad som krävs Kraftekvationen Fritt fall Hur man gör beräkningar som anknyter till dessa områden Sid Uppgift 11 1 och tillhörande uppgiftspapper. Läs igenom inför nästa veckas laboration. Lektion 3: Laborationer på acceleration. Labbrapport! Lektion 4: Laborationsgenomgång. Kraftkomponenter Kaströrelse Sid Separat uppgiftspapper. Lektion 5: Inlämning labbrapport

3 Repetion och räkneövningar Tippa rätt (s. 03), uppgifterna 3 samt separat uppgiftspapper. Betygskriterier Godkänd: Ett aktivt deltagande på lektioner. Känna till, och med ord kunna beskriva, begreppen likformig rörelse, acceleration och tröghet. Dessutom kunna ge exempel på hur dessa begrepp används. Kunna utföra enklare beräkningar på likformig rörelse. Tolka diagram som beskriver rörelse. Kunna omvandla mellan fartenheterna m/s och km/h. Känna till vad som krävs för att en rörlese skall vara accelererad eller likformig. Kunna ge flera sorters exempel på accelererad rörelse. Godkänd labbrapport. Mer än godkänd: Uppfylla kriterierna för Godkänd Kunna utföra beräkningar på accelererad rörelse (av den typ vi gått igenom på lektionerna). Kunna använda kraftekvationen. Veta hur krafter och tröghet verkar i en rotationsrörelse. Kvalitativt kunna beskriva en kaströrelse och utföra beräkningar på denna. Kunna dela upp en kraft i komponenter. Kunna använda kunskaperna för att på egen hand resonera kring fenomen som har med detta och andra avsnitt (där tillämpligt) att göra.

4 Acceleration lektionsanteckningar Allmänt om acceleration Acceleration vardaglig betydelse: fartökning fysikalisk definition: hastighetsförändring Alltså är en accelererad motsatsen till en likformig rörelse, som ju har konstant hastighet. En kraft behövs för att en rörelse skall bli accelererad. Verkar kraften i rörelseriktningen får vi en fartökning. Verkar den mot rörelseriktningen får vi en fartminskning. Observera att i de flesta rörelser vi är vana vid verkar åtminstone en kraft, nämligen friktionskraften mot rörelseriktningen. Exempel på accelererade rörelser och den kraft som öär inblandad: Bil som drar iväg motorkraft Tåg som stannar bromskraft / friktionskraft Fritt fallande föremål tyngdkraft, som kommer sig utav gravitationen Karusell som går runt i samma fart centripetalkraft Storheten acceleration betecknas med a och har enheten 1m/s, dvs "en meter per sekund och sekund", alltså hastighetsändring per tidsenhet! Enhet för hastighetsförändring Enhet för tid Både kraften och massan har avgörande betydelse för accelerationens storlek. För en och samma kraft ger en liten massa större acceleration än en stor massa. Och för en och samma massa ger en liten kraft mindre acceleration än en stor kraft. Detta sammanfattade Newton i sin accelerationslag, Newtons andra lag (eller Newton II): F a =, eller som man vanligen ser den, F=m a. (1) m Vid fritt fall är det endast tyngdkraften som verkar på föremålet. T ex har ett föremål med massan kg har tyngden (ungefär) 10=0N, som då är tyngdkraften när föremålet faller fritt. Sätt in detta i (1) så får vi 10 0 a = = = 10 m/s Eftersom man alltid både dividerar och multiplicerar med massan, kommer accelerationen inte att påverkas av massan. Släpper man ett lätt och ett tungt föremål samtidigt och bredvid varandra kommer de att falla bredvid varandra med samma hastighetsökning (om man bortser från luftmotståndet). Detta kom Galileo Galilei på under 1500-talet. Innan så trodde man att lätta föremål föll långsammare än tyngre. Detta grundade sig på erfarenheter, t ex en fjäder faller ju långsammare än en sten. Men, återigen, det är luftmotståndet som orsakar denna skillnad. Fenomenet att föremål med olika massa accelererar på samma sätt i fritt fall beror på trögheten: ett föremål med större massa har en större tröghet, och kräver därför en större kraft för att dess rörelse skall förändras på ett givet sätt jämfört med ett föremål med mindre massa.

5 Rotationsrörelse Hur fungerar det då med roterande rörelser? Dessa är ju också accelererade pga att riktningen ändras hela tiden, så någon kraft måste ju finnas. Denna kraft kallas centripetalkraft, och är riktad mot rörlesens centrum. Om man t ex åker karusell känns det som att man dras utåt. Detta för att kroppen har en tröghet, dvs den vill behålla den riktning som den hade ögonblicket innan. Men rotationsrörelsen ändras ju hela tiden, så effekten blir den vi upplever. Skulle centripetalkraften sluta att verka skulle föremålet fortsätta i den riktning det hade i ögonblicket kraften slutade verka. Riktningen ändras hela tiden i rotationen Det som gör att man kastas utåt kallas centrifukraft. Det är egentligen inte en kraft, utan beror som sagt på det faktum att alla föremål har en tröghet. F centripetalkraft Fritt fall 0 O 10m/s O 0m/s O 30m/s O 40m/s O Mellan varje ögonblicksbild på det fallande föremålet har det gått en sekund. Eftersom föremålet faller med allt snabbare fart hela tiden, kommer det längre och längre för varje sekund. Varje sekund ökar farten nedåt med 10 m/s. Hur långt hinner alltså föremålet falla på fyra sekunder? Jo medelfarten,v, beräknas med 40 0 v = = 0 m/s Då kan vi använda s=v t =0 4=80 meter. Det är dock behändigare att utnyttja en formel som lyder at s = Om a=10 m/s, och tiden är 4 sekunder, erhålls sträckan 80 meter. En annan formel som är bra att använda i accelerationssammanhang är v = at

6 Kraftkomponenter och kaströrelse Kraftkomponenter och resultanter Om ett föremål blir utsatt för en kraft kommer det att accelerera. Men hur blir det om föremålet utsätts för två eller flera krafter? Ett enkelt exempel är ett föremål i vila på t ex golvet. Om det är tungt, och vi utsätter det för en kraft, händer ingenting. Orsaken till dt är att en annan kraft påverkar föremålet i motsatt riktning, nämligen friktionskraften. Först när dragkraften överstiger friktionskraften kan föremålet accelerera. Och för att en likformig skall kunna äga rum, måste dragkraften vara lika stor som friktionskraften. Här är friktionskraften lika stor som dragkraften, vilket ger oss två alternativ: antingen rör sig inte föremålet, eller också är det en likformig rörelse som beskrivs. I båda fallen vet vi att ingen kraft påverkar föremålet. De båda krafterna som påverkar tar ut varandra. Nettokraften blir noll. På samma sätt vet vi att två krafter riktade åt samma håll "förstärker" varandra. Ex. F f F f F+f F-f De undre krafterna, "nettokrafterna" kallas för reultanter, medan de varje "delkraft" kallas för en komponent. Så flera komponenter kan fogas ihop till en resultant. Men hur blir det om krafterna påverkar varandra från olika håll? Jo, då ändras inte bara storleken, utan också riktningen på resultanten. Då finns en behändig grafisk metod att tillgå: parallellogrammetoden. F F+f f Det betyder alltså att de båda krafterna F och f ger upphov till den längre och åt ett annat håll riktat F+f. I grundskolan får vi hålla tillgodo med denna grafiska, och inte helt exakta, metod. Men i gymnasiet kommer du att lära dig en beräkningsmetod med trigonometri. I ett specialfall, då krafterna är vinkelräta mot varandra, kan man dock använda Pythagoras sats på den rätvinkliga triangel som bildas. Samma metod kan användas med hastigheter. T ex ett flygplan har ju en viss hastighet och vinden påverkar flygplanets hastighet (alltså även riktningen). Då kan man rita upp riktningar

7 och storlekar på flygplanets respektive vindens fart, för att få fram den hastighet planet kommer att färdas med. Det här används också när ett föremål rullar eller glider ned för ett lutande plan. Tyngdkraften är ju riktad nedåt (lodrätt ned, mot marken) och dragkraften är riktad framåt (i backens riktning). Följande kraftsituation erhålls: Den lilla pilen, den som går parallellt med det lutande planet, är den dragkraft som föremålet känner av. Den långa pilen lodrätt ned är tyngdkraftspilen. Den kommer att ha samma längd och samma riktning oavsett lutningen på underlaget. Dragkraftspilen, som konstrueras med hjälp av den streckade linjerna (den undre går vinkelrätt genom planet), blir längre om lutningen ökar. Motkraftspilen, den uppåt, minskar med ökande lutning. Extremfallet är ett lutande plan som är lodrätt. Då får vi ingen mokraftspil, och dragkraften blir densamma som tyngdkraften! Prova själv olika konstruktioner med olika branta lutande plan. Kaströrelser En kaströrelse är sammansatt av två rörelser: en likformig rörelse framåt, och en accelererande rörelse nedåt. En typisk uppgift är att beräkna hur långt ett föremål kommer när man kastar det rakt ut med en viss fart från en viss höjd. Metoden är att med hjälp av formeln at s s =, som ger t =, räkna ut tiden föremålet är i luften. s betyder den sträcka som a föremålet faller, dvs höjden. När man fått ut tiden, använder man formeln s = v t. Ett intresssant faktum är att det bara är höjden (och förstås accelerationen mot jorden) från utkastet sker som bestämmer hur lång tid föremålet är i luften. Så kastas två föremål rakt ut från en och samma höjd kommer de att ta i marken samtidigt! Accelerationen mot jorden är alltid konstant, nämligen 9,8m / s 10m / s

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

Kraft, tryck och rörelse

Kraft, tryck och rörelse Kraft, tryck och rörelse Kraft En kraft kan ändra form, fart och rörelseriktning hos föremål. Kraft mäts i Newton, N. Enheten är uppkallad efter fysikern Isaac Newton som levde på 1600- talet. 1 N är ungefär

Läs mer

Massa och vikt Mass and weight

Massa och vikt Mass and weight Massa och vikt Mass and weight Massa beskriver hur mycket materia e> föremål innehåller, det är ju konstant oavse> vilken tyngdkraeen är. Kapitel 4: Newtons 2:a lag Vikten beror enbart på hur tyngdkraeen

Läs mer

Hur kan en fallskärm flyga?

Hur kan en fallskärm flyga? Umeå Universitet Institutionen för fysik Hur kan en fallskärm flyga? Vardagsmysterier förklarade 5p Sommarkurs 2006 Elin Bergström Inledning En fallskärm finns till för att rädda livet på den som kastar

Läs mer

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler.

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Inlämningsuppgift 1 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Oftast använder vi apparater och motorer till att omvandla

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

Det finns olika typer av krafter och alla mäts med enheten newton. Enheten newton förkortas med stort N.

Det finns olika typer av krafter och alla mäts med enheten newton. Enheten newton förkortas med stort N. Ugglans NO Fysik - Mekanik Mekanik är en av fysikens äldsta vetenskaper. Den handlar om rörelse och jämvikt och vad som händer när föremål utsätts för krafter. Kunskap om mekanik är nödvändig och grundläggande

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar BASFYSIK BFN 120 Galileo Galilei, italiensk naturforskare (1564 1642) Laborationsuppgifter med läge, hastighet och acceleration Namn Epost Lärares kommentar Institutionen för teknik och naturvetenskap

Läs mer

10. Relativitetsteori Tid och Längd

10. Relativitetsteori Tid och Längd Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur är en

Läs mer

MEKANIKENS GYLLENE REGEL

MEKANIKENS GYLLENE REGEL MEKANIKENS GYLLENE REGEL Inledning Det finns olika sätt att förflytta föremål och om du ska flytta en låda försöker du säkert komma på det enklaste sättet, det som är minst jobbigt för dig. Newton funderade

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

Arbete Energi Effekt

Arbete Energi Effekt Arbete Energi Effekt Mekaniskt arbete Du använder en kraft som gör att föremålet förflyttas i kraftens riktning Mekaniskt arbete Friktionskraft En kraft som försöker hindra rörelsen, t.ex. när du släpar

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

Tänk dig ett biljardklot på ett biljardbord. Om du knuffar till klotet, så att det sätts i rörelse, vad kallas knuffen då?...

Tänk dig ett biljardklot på ett biljardbord. Om du knuffar till klotet, så att det sätts i rörelse, vad kallas knuffen då?... MÅL med arbetsområdet När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. ge exempel på krafter som påverkar

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Basåret, Fysik 2 25 februari 2014 Lars Bergström

Basåret, Fysik 2 25 februari 2014 Lars Bergström Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,

Läs mer

Krafter. Jordens dragningskraft, tyngdkraften. Fallrörelse

Krafter. Jordens dragningskraft, tyngdkraften. Fallrörelse Krafter 1 Krafter...2 Jordens dragningskraft, tyngdkraften...2 Fallrörelse...2 Repetera lutande plan...3 Friktion...4 Tröghet...5 Tröghet och massa...6 Tyngdpunkt...6 Ta reda på tyngdpunkten för en oregelbunden

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Inför provet mekanik 9A

Inför provet mekanik 9A Inför provet mekanik 9A Pär Leijonhufvud BY: $ \ 10 december 2014 C Provdatum 2014-12-12 Omfattning och provets upplägg Provet kommer att handla om mekaniken, det vi gått igenom sedan vi började med fysik.

Läs mer

Vad vi ska prata om idag:

Vad vi ska prata om idag: Vad vi ska prata om idag: Om det omöjliga i att färdas snabbare än ljuset...... och om gravitation enligt Newton och enligt Einstein. Äpplen, hissar, rökelse, krökta rum......och stjärnor som används som

Läs mer

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk 2013-10-22

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk 2013-10-22 Lärarhandledning Kraftshow Annie Gjers & Felix Falk 2013-10-22 Innehållsförteckning 1 Inledning... 3 2 Experiment med förklaringar... 4 2.1 Månen och gravitationen... 4 2.2 Blyplankan... 4 2.3 Dubbelkon

Läs mer

Kraft och rörelse åk 6

Kraft och rörelse åk 6 Kraft och rörelse åk 6 Kraft En kraft kan ändra farten eller formen hos ett föremål. Krafter kan mätas med en dynamometer. Den består av en fjäder och en skala. Enhet för kraft är Newton, N. Dynamometer

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

att båda rör sig ett varv runt masscentrum på samma tid. Planet

att båda rör sig ett varv runt masscentrum på samma tid. Planet Tema: Exoplaneter (Del III, banhastighet och massa) Det vi hittills tittat på är hur man beräknar radien och avståndet till stjärnan för en exoplanet. Omloppstiden kunde vi exempelvis få fram genom att

Läs mer

Grekernas världsbild. Gravitation & Newtons lagar. Aristoteles definition av rörelse. Aristoteles och de fyra elementen

Grekernas världsbild. Gravitation & Newtons lagar. Aristoteles definition av rörelse. Aristoteles och de fyra elementen Grekernas världsbild Gravitation & Newtons lagar En snabbkurs i klassisk mekanik 3/2-2010 Aristoteles 384 322 f.kr Grekisk filosof Student till Platon Lärare till Alexander den store Porträtt av Aristoteles.

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

När jag har arbetat klart med det här området ska jag:

När jag har arbetat klart med det här området ska jag: Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad

Läs mer

Working with parents. Models for activities in science centres and museums

Working with parents. Models for activities in science centres and museums Working with parents. Models for activities in science centres and museums FEAST Working with parents. Models for activities in science centres and museums 1 Index Farkoster som rullar, svävar och drar...

Läs mer

5-2 Likformighet-reguladetri

5-2 Likformighet-reguladetri 5-2 Likformighet-reguladetri Namn:. Inledning Du har nu lärt dig en hel del om avbildningar, kartor och skalor. Nu är du väl rustad för att studera likformighet, och hur man utnyttjar det faktum att med

Läs mer

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter.

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. FACIT Instuderingsfrågor 1 Energi sid. 144-149 1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. Utan solen skulle det bli flera hundra minusgrader kallt på jorden

Läs mer

Einsteins relativitetsteori, enkelt förklarad. Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den

Einsteins relativitetsteori, enkelt förklarad. Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den Einsteins relativitetsteori, enkelt förklarad Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den Speciella relativitetsteorin, Allmänt Einstein presenterade

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

LEKTION PÅ GRÖNA LUND GRUPP A (GY)

LEKTION PÅ GRÖNA LUND GRUPP A (GY) LEKTION PÅ GRÖNA LUND GRUPP A (GY) t(s) FRITT FALL Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man

Läs mer

TENTAMEN. Umeå Universitet. P Norqvist och L-E Svensson. Datum: Tid: Namn:... Grupp:... Poäng:... Betyg U G VG ...

TENTAMEN. Umeå Universitet. P Norqvist och L-E Svensson. Datum: Tid: Namn:... Grupp:... Poäng:... Betyg U G VG ... Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik A Miniräknare, formelsamling Lärare: P Norqvist och L-E Svensson Datum: 07-01-10 Tid: 16.00-22.00 Namn:... Grupp:... Poäng:... Betyg U G VG... Tentamen

Läs mer

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 Brandsäker rökkanal Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 1 Introduktion Det är bra att anpassa skorstenen efter eldstadens behov. Risken för överhettning till följd av för stora

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik: Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest

Läs mer

MEKANIK LÄRARHANDLEDNING

MEKANIK LÄRARHANDLEDNING MEKANIK LÄRARHANDLEDNING Eftersom antalet sensorer är begränsat rekommenderas att fler laborationer görs parallellt enligt ett stationssystem. I laboration 1-4 och 9-10 används kraftsensorn och i 5-8 används

Läs mer

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem.

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem. Detta tänker jag att man redan vet: sin α= b c och cosα=a c och alltså också att för vinkeln. b=c sin α och a=c cos α Hypotenusan gånger antingen sinus eller cosinus Del 1 Tänk nu att c är en flaggstång

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

Massa, densitet och hastighet

Massa, densitet och hastighet Detta är en något omarbetad verion av Studiehandledningen om använde i tryckta kuren på SSVN. Sidhänviningar hänför ig till Quanta A 000, ISBN 91-7-60500-0 Där det har varit möjligt har motvarande aker

Läs mer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer 1 Beräkningsuppgift I Vi skall studera ett flygplan som rör sig i xz planet, dvs vi har med de frihetsgrader som brukar kallas de longitudinella. Vi har ett koordinatsystem Oxyz fast i flygplanet och ett

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto Prototyp Produktion i samarbete med MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto FYSIK SNACKS Kraft och motkraft............... 4 Raketmotorn................... 5 Ett fall för Galileo Galilei............

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Fysiska föremål, kroppar, kan påverka varandra ömsesidigt, de kan växelverka. För att förklara hur denna växelverkan går till har fysikvetenskapen uppfunnit

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Diskussionsfrågor Mekanik

Diskussionsfrågor Mekanik Diskussionsfrågor Mekanik Frågor markerade med en stjärna ( ) är lite svårare och kan betraktas som överkurs. Vektorer och rörelse 1. Mitt på dagen en solig dag vid ekvatorn kastar du iväg en boll. Hur

Läs mer

ROCKJET GRUPP A (GY) FRITT FALL

ROCKJET GRUPP A (GY) FRITT FALL GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta

Läs mer

Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots

Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots Kanonen liknar inte en vanlig berg- och dalbana. Uppdraget- den långa backen där berg- och dalbanetåg sakta dras upp - har ersatts med en hydraulisk utskjutning.

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik förf, del B Måndagen 12 januari 2004, 8.45-12.45, V-huset Examinator och jour: Martin Cederwall, tel. 7723181, 0733-500886 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Mekanikens historia. Aristoteles och Galilei

Mekanikens historia. Aristoteles och Galilei Kraft och dynamik 8 Vad innebär Newtons lagar? Hur kan en krockkudde rädda liv? Är det sant att en bil som kör med konstant fart inte påverkas av några krafter? Mekanikens historia Aristoteles och Galilei

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

Mekanikens historia. Aristoteles och Galilei

Mekanikens historia. Aristoteles och Galilei Kraft och dynamik 9 Vad innebär Newtons lagar? Hur kan en krockkudde rädda liv? Är det sant att en bil som kör med konstant fart inte påverkas av några krafter? Mekanikens historia Aristoteles och Galilei

Läs mer

Tryck. www.lektion.se. fredag 31 januari 14

Tryck. www.lektion.se. fredag 31 januari 14 Tryck www.lektion.se Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Gravitationen Hävarmar

Gravitationen Hävarmar elastningar Gravitationen Som bekant är gravitationen, tyngdlagen, ständigt närvarande här på jorden. Släpper vi ett äpple ur handen faller det ner på marken. Detta är självklar kunskap idag som är svår

Läs mer

Fysik A 08-02-18. Jonn Lantz Din kanelbulle i fysikens ugn jonn.lantz@lme.nu 031-825218

Fysik A 08-02-18. Jonn Lantz Din kanelbulle i fysikens ugn jonn.lantz@lme.nu 031-825218 1. Elmotorn En bensinmotor har sällan en verkningsgrad över 25%, men elmotorer är ofta bättre! (Det är bla. därför vi antagligen får se fler elbilar i framtiden). Ert uppdrag är att bestämma elmotorns

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Ur Boken om NO 1-3 (sidorna 98-105)

Ur Boken om NO 1-3 (sidorna 98-105) Detta är ett tillägg till Boken om Fysik och Kemi som täcker in det centrala innehållet i både NO åk 1-3 och fysik 4-6 som handlar om Kraft och rörelse Ur Boken om NO 1-3 (sidorna 98-105) av Hasse Persson

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Planetrörelser. Lektion 4

Planetrörelser. Lektion 4 Planetrörelser Lektion 4 Äldre tiders astronomer utvecklade geocentriska (jorden i centrum) modeller för att förklara planeternas rörelser retrograd rörelse direkt rörelse Liksom solen och månen så rör

Läs mer

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist Undersökning av hur kastlängden varierar i kulstötning Längden på en kulstöt beror på olika variabler. Höjden, hastigheten, kastvinkeln samt tyngdsaccelerationen spelar roll. Dessa varibler ska varieras

Läs mer

Trycket är beroende av kraft och area

Trycket är beroende av kraft och area Vad är tryck? Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte

Läs mer

Rörelsemängd. Rörelsemängdens bevarande

Rörelsemängd. Rörelsemängdens bevarande Kapitel 6: Rörelsemängd Rörelsemängd Momentum Rörelsemängd är e8 sä8 a8 beskriva trögeten os e8 föremål. E8 föremål med ög rörelsemängd kräver mycket energi för a8 stanna - trögeten är ög! Rörelsemängden

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 22 januari 2009 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Rörelsemotståndsarbetet på nervägen är A n = F motst s = k mg s = k (2 180 + 52 100)

Läs mer

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110]

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110] Extrauppgifter Vridmoment version 0.11 [131110] Christian Karlsson Uppgiterna 4.29 4.32 tar upp några saker som boken inte tar upp och bör göras med extra mycket eftertanke. Uppgifterna 4.33 4.40 är blandade

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Aerodynamik - Prestanda

Aerodynamik - Prestanda Aerodynamik - Prestanda Syfte/mål med föreläsningarna: Förståelse för digram och ekvationer Förståelse för vad som styr design 1 Innehåll Vad ska vi gå igenom? C L /C D -polarkurva Rörelseekvationer Flygning

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Pneumatik/hydrauliksats

Pneumatik/hydrauliksats Studiehandledning till Pneumatik/hydrauliksats Art.nr: 53785 Den här studiehandledningen ger grunderna i pneumatik och hydralik. Den visar på skillnaden mellan pneumatik och hydraulik, den visar hur en

Läs mer

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar

Läs mer

Mekanik FK2002m. Kraft och rörelse II

Mekanik FK2002m. Kraft och rörelse II Mekanik FK2002m Föreläsning 5 Kraft och rörelse II 2013-09-06 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 5 Introduktion Vi har hittills behandlat ganska idealiserade problem, t.ex. system i avsaknad

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Håkan Hallberg vd. för Hållfasthetslära Lunds Universitet December 2013 Exempel 1 Två krafter,f 1 och F 2, verkar enligt figuren.

Läs mer

Matematik- Geometri och taluppfattning

Matematik- Geometri och taluppfattning Matematik- Geometri och taluppfattning Skolprogram att utföra på egen hand eller tillsammans med handledare från Aeroseum. Lärarhandledning På de nästföljande sidorna finns ett antal uppdrag eller uppgifter

Läs mer

2014:2 RIKSFÖRENINGEN FÖR LÄRARNA I MATEMATIK, NATURVETENSKAP OCH TEKNIK

2014:2 RIKSFÖRENINGEN FÖR LÄRARNA I MATEMATIK, NATURVETENSKAP OCH TEKNIK ISSN 1402-0041 Utdrag ur 2014:2 RIKSFÖRENINGEN FÖR LÄRARNA I MATEMATIK, NATURVETENSKAP OCH TEKNIK Filip, Gustav, Tove och några klasskamrater från årskurs 5 på Byskolan i Södra Sandby arbetar med friktion

Läs mer

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den Einstein's Allmänna relativitetsteori Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den Allmänna relativitetsteorin - Fakta Einsten presenterade teorin 10 år efter den

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) GRUPP 1 JETLINE a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) b) Var under turen känner du dig tyngst? Lättast? Spelar det någon roll var i tåget

Läs mer