10. Relativitetsteori Tid och Längd

Storlek: px
Starta visningen från sidan:

Download "10. Relativitetsteori Tid och Längd"

Transkript

1 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur är en sådan storhet där man i Celsiusskalan jämför temperaturen hos något föremål/ material med de förhållanden som råder då vatten fryser (0 C) eller kokar (100 C). Om man skulle mäta temperaturen i Kelvinskalan skulle vatten istället frysa vid 273,15 K. Detsamma gäller erfarenhetsmässigt också för mätningar av hastigheter. För att ta två exempel; 1) Om man i en hastighet av 95 km/h blir omkörd av ett annat fordon som håller hastigheten 105 km/h så kommer det att uppfattas som att det andra fordonet passerar relativt långsamt, särskilt jämfört med om man istället skulle möta ett fordon som håller hastigheten 105 km/h. I det första fallet skulle ju den relativa hastigheten mellan fordonen bara vara 10 km/h medan i det andra fallet den skulle vara 200 km/h. I det här fallet jämför vi dels var och en av de båda hastigheterna med marken (vägen, träd eller hus omkring), som vi anser vara stilla, för att få 95 respektive 105 km/h, och dels de båda hastigheterna som uppmätts relativt marken med varandra. I ett andra exempel skulle man kunna vidga perspektivet lite och tänka sig att man tittar på fordonen från rymden; 2) Förutom att bilarna rör sig med en viss hastighet på vägen så har ju hela planeten jorden dels en rotation med en viss hastighet dels rör den sig i en bana runt solen, så om man skulle mäta bilarnas hastighet från solens position skulle denna vara summan av jordens omloppshastighet ( m/s), rotationshastighet (225 m/s) och bilarnas hastighet (c:a 30 m/s) med riktning, d.v.s. i medeltal c:a m/s. Sedan rör sig ju hela solsystemet runt vår galax Vintergatans centrum, som rör sig genom universum Vilken hastighet som mäts beror alltså på vilket referenssystem som används, om ett fordons hastighet mäts från ett annat fordon (detta andra fordon utgör referenssystemet), i jämförelse med marken (referenssystemet utgörs av marken) eller jämfört med solen (solen utgör referenssystemet). Låt oss se på ytterligare ett exempel:

2 Exempel I: BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Säg, helt hypotetiskt, att en boll kastas rakt upp med hastigheten v 1 av någon som ligger på en släpvagn som dras efter ett fordon som rör sig framåt med hastigheten v 2 (se Fig. 9.1). v 1 v h V 2 Fig. 9.1 Eftersom hela ekipaget har en hastighet v 2 framåt kommer dock bollen precis när den kastas förutom hastigheten v 1 att även ha en hastighet v 2 framåt, jämfört med marken. Den som kastar bollen (senare kallad deltagare, någon som är i vila i förhållande till händelsen/ förloppet) kommer också att färdas med hastigheten v 2 framåt och kommer hela tiden att befinna sig rakt under bollen. D.v.s. den som kastade bollen upplever det som att bollen bara rör sig rakt upp med utgångshastigheten v 1 och sedan rakt ned efter att den vänt, d.v.s. totala sträckan 2h (mätt med släpvagnen som referenssystem). För någon som står stilla på marken och ser fordonet och släpvagnen passera förbi (senare kallad observatör, någon som är i rörelse i förhållande till händelsen/ förloppet) kommer dock upplevelsen vara att bollen följer en kastparabel som är längre än 2h enligt streckad bana i figur 9.1, med utgångshastigheten v (= ), mätt med marken som referenssystem. Under den tid som bollen är i luften kommer alltså den som kastat bollen och någon som står stilla på marken att mäta att bollen färdats olika lång sträcka, men också att den haft olika utgångshastighet. Den som kastade mäter en kortare sträcka men också en lägre hastighet, vilket verkar rimligt med lägre hastighet borde bollen intuitivt färdas kortare sträcka på samma tid.

3 Ljushastighetens konstans Vad blir situationen om man istället mäter på en partikel som färdas i hög hastighet och samtidigt sänder ut en foton (ljus). Säg att partikeln färdas framåt med en hastighet som motsvarar halva ljushastigheten relativt marken när en foton sänds ut med ljusets hastighet relativt partikeln, också den framåt (se Fig. 9.2). Intuitivt skulle man då förvänta sig att fotonen skulle färdas med en hastighet på en och en halv gånger ljushastigheten (1,5c) relativt marken. Enligt både teoretiska resonemang och experimentella försök är så inte fallet dock. Fotonens hastighet relativt marken kommer fortfarande att vara bara ljushastigheten. Också för det fall att fotonen skulle sändas ut bakåt är fotonens hastighet relativt marken fortfarande exakt lika med ljushastigheten (och inte som man kanske skulle kunna förvänta sig 0,5c). v = 0,5c V 1 V 2 Fig. 9.2 v, v 1 och v 2 avser hastigheter relativt marken D.v.s. i Fig. 9.2 ovan gäller att v 1 = v 2 = c. Fotonens hastighet relativt partikeln kommer också att vara exakt lika med ljushastigheten. Oavsett referenssystem mäts fotonernas hastighet alltid upp till ljushastigheten. Detta fenomen brukar refereras till som ljushastighetens konstans.

4 Tidsdilatation Att ljusets hastighet alltid mäts upp till samma värde oavsett referenssystem får en del märkliga konsekvenser. Låt oss återvända till exemplet med någon som kastar en boll från ett släp i rörelse. Exempel II c c d (= c t) h (= c t 0 ) OBS! Ej skalenlig figur v tiden = 0 tiden = t x (= v t) Fig. 9.3 Istället för att kasta en boll låter vi personen tända en ficklampa istället. På samma sätt som för bollen kommer då deltagaren på släpet att se fotonerna åka rakt upp en sträcka h med hastigheten c. En observatör som ser ficklampan tändas då ekipaget passerar förbi kommer som i exemplet med bollen att uppfatta att fotonerna, förutom att sändas uppåt, också rör sig lite framåt då ekipaget rör sig framåt. Observatören kommer då att registrera att fotonerna förflyttar sig sträckan d för att nå höjden h (observera att figuren ej är skalenlig). Sträckan d ges via Pythagoras sats som: d = (x 2 + h 2 ) där x är den sträcka ekipaget förflyttat sig fram till dess att fotonerna nått höjden h. Vi ser att sträckan d är längre än sträckan h. D.v.s. deltagaren och observatören kommer att mäta upp olika långa sträckor för fotonernas färd upp till höjden h. I fallet med bollen var det inget märkligt med det eftersom de också registrerade olika hastighet hos bollen, men i fallet med fotonerna vet vi ju att man mäter upp precis samma hastighet c oavsett referenssystem. Både observatör och deltagare kommer alltså att mäta upp hastigheten c. Enligt det vanliga sambandet mellan sträcka s, hastighet v och tid t s = v t skulle detta vara orimligt. Den enda förklaringen skulle vara om observatör och deltagare

5 skulle uppmäta olika tid för förloppet att fotonerna når höjden h över släpvagnen. Låt oss anta att deltagaren skulle mäta upp tiden t 0 och observatören tiden t. Vi kan då uttrycka ovanstående samband mellan sträckorna enligt följande (se Fig. 9.3): c t = [(v t) 2 + (c t 0 ) 2 ] c 2 t 2 = v 2 t 2 + c 2 t 2 0 c 2 t 2 - v 2 t 2 = c 2 t 2 0 c 2 (t 2 v 2 t 2 /c 2 ) = c 2 t 2 0 (t 2 v 2 t 2 /c 2 2 ) = t 0 t 2 (1 v 2 /c 2 2 ) = t 0 t (1 v 2 /c 2 ) = t 0 t = t 0 / (1 v 2 /c 2 ) Sambandet mellan den tid t som observatören mäter upp och den tid t 0 som deltagaren mäter upp för samma förlopp (att fotonerna når höjden h) ges alltså av: t = t 0 / (1 v 2 /c 2 ) Om fordonet rör sig kommer den tid t 0 som deltagaren mäter upp för förloppet att vara kortare än den tid t som observatören mäter upp för samma händelse. Tiden t 0 kallas för egentiden och är den tid som skulle mätas upp av någon som är i vila jämfört med händelsen/ förloppet/ mätningen (den tid som mäts upp av någon som följer med händelsen). Fenomenet att observatören, som inte följer med händelsen (som är i rörelse jämfört med händelsen), mäter upp en längre tid för förloppet/ händelsen kallas för tidsdilatation. Detta fenomen har också kunnat observeras i verkligheten, bl.a. genom att jämföra tiden som två mycket exakta atomur mätt upp för förloppet att ett mycket snabbt flygplan genomfört en flygning ett varv runt jorden, där det ena uret befunnit sig på flygplatsen och det andra ombord på flygplanet. Vid återkomsten till flygplatsen kunde det konstateras att de två uren uppmätt olika tid.

6 Exempel III: Längdkontraktion Säg att ett väldigt snabbt flygplan förflyttar sig med hastigheten v från punkt A till punkt B över jordytan, enligt figur 9.4 nedan. Fig. 9.4 v t 0 A l 0 B Säg också att en person på marken observerar flygplanets förflyttning från A till B, en sträcka som personen på marken mätt upp till l 0. Enligt sambandet mellan sträcka hastighet och tid får personen på marken då följande för planets förflyttning: l 0 = v t Sedan tidigare vet vi dock att piloten i flygplanet inte kommer att mäta samma tid för förloppet att flygplanet förflyttar sig från A till B. Piloten följer ju med händelsen och är alltså deltagare när det gäller att mäta tiden för händelsen. Piloten kommer alltså att mäta egentiden t 0. För sträckan mellan A och b får då piloten: L = v t 0 Båda kommer dock att mäta samma hastighet v, eftersom det är den relativa hastigheten mellan dem. Om personen på marken och piloten inte mäter samma tid för händelsen måste det då innebära att de inte heller uppmäter samma längd på den sträcka flygplanet förflyttar sig från A till B. Sambandet mellan de uppmätta sträckorna kan fås från följande, genom att utnyttja sambandet mellan tiderna t och t 0 som personen på marken och piloten mäter upp:

7 l 0 = v t, t = t 0 / (1 v 2 /c 2 ) l 0 = v t 0 / (1 v 2 /c 2 ) [L = v t 0, enligt ovan] l 0 = L / (1 v 2 /c 2 ) L = l 0 (1 v 2 /c 2 ) Man kan se att den sträcka L piloten mäter upp för förflyttningen är kortare än den som personen på marken mätt upp. Fenomenet kallas för längdkontraktion. Observera att l 0 mäts av den som är i vila jämfört med sträckan som mäts. Personen på jorden rör sig ju inte relativt sträckan AB, så när det gäller sträckmätningen är personen på marken deltagare medan piloten är observatör (rör sig i förhållande till sträckan AB). Å andra sidan följer piloten med i förflyttningen för vilken tiden mäts. Piloten är alltså deltagare i händelsen att flygplanet färdas från A till B och mäter egentiden t 0, medan personen på marken är observatör och mäter tiden t. Lektionsuppgifter 10.1 En båt färdas över en 120 m bred älv. Båten har hastigheten 1,5 m/s i förhållande till vattnet. Vid landningen visar det sig att båten under överfarten drivit 36 m nedströms. i) Hur stor hastighet har vattnet jämfört med strandkanten? ii) I vilken riktning måste båten sätta kurs för att landa mitt emot startplatsen? 10.2 En rymdfarare seglar iväg långt ute i världsrymden med hastigheten 2, m/s i förhållande till jorden. Efter 10 år i rymdskeppet undrar han hur mycket äldre tvillingsystern på jorden har blivit? Hur lyder svaret?

8 10.3 i) Förklara symbolerna och innehållet i formeln t = t 0 / (1-v 2 /c 2 ). Förklara vad som menas med egentid. ii) Avgör om vart och ett av följande påståenden är sant eller falskt: 1) En process som försiggår på en plats som är i rörelse i förhållande till oss, pågår under längre tid för oss än för någon som befinner sig på platsen. 2) En klocka som rör sig i förhållande till oss går saktare än klockor som är i vila i förhållande till oss Ett rymdskepp som befinner sig i vila i förhållande till dig är 85 m långt. Vilken längd observerar du för rymdskeppet om det passerar dig med en hastighet av 0,95c? Övningsuppgifter 10.5 En man står i en arbetshiss som går lodrätt uppåt med konstant hastighet. Han sparkar ut en liten sten så att den får en vågrät utgångshastighet i förhållande till hissen. Bortse från luftmotstånd. Vilken slags kaströrelse får stenen i) när man använder hissen som referenssystem? ii) när man använder marken som referenssystem? 10.6 Ett rymdskepp passerar jorden med hastigheten 2, m/s i förhållande till jorden. Rymdfararna mäter ett jorddygn (24 timmar på jorden) med sina klockor. Hur länge kommer de att anse att dygnet varar? 10.7 Du och en av dina vänner reser i var sitt rymdskepp i hög hastighet. Han talar om för dig att hans skepp är 25 m långt och att det identiska skepp du befinner dig i är 24 m långt. Hur långt är enligt dig i) ditt eget rymdskepp? ii) Din väns rymdskepp? iii) Hastigheten för din väns rymdskepp?

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

Einsteins relativitetsteori, enkelt förklarad. Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den

Einsteins relativitetsteori, enkelt förklarad. Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den Einsteins relativitetsteori, enkelt förklarad Einsteins första relativitetsteori, den Speciella, förklaras enkelt så att ALLA kan förstå den Speciella relativitetsteorin, Allmänt Einstein presenterade

Läs mer

Einstein's svårbegripliga teori. Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den

Einstein's svårbegripliga teori. Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den Einstein's svårbegripliga teori Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den Speciella relativitetsteorin, Allmänt Einsten presenterade teorin 1905 Teorin gäller

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Relativitetsteori, introduktion

Relativitetsteori, introduktion Relativitetsteori, introduktion En av bristerna med den klassiska fysiken är att alla observatörer antas ha samma tidsuppfattning, oavsett sin egen rörelse. Einstein kunde visa att så inte kunde vara fallet.

Läs mer

9 Rörelse och krafter 2

9 Rörelse och krafter 2 9 Rörelse och krafter 2 Tvådimensionell rörelse Kaströrelse 1 Ett horisontellt hållet gevär avfyras mot en måltavla som befinner sig 150 m bort. Måltavlans centrum ligger på samma höjd som geväret. Skottet

Läs mer

MEKANIKENS GYLLENE REGEL

MEKANIKENS GYLLENE REGEL MEKANIKENS GYLLENE REGEL Inledning Det finns olika sätt att förflytta föremål och om du ska flytta en låda försöker du säkert komma på det enklaste sättet, det som är minst jobbigt för dig. Newton funderade

Läs mer

Vad vi ska prata om idag:

Vad vi ska prata om idag: Vad vi ska prata om idag: Om det omöjliga i att färdas snabbare än ljuset...... och om gravitation enligt Newton och enligt Einstein. Äpplen, hissar, rökelse, krökta rum......och stjärnor som används som

Läs mer

Miniräknare, formelsamling

Miniräknare, formelsamling Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik B Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-29 Tid: 9.00-15.00 Kod:... Grupp:... Poäng:... Betyg U G VG... Tentamen i Fysik

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

Maria Österlund. Ut i rymden. Mattecirkeln Tid 2

Maria Österlund. Ut i rymden. Mattecirkeln Tid 2 Maria Österlund Ut i rymden Mattecirkeln Tid 2 NAMN: Hur mycket är klockan? fem i åtta 10 över 11 5 över halv 7 20 över 5 10 över 12 kvart i 2 5 över 3 20 i 5 5 i 11 kvart i 6 5 i halv 8 5 över halv 9

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297

Mekanik III, 1FA103. 1juni2015. Lisa Freyhult 471 3297 Mekanik III, 1FA103 1juni2015 Lisa Freyhult 471 3297 Instruktioner: Börja varje uppgift på nytt blad. Skriv kod på varje blad du lämnar in. Definiera införda beteckningar i text eller figur. Motivera uppställda

Läs mer

Den Speciella Relativitetsteorin DEL I

Den Speciella Relativitetsteorin DEL I Den Speciella Relativitetsteorin DEL I Elektronens Tvilling Den unge patentverksarbetaren År 1905 publicerar en ung patentverksarbetare tre artiklar som revolutionerar fysiken. En av dessa artiklar är

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor

Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor Viktig schemaändring: Kurstillfället 21 november ställs in! Schemat för föreläsningarna 9-11 förskjuts en vecka Extratillfället

Läs mer

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den Einstein's Allmänna relativitetsteori Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den Allmänna relativitetsteorin - Fakta Einsten presenterade teorin 10 år efter den

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

ESN lokala kursplan Lgr11 Ämne: Fysik

ESN lokala kursplan Lgr11 Ämne: Fysik ESN lokala kursplan Lgr11 Ämne: Fysik Övergripande Mål: Genom undervisningen i ämnet fysik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att använda kunskaper i fysik för

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Fysiken i naturen och samhället

Fysiken i naturen och samhället Fysik åk 4-6 - Centralt innehåll Engergins oförstörbarhet och flöde Energikällor och energianvändning Väder och väderfenomen Fysiken i naturen och samhället Fysiken och Fysik åk 4-6 - Centralt innehåll

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

4 Solsystemet. OH1 Tidszonerna 2 Tidszonerna 3 En jordglobs skala OH2 Årstiderna 4 Varför har vi årstider?

4 Solsystemet. OH1 Tidszonerna 2 Tidszonerna 3 En jordglobs skala OH2 Årstiderna 4 Varför har vi årstider? 4 Solsystemet 4.1 1 Varför har vi dag och natt OH1 Tidszonerna 2 Tidszonerna 3 En jordglobs skala OH2 Årstiderna 4 Varför har vi årstider? 4.2 5 Månen vår största satellit 6 Ordfläta OH3 Solen, jorden

Läs mer

Tentamen i Fysik våglära, optik och atomfysik (FAF220),

Tentamen i Fysik våglära, optik och atomfysik (FAF220), KURSLABORATORIET I FYSIK, LTH Tentamen i Fysik våglära, optik och atomfysik (FAF0), 0503 TID: 0503, KL. 3 HJÄLPMEDEL: UTDELAT FORMELBLAD, GODKÄND RÄKNARE. OBS. INGA LÖSBLAD! LÖSNINGAR: BÖRJA VARJE NY UPPGIFT

Läs mer

PROBLEM OCH LÖSNINGAR RUNT TYNGDLÖSHET

PROBLEM OCH LÖSNINGAR RUNT TYNGDLÖSHET 2003-05-31 PROBLEM OCH LÖSNINGAR RUNT TYNGDLÖSHET av Gabriel Jonsson Figur 1 Möjlig framtida marsraket enligt NASA Uppsats inom kursen Astronomi B, 5p Institutionen för fysik, Umeå Universitet Lärare:

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov 1. En kylmaskin som drivs med en spänning på 220 Volt och en ström på 0,50 A kyler vatten i en behållare. Kylmaskinen har en verkningsgrad på 0,70.

Läs mer

Fysik. Ämnesprov, läsår 2012/2013. Delprov C. Årskurs. Elevens namn och klass/grupp

Fysik. Ämnesprov, läsår 2012/2013. Delprov C. Årskurs. Elevens namn och klass/grupp Ämnesprov, läsår 2012/2013 Fysik Delprov C Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m.

Läs mer

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist Undersökning av hur kastlängden varierar i kulstötning Längden på en kulstöt beror på olika variabler. Höjden, hastigheten, kastvinkeln samt tyngdsaccelerationen spelar roll. Dessa varibler ska varieras

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter.

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. FACIT Instuderingsfrågor 1 Energi sid. 144-149 1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. Utan solen skulle det bli flera hundra minusgrader kallt på jorden

Läs mer

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem.

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem. Detta tänker jag att man redan vet: sin α= b c och cosα=a c och alltså också att för vinkeln. b=c sin α och a=c cos α Hypotenusan gånger antingen sinus eller cosinus Del 1 Tänk nu att c är en flaggstång

Läs mer

Varför har vi årstider? Lärarledd demonstration i helklass för åk 4-6

Varför har vi årstider? Lärarledd demonstration i helklass för åk 4-6 Varför har vi årstider? Lärarledd demonstration i helklass för åk 4-6 Syftet med övningen är att eleverna lära sig att årstiderna orsakas av jordaxelns lutning och av att jorden kretsar runt solen. Bakgrund:

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

1. Månens rörelser. Övning 1: Illustrera astronomiska fenomen

1. Månens rörelser. Övning 1: Illustrera astronomiska fenomen Övning 1: Illustrera astronomiska fenomen Uppgiften var att skapa illustrationer till fyra texter. Illustationerna tydliggör allt det som texten beskriver. 1. Månens rörelser Månen roterar runt jorden

Läs mer

Utdrag ur Misstänkt ljus. Kapitel 1: Ljuset från ett ufo

Utdrag ur Misstänkt ljus. Kapitel 1: Ljuset från ett ufo Utdrag ur Misstänkt ljus Kapitel 1: Ljuset från ett ufo Har du tänkt på att ljuset från ficklampan syns ut genom tältduken, viskade Kajsa. Om det skulle komma ett ufo flygande där uppe över trädtopparna

Läs mer

Hur kan en fallskärm flyga?

Hur kan en fallskärm flyga? Umeå Universitet Institutionen för fysik Hur kan en fallskärm flyga? Vardagsmysterier förklarade 5p Sommarkurs 2006 Elin Bergström Inledning En fallskärm finns till för att rädda livet på den som kastar

Läs mer

En hinderbana står uppställd på scenen. Fullt med rockringar, hopprep, bandyklubbor, bockar, mattor. Hela klassen står framför publiken.

En hinderbana står uppställd på scenen. Fullt med rockringar, hopprep, bandyklubbor, bockar, mattor. Hela klassen står framför publiken. Manusförslag för Eddaskolan årskurs 1 a. Scen 1 En hinderbana står uppställd på scenen. Fullt med rockringar, hopprep, bandyklubbor, bockar, mattor. Hela klassen står framför publiken. Alla människor reser

Läs mer

Instuderingsfrågor för godkänt i fysik år 9

Instuderingsfrågor för godkänt i fysik år 9 Instuderingsfrågor för godkänt i fysik år 9 Materia 1. Rita en atom och sätt ut atomkärna, proton, neutron, elektron samt laddningar. 2. Vad är det för skillnad på ett grundämne och en kemisk förening?

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)

GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) GRUPP 1 JETLINE a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) b) Var under turen känner du dig tyngst? Lättast? Spelar det någon roll var i tåget

Läs mer

Innehållsförteckning. Innehållsförteckning 1 Rymden 3. Solen 3 Månen 3 Jorden 4 Stjärnor 4 Galaxer 4 Nebulosor 5. Upptäck universum med Cosmonova 3

Innehållsförteckning. Innehållsförteckning 1 Rymden 3. Solen 3 Månen 3 Jorden 4 Stjärnor 4 Galaxer 4 Nebulosor 5. Upptäck universum med Cosmonova 3 1 Innehållsförteckning Innehållsförteckning 1 Rymden 3 Upptäck universum med Cosmonova 3 Solen 3 Månen 3 Jorden 4 Stjärnor 4 Galaxer 4 Nebulosor 5 2 Rymden Rymden, universum utanför jorden, studeras främst

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

Flyglära. Vi börjar med den grundläggande delen

Flyglära. Vi börjar med den grundläggande delen Flyglära Vi börjar med den grundläggande delen Det rent hantverksmässiga manövrerandet av flygplanet. Roderhantering osv. Den rent taktiska manövreringen. Hur vi flyger i varvet osv. Innan vi börjar!!

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Massa och vikt Mass and weight

Massa och vikt Mass and weight Massa och vikt Mass and weight Massa beskriver hur mycket materia e> föremål innehåller, det är ju konstant oavse> vilken tyngdkraeen är. Kapitel 4: Newtons 2:a lag Vikten beror enbart på hur tyngdkraeen

Läs mer

WALLENBERGS FYSIKPRIS 2016

WALLENBERGS FYSIKPRIS 2016 WALLENBERGS FYSIKPRIS 2016 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna

Läs mer

att båda rör sig ett varv runt masscentrum på samma tid. Planet

att båda rör sig ett varv runt masscentrum på samma tid. Planet Tema: Exoplaneter (Del III, banhastighet och massa) Det vi hittills tittat på är hur man beräknar radien och avståndet till stjärnan för en exoplanet. Omloppstiden kunde vi exempelvis få fram genom att

Läs mer

Vad är ett UFO? UFOs och aliens

Vad är ett UFO? UFOs och aliens UFOs och aliens Vad är ett UFO? Oidentifierat flygande föremål betyder bara att den som såg det inte vet vad han såg. Finns oräkneliga ögonvittnesskildringar, g massor av fotografier och filmer, och en

Läs mer

Lokal pedagogisk plan

Lokal pedagogisk plan Syfte med arbetsområdet: Undervisningen i ämnet fysik ska syfta till att eleverna utvecklar kunskaper om fysikaliska sammanhang och nyfikenhet på och intresse för att undersöka omvärlden. Genom undervisningen

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

1. Allmänt vågrörelser mekaniska vågrörelser

1. Allmänt vågrörelser mekaniska vågrörelser 1. Allmänt vågrörelser mekaniska vågrörelser Definition En mekanisk vågrörelse utgörs av en regelbundet upprepad (periodisk) störning i en del av ett medium (material) som fortplantas (utbreder sig) genom

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Läsårsplanering NO-ämnen (Thunmanskolan)

Läsårsplanering NO-ämnen (Thunmanskolan) Läsårsplanering NO-ämnen () Utgångspunkten för hur vi på arbetar i de olika ämnena är vad som står i Läroplanen (Lgr-11). Under ett läsår på arbetar vi enligt nedanstående. Ordningsföljden kan variera,

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

2. Förkorta bråket så långt som möjligt 1001/

2. Förkorta bråket så långt som möjligt 1001/ Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.

Läs mer

Prov Fysik 1 Värme, kraft och rörelse

Prov Fysik 1 Värme, kraft och rörelse Prov Fysik 1 Värme, kraft och rörelse För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1:

Läs mer

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt?

2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt? 2 Materia 2.1 OH1 Atomer och molekyler 1 Vid vilken temperatur kokar vatten? 2 Att rita diagram 3 Vid vilken temperatur kokar T-sprit? 4 Varför fryser man ofta efter ett bad? 5 Olika ämnen har olika smält-

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

Lgr 11 - Centralt innehåll och förmågor som tränas:

Lgr 11 - Centralt innehåll och förmågor som tränas: SIDAN 1 Författare: Kirsten Ahlburg Vad handlar boken om? Boken handlar om Noa som ska på semester, till solen, med sina föräldrar. Noa får gå upp väldigt tidigt för att åka till flygplasten. När han sitter

Läs mer

Ejection system, Konceptuell design

Ejection system, Konceptuell design Ejection system, Konceptuell design Huvsprängning Frontruta Ansiktsskydd Canopybreakers Låssprint Vridomkopplare i kabinen Säkrad Osäkrad Fallskärm Höjdmätare Syrgas Utskjutningshandtag Säkerhetsbälte

Läs mer

Mål och betygskriterier i Fysik

Mål och betygskriterier i Fysik Mål och betygskriterier i Fysik För att bli GODKÄND på samtliga kurser skall du: Kunna skyddsföreskrifter inom NO-institutionen, samt veta var skydds- och nödutrustning finns Kunna handha den laboratorieutrustning

Läs mer

MITT I RYMDEN. Uppdrag för åk f-3. Välkommen till uppdraget Mitt i rymden i Universeums rymdutställning på plan 3.

MITT I RYMDEN. Uppdrag för åk f-3. Välkommen till uppdraget Mitt i rymden i Universeums rymdutställning på plan 3. MITT I RYMDEN Uppdrag för åk f-3 Välkommen till uppdraget Mitt i rymden i Universeums rymdutställning på plan 3. Lärarhandledningen är till för att ge dig som lärare en möjlighet att förbereda ditt och

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

förstod man vart man skulle och man bara kände hur fort man åkta uppåt mot rymden. Kapitel 3-SMS från rymden Vi var så nervösa och lite rädda men vi

förstod man vart man skulle och man bara kände hur fort man åkta uppåt mot rymden. Kapitel 3-SMS från rymden Vi var så nervösa och lite rädda men vi (Rymdresan) Swessy är en helt vanlig kille på 13 år som bor i Gotland. Mina kompisar Ebba, Kevin, Wilma och Pontus. Jag tänkte fråga dem om de var ensamma någon kväll. Och det blev då den 12/3 2015 sen

Läs mer

Kortaste Ledningsdragningen mellan Tre Städer

Kortaste Ledningsdragningen mellan Tre Städer Kortaste Ledningsdragningen mellan Tre Städer Tre städer A, B och C, belägna som figuren till höger visar, ska förbindas med fiberoptiska kablar. En så kort ledningsdragning som möjligt vill uppnås för

Läs mer

Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Meteorologi. Läran om vädret

Meteorologi. Läran om vädret Meteorologi Läran om vädret Repetition Repetition Vad händer på partikelnivå? Meteorologi Meteorolog Är en person som arbetar med vädret SMHI Sveriges meteorologiska och hydrologiska institut Ligger i

Läs mer

Krafter. Jordens dragningskraft, tyngdkraften. Fallrörelse

Krafter. Jordens dragningskraft, tyngdkraften. Fallrörelse Krafter 1 Krafter...2 Jordens dragningskraft, tyngdkraften...2 Fallrörelse...2 Repetera lutande plan...3 Friktion...4 Tröghet...5 Tröghet och massa...6 Tyngdpunkt...6 Ta reda på tyngdpunkten för en oregelbunden

Läs mer

Alla svar till de extra uppgifterna

Alla svar till de extra uppgifterna Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0

Läs mer

Neuropedagogik Björn Adler, Hanna Adler och Studentlitteratur 2006. Bilaga 3:1 Arbeta med grundformerna för bokstäver Kognitiv träning i skrivning

Neuropedagogik Björn Adler, Hanna Adler och Studentlitteratur 2006. Bilaga 3:1 Arbeta med grundformerna för bokstäver Kognitiv träning i skrivning Bilaga 3:1 Arbeta med grundformerna för bokstäver Former i bokstäver Våra bokstäver skrivs samtliga med ett antal geometriska former som kombi neras på ett antal olika sätt för att bilda de 29 unika bokstäverna

Läs mer

Målet med undervisningen är att eleverna ska ges förutsättningar att:

Målet med undervisningen är att eleverna ska ges förutsättningar att: Fysik Mål Målet med undervisningen är att eleverna ska ges förutsättningar att: - använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som energi, teknik, miljö

Läs mer

Lektion på Gröna Lund, Grupp 1

Lektion på Gröna Lund, Grupp 1 Lektion på Gröna Lund, Grupp 1 Jetline Tåget är 9,2m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Om du har

Läs mer

Universum. Stjärnbilder och Världsbilder

Universum. Stjärnbilder och Världsbilder Universum Stjärnbilder och Världsbilder Stjärnor Stjärngrupp, t.ex. Karlavagnen Stjärnbild, t.ex. Stora Björnen Polstjärnan Stjärnor livscykel -Protostjärna - Huvudseriestjärna - Röd jätte - Vit dvärg

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Ordlista 1B:1. modell. hel timme. halv timme. timvisare. Dessa ord ska du träna. Öva orden. När du bygger efter en ritning, får du en modell.

Ordlista 1B:1. modell. hel timme. halv timme. timvisare. Dessa ord ska du träna. Öva orden. När du bygger efter en ritning, får du en modell. Ordlista 1B:1 Öva orden Dessa ord ska du träna modell När du bygger efter en ritning, får du en modell. hel timme På en timme går timvisaren ett steg på klockan. halv timme På en halvtimme går minutvisaren

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

Kraft, tryck och rörelse

Kraft, tryck och rörelse Kraft, tryck och rörelse Kraft En kraft kan ändra form, fart och rörelseriktning hos föremål. Kraft mäts i Newton, N. Enheten är uppkallad efter fysikern Isaac Newton som levde på 1600- talet. 1 N är ungefär

Läs mer

12 Elektromagnetisk strålning

12 Elektromagnetisk strålning LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i

Läs mer

atomkärna Atomkärna är en del av en atom, som finns mitt inne i atomen. Det är i atomkärnan som protonerna finns.

atomkärna Atomkärna är en del av en atom, som finns mitt inne i atomen. Det är i atomkärnan som protonerna finns. Facit till Kap 13 Grundboken s. 341-355 och Lightboken s. 213 222 (svart bok) även facit finalen. Testa Dig Själv 13.1TESTA DIG SJÄLV 13.1 GRUNDBOK proton Protoner är en av de partiklar som atomer är uppbyggda

Läs mer

Uppgifter. Uppgifter. Uppgift 2. Uppgift 1

Uppgifter. Uppgifter. Uppgift 2. Uppgift 1 Uppgift 1 Uppgift 2 Det första målet är att beräkna vinkeldiametern på ringen, det vill säga ringens apparenta diameter sedd från jorden i bågsekunder. Detta är vinkel a. De relativa positionerna för stjärnorna

Läs mer

Orienteringskurs i astronomi Föreläsning 1, Bengt Edvardsson

Orienteringskurs i astronomi Föreläsning 1, Bengt Edvardsson Orienteringskurs i astronomi Föreläsning 1, 2014-09-01 Bengt Edvardsson Innehåll: Korta frågor och svar Anteckningarna är en hjälp vid läsningen av boken men definierar inte kursen. Första föreläsningen

Läs mer

Börja med att berätta om din huvudperson. Börja t.ex. med: Mattias är en helt vanlig kille på 12 år som bor i

Börja med att berätta om din huvudperson. Börja t.ex. med: Mattias är en helt vanlig kille på 12 år som bor i Kapitel 1 Allt börjar. 1 I det här kapitlet övar vi på att skriva i en annan persons namn, alltså INTE i jag-form, och på att beskriva. Börja med att läsa igenom alla instruktioner så att du inte missar

Läs mer

Varför har månen faser? Lärarledd demonstration; lämplig för åk 4-5

Varför har månen faser? Lärarledd demonstration; lämplig för åk 4-5 Varför har månen faser? Lärarledd demonstration; lämplig för åk 4-5 Syftet med övningen är att eleverna ska förstå vad som orsakar månens faser. Förslag på tillvägagångssätt och material: -- en jordglob

Läs mer

MITT I RYMDEN. Lärarhandledning

MITT I RYMDEN. Lärarhandledning MITT I RYMDEN Lärarhandledning 1 Gör en resa ut i rymden och upptäck hur det är att bo, leva och jobba på en rymdstation. Hur gör astronauterna när de går på toaletten och varför är de fastspända när de

Läs mer

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin Innehåll Förord...11 Del 1 Inledning och Bakgrund 1.01 Vem var Martinus?... 17 1.02 Martinus och naturvetenskapen...18 1.03 Martinus världsbild skulle inte kunna förstås utan naturvetenskapen och tvärtom.......................

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Enheten för Pedagogiska Mätningar PBFyA 02-05 Umeå universitet PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-9 Del III: Långsvarsfrågor. Uppgift 10-16

Läs mer

!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6

!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6 LÄXA. 1 1 En fönsterruta har måtten 0,8 m x 1,5 m. Vilken är rutans a) omkrets b) area 2 Räkna utan miniräknare 62000 7,5 a) 0,6 700 b) 200 c) 0,05 3 Beräkna a) 7 + (-3) d) (-7) (-3) b) 7 (-3) e) (-7)

Läs mer

5. Bryt ljus i ett hål, hålkamera.

5. Bryt ljus i ett hål, hålkamera. Ljusets dag 1. Ljuset går rakt fram tills det bryts. Låt ljuset falla genom dörröppningen till ett mörkt rum. Se var gränserna mellan ljus och mörker går. Reflektera ljus ut i mörkret med t ex CDskivor,

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar

BASFYSIK BFN 120. Laborationsuppgifter med läge, hastighet och acceleration. Epost. Namn. Lärares kommentar BASFYSIK BFN 120 Galileo Galilei, italiensk naturforskare (1564 1642) Laborationsuppgifter med läge, hastighet och acceleration Namn Epost Lärares kommentar Institutionen för teknik och naturvetenskap

Läs mer

Innehåll Sid nr Förvara detta häfte på ett betryggande sätt

Innehåll Sid nr Förvara detta häfte på ett betryggande sätt Innehåll Sid nr Inledning... 4 Bedömningsanvisning Delprov A... 6 Bedömningsanvisning Delprov B... 15 Kopieringsunderlag för resultatsammanställning... 17 Innehållsmatris... 18 Bedömningsmatris... 19 Förvara

Läs mer

Arbete Energi Effekt

Arbete Energi Effekt Arbete Energi Effekt Mekaniskt arbete Du använder en kraft som gör att föremålet förflyttas i kraftens riktning Mekaniskt arbete Friktionskraft En kraft som försöker hindra rörelsen, t.ex. när du släpar

Läs mer