LEONARDO DA VINCI ( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "LEONARDO DA VINCI ( )"

Transkript

1 LEONARDO DA VINCI ( ) En kropp som rör sig med en viss hastighet i stillastående luft erfar samma strömningsmotstånd som om kroppen vore stillastående och utsatt för en luftström med samma hastighet. Vid samtal om vattnets strömning anför först erfarenhet, sedan förnuft. Genom varje sektion längs en flod passerar under samma tid samma kvantitet vatten, detta oavsett flodens bredd, djup, lutning, bottenstruktur och slingrighet. Strömningshastigheten i en flod med konstant djup är större vid en smal passage än vid en bred, hastigheterna är i omvänt förhållande till kvoten mellan flodens bredder. Strömningslära C. Norberg, LTH

2 INTRODUKTION Strömning över ett långsträckt rätblock på en plan yta (Werlé 1974). Fluidmekanik = fluiders statik och dynamik Strömningslära fluiders dynamik Vad är en fluid? Fluid = gas eller vätska Enfastkropp(ensolid)kan,imotsatstillenfluid,motståskjuvbelastning genom statisk deformation. Om en fluid utsätts för godtyckligt liten skjuvbelastning deformeras fluiden kontinuerligt; det uppstår en rörelse, en strömning. Kontinuumshypotesen (Euler c.1755) Varje punkt i rummet antas ha ändliga värden på hastighet, temperatur, tryck, densitet, o.s.v. Diskontinuiteter i dessa fysikaliska storheter är tillåtna över ytor, t.ex. fasgränser. Varje storhets värde skall ses som ett medelvärde över en liten volym kring den betraktade punkten. Antalet mikropartiklar(atomer, molekyler,...) i denna tänkta volym måste vara tillräckligt stort. För gaser vid normala tillstånd och för alla vätskor ligger dennas.k.kontinuumsgränsvidenvolympåca.10 9 mm 3,motsvarande en kub med sidorna 1 µm. För luft vid 1 atm, 20 C innehåller en sådan volym ca molekyler. CH. 1 Strömningslära C. Norberg, LTH

3 VISKOSITET Hastighetsskillnad mellan närliggande fluidskikt rörelsemotverkande skjuvkraft (friktion) τ = skjuvspänning = skjuvkraft per areaenhet [Pa] (1 Pa = 1 N/m 2 ) Betrakta en enkel skjuvströmning i x riktningen, V = (u, 0, 0), där u(y); uppbromsning mot en fast vägg vid y = 0. Fluidens hastighet vid väggen = väggens hastighet (no-slip) Väggfriktion = väggskjuvspänning τ w Mindre hastighetsvariation du/dy mindre friktion Newton (1687): τ du/dy Newtonsk fluid: τ = µ(du/dy) µ = dynamisk viskositet (ämnesstorhet) [Pa s] Tryckberoendet i allmänhet försumbart, µ µ(t) τ w = µ(du/dy) y=0 V = (u,v,w) τ yx = τ xy = µ( u/ y + v/ x),... CH. 1.6 Strömningslära C. Norberg, LTH

4 REYNOLDS TAL Reynolds tal: Re = ρv L µ = V L ν V = karakteristisk hastighet, t.ex. medelhastigheten i ett rör L = karakteristisk längd, t.ex. rördiameter ν = fluidens kinematiska viskositet (ν = µ/ρ) Reynolds tal avgör strömningens karaktär Re tillräckligt lågt Laminär strömning Ordnad, skiktad rörelse, dålig blandningsförmåga Re tillräckligt högt Turbulent strömning Oordnad, till synes kaotisk rörelse, stor blandningsförmåga Ex. Rörströmning, cirkulärt tvärsnitt: Re = ρvd/µ = VD/ν Re < 2100 Laminär strömning Re > 4000 Turbulent strömning CH. 1.6 Strömningslära C. Norberg, LTH

5 HYDROSTATIK Normalspänning = ytkraft per areaenhet i ytnormalens riktning. Skjuvspänning = ytkraft per areaenhet verkande i ytans plan. Fluid i vila inga skjuvspänningar; de enda normalspänningarna är de p.g.a. tryckverkan. Betrakta ett prismaliknande infinitesimalt fluidelement, se figur. Fluiden är stillastående, i vila; tyngdacceleration nedåt (z-riktning uppåt). Elementets volym: δxδyδz/2 = δv ; massa: δm = ρδv. Inga nettokrafter på elementet och i gränsen då δx,δy,δz 0 med bibehållen vinkel θ: F y = p y δxδz p s δxδs sinθ = 0 δz = δs sinθ p y = p s F z = p z δxδy p s δxδs cosθ δmg = 0 δy = δs cosθ p z p s = ρgδz/2 = 0, d.v.s. p z = p s p s = p y = p z Trycket är oberoende av riktning (Pascals lag) CH. 2.1 Strömningslära C. Norberg, LTH

6 HYDROSTATIK... Betrakta ett infinitesimalt fluidelement format som en paralellepiped, se figur. Tryck i centrum av elementet: p = p(x,y,z), tyngdacceleration nedåt, i negativ z-riktning. Per definition verkar trycket mot elementets ytor in mot elementets centrum. I övre ytan, på nivån z + δz/2, är trycket vid tillräckligt litet δz lika med p+( p/ z)(δz/2), i undre ytan på nivån z δz/2 gäller p+( p/ z)( δz/2). Nettotryckkraft i z-led: ( p/ z)(δz δx δy) = ( p/ z)δv ; masskraft i z-riktningen: ρ g δv. Ingen acceleration innebär att summan av krafter i z-led är noll, d.v.s. p z +ρg = 0 I de övriga två riktningarna finns ingen masskraft, d.v.s. Ur första likheten följer: p x = p y = 0 p = p(z) dp dz = ρg = γ Konstant γ = ρg trycket ökar linjärt med djupet. CH. 2.2 Strömningslära C. Norberg, LTH

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH GRUNDLÄGGANDE BEGREPP System (slutet system) = en viss förutbestämd och identifierbar massa m. System Systemgräns Omgivning. Kontrollvolym (öppet system) = en volym som avgränsar ett visst område. Massa

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt):

p + ρv ρgz = konst. [z uppåt] Speciellt försumbara effekter av gravitation (alt. horisontellt): BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär

Läs mer

MMVA01 Termodynamik med strömningslära

MMVA01 Termodynamik med strömningslära INLEDNING MMVA01 Termodynamik med strömningslära 1.1 Deniera eller förklara kortfattat (a) uid Repetitionsfrågor strömningslära (inkl. svar i kursiv stil, utan gurer) 18 augusti 010 = medium som kontinuerligt

Läs mer

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa.

p + ρv ρgz = konst. Speciellt försumbara effekter av gravitation (alt. horisontellt): Om hastigheten ökar minskar trycket, och vice versa. BERNOULLIS EKVATION Vid inkompressibel, stationär strömning längs strömlinjer samt längs röravsnitt med homogena förhållanden över tvärsnitt, vid försumbara effekter av friktion, gäller Bernoullis ekvation:

Läs mer

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C. STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater gäller:

Läs mer

Densitet (massa per volymsenhet): ρ =

Densitet (massa per volymsenhet): ρ = KONTINUUMSHYPOTESEN Fysikaliska egenskaper antas fördelade i rummet. Varje punkt har ändliga värden på hastighet, temperatur, tryck, o.s.v. Egenskaper tillåts vara diskontinuerliga över ytor, t.ex. fasgränser

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

HYDRAULIK (ej hydrostatik) Sammanfattning

HYDRAULIK (ej hydrostatik) Sammanfattning HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016

Läs mer

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid

Vingprofiler. Ulf Ringertz. Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Ulf Ringertz Grundläggande begrepp Definition och geometri Viktiga egenskaper Numeriska metoder Vindtunnelprov Framtid Vingprofiler Korda Tjocklek Medellinje Läge max tjocklek Roder? Lyftkraft,

Läs mer

Lektion 1: Hydraulvätskan och dess egenskaper

Lektion 1: Hydraulvätskan och dess egenskaper Lektion 1: Hydraulvätskan och dess egenskaper Trycket samma överallt i systemet, djupet försummas. c. 5MT007: Lektion 1 p. 1 Lektion 1: Hydraulvätskan och dess egenskaper Trycket samma överallt i systemet,

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

MMVF01 Termodynamik och strömningslära

MMVF01 Termodynamik och strömningslära MMVF01 Termodynamik och strömningslära Repetitionsfrågor strömningslära (inkl. svar i kursiv stil; utan figurer) 11 december 2015 Sidhänvisningar: Young et al. (5th Ed.), Çengel & Boles (7th Ed.), Formelsamling

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

MMVF01 Termodynamik och strömningslära

MMVF01 Termodynamik och strömningslära MMVF01 Termodynamik och strömningslära Repetitionsfrågor strömningslära (inkl. svar i kursiv stil; utan figurer) 24 november 2010 Sidhänvisningar: Young et al. (4th Ed.), Çengel & Boles (6th Ed.), Formelsamling

Läs mer

Lektion 1: Hydraulvätskan och dess egenskaper

Lektion 1: Hydraulvätskan och dess egenskaper Lektion 1: Hydraulvätskan och dess egenskaper Trycket samma överallt i systemet, djupet försummas. c. 5MT007: Lektion 1 p. 1 Lektion 1: Hydraulvätskan och dess egenskaper Trycket samma överallt i systemet,

Läs mer

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C.

v = dz Vid stationär (tidsoberoende) strömning sammanfaller strömlinjer, partikelbanor och stråklinjer. CH Strömningslära C. STRÖMLINJER, STRÅKLINJER,... En strömlinje (eng. streamline) är en kurva (linje) i rummet vars tangentvektor i varje punkt är parallell med hastighetsvektorn V. I vanliga rätvinkliga koordinater, V = (u,

Läs mer

δx 1, (1) u 1 + u ) x 1 där den andra termen är hastighetsförändringen längs elementet.

δx 1, (1) u 1 + u ) x 1 där den andra termen är hastighetsförändringen längs elementet. Föreläsning 3. 1 Töjningstensorn I denna föreläsning kommer vi konsekvent att använda oss utav Cartesisk tensornotation i vilken vi benämner våra koordinater med (x 1, x 2, x 3 ) och motsvarande hastighetskomponenter

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 7: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Reynolds tal är ett dimensionslöst tal som beskriver flödesegenskaperna hos en fluid. Ett lågt värde på Reynolds

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

STRÖMNING MED FRIA VÄTSKEYTOR

STRÖMNING MED FRIA VÄTSKEYTOR STRÖMNING MED FRIA VÄTSKEYTOR Vid den fria vätskeytan (vattenytan) kan trycket antas lika med det konstanta atmosfärstrycket (ytspänningseffekter försummas). Stationär, inkompressibel och oftast turbulent

Läs mer

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto Prototyp Produktion i samarbete med MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto FYSIK SNACKS Kraft och motkraft............... 4 Raketmotorn................... 5 Ett fall för Galileo Galilei............

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin

Aerodynamik. Swedish Paragliding Event november Ori Levin. Monarca Cup, Mexico, foto Ori Levin Aerodynamik Swedish Paragliding Event 2008 1-2 november Ori Levin Monarca Cup, Mexico, foto Ori Levin Behöver man förstå hur man flyger för att kunna flyga? 2008-10-31 www.offground.se 2 Nej 2008-10-31

Läs mer

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-03-8 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

Grundläggande aerodynamik

Grundläggande aerodynamik Grundläggande aerodynamik Introduktion Grundläggande aerodynamik Lyftkraft Aerodynamiska grunder Vingprofiler Historik Sedan urminnes tider har människan blickat upp mot himlen Förekomst inom mytologin:

Läs mer

Transportfenomen i människokroppen

Transportfenomen i människokroppen Transportfenomen i människokroppen Laborationshandledning Institutionen för biomedicinsk teknik LTH Inför laborationen: Skriv ut den här laborationshandledningen eller ladda ner den till dator/surfplatta

Läs mer

(14 januari 2010) 1.2 Ge en praktisk definition av en fluids densitet. Illustrera med figur.

(14 januari 2010) 1.2 Ge en praktisk definition av en fluids densitet. Illustrera med figur. Kapitel 1 Inledning MMV211 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Vad är den principiella skillnaden mellan en fluid och en fast kropp (solid)? 1.2 Ge en praktisk definition av en fluids

Läs mer

Navier-Stokes ekvationer och mikrofluiddynamik

Navier-Stokes ekvationer och mikrofluiddynamik Navier-Stokes ekvationer och mikrofluiddynamik Gästföreläsning i PDE för F2, 2003-05-19 Erik Svensson Beräkningsmatematik Chalmers Notation Funktioner: Om inte annat anges förutsätter vi att de funktioner

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

(14 januari 2010) Vad representerar de två sista termerna? Illustrera ingående storheter i figur.

(14 januari 2010) Vad representerar de två sista termerna? Illustrera ingående storheter i figur. Kapitel 1 Inledning MMV025 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Ge en praktisk definition av en fluids densitet. Illustrera med figur. 1.2 Diskutera och illustrera med diagram några tänkbara

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Grundläggande aerodynamik, del 4

Grundläggande aerodynamik, del 4 Grundläggande aerodynamik, del 4 Gränsskiktet Definition/uppkomst Friktionsmotstånd Avlösning/stall Gränsskiktets inverkan på lyftkraften Gränsskiktskontroll Höglyftsanordningar 1 Bakgrund Den klassiska

Läs mer

1 Navier-Stokes ekvationer

1 Navier-Stokes ekvationer Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan

Läs mer

YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt

YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt Under föreläsningarna 8 och 9 kommer vi att gå igenom ett antal koncept som är viktiga i ytkemi och försöka göra en termodynamisk beskrivning

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2015-08-29, kl 14.00-18.00 Tentamenskod: TEN1 Tentasal: TER1, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 15.00) Kursadministratör:

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Kapitel 9 Hydrostatik. Fysik 1 - MB 2008

Kapitel 9 Hydrostatik. Fysik 1 - MB 2008 Tryck Kraft per yta kallas tryck. När en kraft F verkar vinkelrätt och jämnt fördelad mot en yta A erhålls trycket p F p där A p = tryck F = kraft A = area eller yta Tryck forts. p F A Enheten för tryck

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som.

1 Materiell derivata. i beräkningen och så att säga följa med elementet: φ δy + δz. (1) φ y Den materiella derivatan av φ definierar vi som. Föreläsning 2. 1 Materiell erivata ätskor och gaser kallas me ett sammanfattane or för fluier. I verkligheten består fluier av partiklar, v s atomer eller molekyler. I strömningsmekaniken bortser vi från

Läs mer

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler.

Inlämningsuppgift 1. 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Inlämningsuppgift 1 1/ Figuren visar ett energischema för Ulla som går uppför en trappa. I detta fall sker en omvandling av energi i Ullas muskler. Oftast använder vi apparater och motorer till att omvandla

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012

Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012 Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012 Mätning & värdesiffror Så fort man mäter någon storhet (exempelvis en längd, en massa o.s.v.) ger själva mätningen en

Läs mer

Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration

Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Sensorer, effektorer och fysik Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Töjning Betrakta en stav med längden L som under inverkan av en kraft F töjs ut en

Läs mer

Trycket är beroende av kraft och area

Trycket är beroende av kraft och area Tryck Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer du inte uppleva

Läs mer

MMVF01 Termodynamik och strömningslära

MMVF01 Termodynamik och strömningslära Institutionen för Energivetenskaper MMVF01 Termodynamik och strömningslära FORMELSAMLING till D. F. Young, B. R. Munson, T. H. Okiishi & W. W. Huebsch, A Brief Introduction to Fluid Mechanics, John Wiley

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar

Sensorer, effektorer och fysik. Mätning av flöde, flödeshastighet, nivå och luftföroreningar Sensorer, effektorer och fysik Mätning av flöde, flödeshastighet, nivå och luftföroreningar Innehåll Volymetriska flödesmätare Strömningslära Obstruktionsmätare Mätning av massflöde Mätning av flödeshastighet

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Grundläggande aerodynamik, del 5

Grundläggande aerodynamik, del 5 Grundläggande aerodynamik, del 5 Motstånd Totalmotstånd Formmotstånd Gränsskiktstypens inverkan på formmotstånd 1 Motstånd Ett flygplan som rör sig genom luften (gäller alla kroppar) skapar ett visst motstånd,

Läs mer

FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM.

FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM. FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM. Ytaktiva ämne (surfaktanter) Gibbs ytspänningsekvation (ytkoncentration av ett löst ämne) Bestämning av ytadsorptionsdensitet Bildning av miceller

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Strömning Förberedelser Läs i "Fysik i vätskor och gaser" om strömmande gaser och vätskor (sid 141-160). Titta därefter genom utförandedelen på laborationen så att du vet vilka moment som ingår. Om du

Läs mer

Institutionen för Energivetenskaper, LTH

Institutionen för Energivetenskaper, LTH Institutionen för Energivetenskaper, LTH MMV05/11 Strömningslära LABORATION 1 Omströmmade kroppar MÅLSÄTTNING (1) Förstå hur kroppsform och ytråhet påverkar krafterna på en omströmmad kropp () Förstå hur

Läs mer

LUNDS KOMMUN POLHEMSKOLAN

LUNDS KOMMUN POLHEMSKOLAN LUNDS KOMMUN POLHEMSKOLAN TEST I FYSIK FÖR FYSIKPROGRAMMET Namn: Skola: Kommun: Markera rätt alternativ på svarsblanketten (1p/uppgift) 1. Vilka två storheter måste man bestämma för att beräkna medelhastigheten?

Läs mer

Termodynamik Föreläsning 1

Termodynamik Föreläsning 1 Termodynamik Föreläsning 1 Grundläggande Begrepp Jens Fjelstad 2010 08 30 1 / 35 Klassisk Termodynamik omvandling av energi mellan olika former via värme och arbete (mekaniskt, elektriskt,...) behandlar

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Termodynamik Föreläsning 5

Termodynamik Föreläsning 5 Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6)

Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6) Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6) Spänningar i jord Olika spänningstillstånd Krafter och spänningar i ett kornskelett Torrt kornskelett Vattenmättat

Läs mer

Två gränsfall en fallstudie

Två gränsfall en fallstudie 19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion

Läs mer

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Värmelära. Fysik åk 8

Värmelära. Fysik åk 8 Värmelära Fysik åk 8 Fundera på det här! Varför kan man hålla i en grillpinne av trä men inte av järn? Varför spolar man syltburkar under varmvatten om de inte går att få upp? Varför hänger elledningar

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

Tryck. www.lektion.se. fredag 31 januari 14

Tryck. www.lektion.se. fredag 31 januari 14 Tryck www.lektion.se Trycket är beroende av kraft och area Om du klämmer med tummen på din arm känner du ett tryck från tummen. Om du i stället lägger en träbit över armen och trycker med tummen kommer

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Lektion 3: Verkningsgrad

Lektion 3: Verkningsgrad Lektion 3: Verkningsgrad Exempel; Hydraulsystem för effektöverföring Verkningsgrad: η = P U P T = ω UM U ω T M T η medel (T) = T 0 P UT(t)dt T 0 P IN(t)dt Lektion 3: Innehåll Dagens innehåll: Arbete/effekt

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

1. Grundläggande strömningslära och hemodynamik

1. Grundläggande strömningslära och hemodynamik 1. Grundläggande strömningslära och hemodynamik Per Ask Institutionen för medicinsk teknik Linköpings universitet Blodets transport av syre, bundet till hemoglobinet, från lungorna till kroppens olika

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Projektilrörelse med flera tillämpningar inom fotboll

Projektilrörelse med flera tillämpningar inom fotboll Projektilrörelse med flera tillämpningar inom fotboll Många sportgrenar baseras på någon form av projektilrörelse. Projektilen som används kan antingen vara den egna människokroppen (som i exempelvis längdhopp,

Läs mer

MVKF20 Transportfenomen i människokroppen. Kursinformation 2014

MVKF20 Transportfenomen i människokroppen. Kursinformation 2014 MVKF20 Transportfenomen i människokroppen Kursinformation 2014 Syfte Kursen avser att ge studenterna grundläggande kunskaper om utvalda transportfenomen och hur dessa styr människokroppens funktion. Mål

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer