Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö

Storlek: px
Starta visningen från sidan:

Download "Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö"

Transkript

1 Dagens föreläsning TSFS6 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se Tröskelsättning och beslut i osäker miljö Adaptiva trösklar Prediktionsfel Likelihood-funktionen Parameterskattning Residualer Hur bra är min teststorhet? / 45 2 / 45 Från förra föreläsningen Från förra föreläsningen H k : F p {NF, F } H k : F p {NF, F } C = {F 2, F 3} En teststorhet T (z) för hypotestestet har egenskapen { liten då H är sann T (z) = stor då H ej är sann Presenterades principer för hur det kan gå till att skapa teststorheter Prediktionsfel 2 Parameterskattningar 3 Likelihood 4 Residualer Finns fler och ingen ortogonal klassificering. Detta betyder att T (z) är ett modellvalideringsmått för modellen som beskrivs i beteendemoderna i nollhypotesen, dvs. F eller NF. 3 / 45 4 / 45

2 Från förra föreläsningen Prediktionsfel Parameterskattningar Likelihood T (z) = min θ Θ T (z) = ˆθ θ, T (z) = max θ Θ f (z θ), Residualer (y(t) ŷ(t z, θ)) 2 t= ˆθ = arg min θ (y(t) ŷ(t z, θ)) 2 t= f (z θ) är fördelningen för observationerna Översikt Tröskelsättning och beslut i osäker miljö Adaptiva trösklar Prediktionsfel Likelihood-funktionen Parameterskattning Residualer Hur bra är min teststorhet? r = d (p)γ(p)n H (p)l(p)z och andra metoder som kommer i senare föreläsningar 5 / 45 6 / 45 Tröskling av teststorheter Beslut i brusig och osäker miljö För att kunna ta beslut om noll-hypotesen ska förkastas eller ej krävs att en regel som säger när nollhypotesen ska förkastas. Typiskt, larma om teststorheten överskrider en tröskel J, dvs. T (z) > J generera ett larm För teststorheter baserade på likelihood-funktionen L(z) blir det < istället för >, dvs. T (z) = L(z) < J generera ett larm Fundamental fråga Hur väljer man tröskeln J och vad bör man tänka på? Antag ett test som ska övervaka ett fel. Testet kan larma eller inte och systemet kan vara OK eller OK, dvs fyra kombinationer: Idealt ska rödmarkerade kombinationer aldrig inträffa, men i brusiga miljöer kan man som regel inte helt undvika falskalarm och missad detektion. 7 / 45 8 / 45

3 Beslut i brusig och osäker miljö Ett alarm som sker när systemet är felfritt är ett falskalarm (FA). Idealt är ska p(fa) =. p(fa) = p(t > J OK) Händelsen att inte larma trots att det är fel kallas missad detektion (MD). Idealt ska p(md) =. p(md) = p(t < J OK) Tröskeln J styr kompromissen mellan falskalarm och missad detektion. Hur ska den väljas? 9 / 45 Beslut i brusig och osäker miljö - realistiska mål Falskalarm är nästan helt oacceptabla eftersom de undergräver förtroendet för diagnossystemet, skapar onödiga utgifter för reparation av hela komponenter (det är extra svårt att hitta fel på hela komponenter), försämrar prestanda genom att hela komponenter kopplas bort under drift, försämrar tillgängligheten genom att ta systemet ur drift. Fel med signifikant storlek, dvs de utgör ett hot mot säkerhet, maskinskydd, eller överskrider lagkrav måste upptäckas. För små fel som endast ger gradvis försämring av prestanda kan det vara bättre att prioritera få falskalarm gentemot att få bra detektion. Ofta specificeras ett krav på falskalarm: p(fa) < ɛ. / 45 Beslut i brusig och osäker miljö Stort fel: Beslut i brusig och osäker miljö Tydlig separation (för alla möjliga felstorlekar): Tydlig separation krävs för att uppfylla kraven. Om det inte är separerat så måste teststorheten förbättras, modellen utökas eller systemet byggas om. Litet fel: p(t OK) J p(t litet fel) T J S = {NF } T > J S = {F } NF F T Överlappande fördelningar (för någon möjlig felstorlek): p(t OK) J p(t litet fel) p(missad detektion) För att maximera sannolikheten för detektion, väljs den minsta tröskeln så att p(t > J OK) < ɛ. I detta fall är det alltså fördelningen för det felfria fallet som bestämmer tröskeln J. / 45 T p(missad detektion) T J S = {NF, F } T > J S = {F } NF F T X Det senare fallet är typfallet i den här kursen. 2 / 45 T

4 Tröskelsättning baserat på felfria data Svansens fördelning Antag nytt oberoende värde på teststorheten var tiondels sekund och ett krav på max falsklarm per år ger P(FA) = P( T > J OK) 3 7 Med en normalfördelningsapproximation så blir då tröskeln J 5.. p(fa) är ett vanligt sätt att specificera prestanda Känslig för svansens fördelning och stationäritet Krävs mycket data för att få bra uppfattning om svansens fördelning 3 / x Tre helt olika fördelningar För låga falskalarmssannolikheter så blir tröskelsättningen närmast identisk. 4 / 45 Tröskelsättning Tröskelsättning baserat på modellerat brus Ofta väldigt höga krav på låg falskalarmssannolikhet 9 väldigt mycket data behövs för att kunna sätta tröskeln pålitligt i dessa fall! Kräver endast kunskap om yttersta svansen på fördelningen. Behövs väldigt mycket data för att få god uppfattning om svansen. Vid väldigt låga falsklarmssannolikheter kan man tex: parametrisera upp svansens fördelning (exempelvis en exponentiell fördelning) och sätt tröskeln via den modellen. En tänkbar lösning på problemet är att göra flera oberoende test. P(T < J) = α P(T < J... T N < J) = α N 5 / 45 y(t) = bu(t) + v(t) v(t) N(, σ 2 v ) Nominellt värde på b är b. U, Y, och V betecknar staplade kolumnvektorer av u, y, och v vid olika tidpunkter. Då kan modellen skrivas som: Y = Ub + V En teststorhet baserad på en parameterskattning: T 2 (z) = (ˆb b ) 2 där ˆb = U T U UT Y Beakta skattningsfelet i det felfria fallet, dvs. b = b : ˆb b = U T U UT (Ub + V ) b = U T U UT V 6 / 45

5 exempel, forts. y(t) = bu(t) + v(t) v(t) N(, σ 2 v ) Skattningsfelet i det felfria fallet är: ɛ = ˆb b = U T U UT V Skattningsfelet ɛ är normalfördelat enligt: E(ɛ) = E( U T U UT V ) = U T U UT E(V ) = Cov(ɛ) = E( U T U UT V ) 2 = (U T U) 2 UT E(VV T )U = U T U σ2 v ɛ N(, σ 2 v U T U ) 7 / 45 exempel, forts. Skattningsfelet har en varians som beror på u! ɛ N(, σ 2 v U T U ) för fix tröskel kommer falskalarmssannolikheten att bero på hur processen styrs. (Dåligt!) Multiplicera skattningen med U T U/σ v : U T U σ v (ˆb b ) N(, ) så fås där T 2 (z) χ2 () T 2(z) = UT U σv 2 (ˆb b ) 2 ˆb = U T U UT Y 8 / 45 Känslighet för okontrollerbara effekter och robusthet Arbetsgång - Tröskelsättning Man vill ha samma falskalarmssannolikhet i sitt beslut hela tiden, oberoende av förändringar i insignalen u och tillstånd x, störningar d, modellfel. Kräver att fördelningen för T (z) ej förändras! Men teststorheterna kan vara känsliga för dessa okontrollerbara effekter på grund av: modellfel dålig excitation mätbrus och modellbrus approximativ avkoppling Robusthet: teststorhetens förmåga att uppfylla prestandamål även då modellfel etc. påverkar processen Något som kallas normalisering används för att säkerställa att fördelningen för T (z) ej ändras. 9 / 45 Vanlig arbetsgång vid val av tröskel är att uppfylla en viss falskalarmssannolikhet α. Skapa en teststorhet 2 Normalisera så att du (förhoppningsvis) har en teststorhet T k (z) med någorlunda konstant variation (fördelning) för olika arbetspunkter under H. 3 Givet fördelningen på T k (z) välj en tröskel J k så att P(T k (z) > J k H k ) ɛ (eller på annat sätt beroende på hur kraven är specificerade) Nu ska vi studera normaliseringen. 2 / 45

6 Översikt Principer för konstruktion av teststorheter Tröskelsättning och beslut i osäker miljö Adaptiva trösklar Prediktionsfel Likelihood-funktionen Parameterskattning Residualer Design av teststorheter baserat på: prediktionsfel likelihood-funktionen parameterskattningar residualer konsistensrelationer, observatörer Metodik för att normalisera i dessa 4 fall? Hur bra är min teststorhet? 2 / / 45 Normalisering med prediktionsfel Minns Normalisering med likelihood-funktionen T (z) = min θ Θ V (θ, z) > c (reject H ) Vi behöver ett mått på modellosäkerheten H förkastas om J adp = max θ Θ L(θ z) c W (z) = min θ Θ V (θ, z) = min θ Θ Minimeringen är över alla möjliga θ. eller ekvivalent: (y(t) ŷ(t θ)) 2 t= J adp = min θ Θ V (θ, z) c T (z) = min θ Θ V (θ, z) min θ Θ V (θ, z) > c (reject H ) Med normalisering: H förkastas om T (z) = max L(θ z) < max L(θ z) c θ Θ θ Θ T (z) = max θ Θ L(θ z) max θ Θ L(θ z) < c T (z) kallas likelihood ratio-test Andra ord som används är maximum likelihood ratio eller generalized likelihood ratio 23 / / 45

7 Normalisering med parameterskattning Teststorheten kan skapas enligt T = (ˆθ N θ ) 2, ˆθ N = arg min θ N (y(t) ŷ(t θ)) 2 Fördelningen på skattningen varierar med grad ev excitation etc. och för att kunna normalisera så måste vi på något sätt räkna ut den. t= I det tidigare enkla exemplet så kunde vi räkna ut att ˆb N b N (, σ 2 v U T U ) där U T U är graden av excitation. Därmed kunde vi normalisera och sätta tröskel. Generellt är det svårt att exakt räkna ut skattningens fördelning. Två möjligheter: asymptotiska resultat 2 simulering, Monte-Carlo 25 / 45 Asymptotisk fördelning hos skattning Att exakt räkna ut vilken fördelning ˆθ N enligt nedan får är svårt, och i mer komplicerade fall ogörligt. T = (ˆθ N θ ) 2, ˆθN = arg min θ N (y(t) ŷ(t θ)) 2 En möjlighet är att se till att N är tillräckligt stort, då kan man använda asymptotiska resultat N(ˆθ N θ ) AsN (, P) där kovariansen P kan skattas utifrån de data som användes vid skattningen. Jag tar inte med uttrycken här, men formerna hittas i Modellbygge och simulering, eller i mer detalj i System Identification - Theory for the user av Lennart Ljung. t= 26 / 45 Adaptiva trösklar för residualer Adaptiv tröskel - normalisering av residualer Exempel: linjärt system Uppmätta data från en ventil i luftsystemet i Gripen: y = ( G(s) + G(s) ) u 3 2 Solid: residual; Dashed: thresholds där G(s) är modellfel R 3 r =H y (p)y + H u (p)u = H y (p) G(p)u Time [s] Man vet att modellen är bättre/mer noggrann då man rör sakta på ventilen och sämre vid hastiga förändringar av vinkelläget. Utnyttja det! δ > G(s) är en känd övre gräns på storleken hos modellfelet G(s). Ett sätt att välja en adaptiv tröskel: J adp (t) = δ H y (p)u + J eller mer allmänt J asp (t) = c W (z) + c 2 där W (z) är ett mått på modellosäkerheten. 27 / / 45

8 Adaptiv tröskel, exempel Adaptiva trösklar = normalisering Man kan även ha dynamiska adaptiva trösklar: y = G (s)u = s + a + a u a < δ a G(s) = G (s) G(s) a (s + a) 2 r = y G(s)u = G(s)u En adaptiv tröskel kan med denna information sättas till tex.: δ J(z) = c (p + a) 2 u + c 2 Ekvivalent med normalisering av teststorheten: som är ekvivalent med T (z) J adp = c W (z) + c 2 (reject H ) T (z) = T (z) c W (z) + c 2 (reject H ) 29 / 45 3 / 45 Översikt Utvärdering av teststorheter Tröskelsättning och beslut i osäker miljö Adaptiva trösklar Prediktionsfel Likelihood-funktionen Parameterskattning Residualer Falsklarm = förkasta H när H är sann (TYP I) Missad detektion = förkasta inte H när H är sann (TYP II) Signifikansnivå = sannolikhet att förkasta H när H är sann. Både falsklarm och missad detektion beskrivs av: Styrkefunktion (power function) β(θ) = P(förkasta H θ) = P(T (z) J θ) Hur bra är min teststorhet? 3 / / 45

9 Typiskt utseende på styrkefunktioner Exempel på två styrkefunktioner där θ = : beta theta Styrkefunktionen är därmed ett bra instrument för att avgöra prestanda hos ett hypotestest i ett diagnossystem. Eftersom signifikansen är lika för båda testen, så följer att testet som motsvarar den heldragna linjen är bättre. 33 / 45 Analytisk beräkning av styrkefunktionen Om fördelningen för en teststorhet T givet felstorlek f är känd beräknas styrkefunktionen: β() = β(f ) = β(f ) = P( T J f ) = = P(T J f ) + P(T J f ) = = integrera gulmarkerade områden Notera att man kan alltid välja tröskeln J så att man får en viss signifikansnivå på testet. 34 / 45 Analytisk härledning av styrkefunktionen: Parameterskattning Modell: y(t) = bu(t) + v(t) Teststorhet baserad på parameterskattning: T 2(z) = UT U σv 2 (ˆb b ) 2, ˆb = U T U UT Y, v(t) N(, σ 2 v ), vitt UT U (ˆb b ) N(b b, ) σ } v {{} =:ɛ Notera att fördelningen även för fall då b b behövs, till skillnad från vid tröskelsättning. Givet en tröskel J 2 : vilket är ekvivalent med β(b) = P(T 2(z) = ɛ 2 J 2 b) β(b) = P ( ɛ J 2 b ) + P ( ɛ J 2 b) 35 / 45 Analytisk härledning av styrkefunktionen: Prediktionsfel y(t) = bu(t) + v(t) Teststorhet baserad på prediktionsfel: Felfritt fall: T (z) = y(t) b u(t) σ v (y(t) ŷ(t)) 2 = t= v(t) N(, σ 2 v ), vitt (y(t) b u(t)) 2 t= = b u(t) + v(t) b u(t) σ v vilket implicerar, tillsammans med oberoende, att T (z) σ 2 v χ 2 (N) = v(t) σ v N(, ) Alltså: Fördelning känd och vi kan analytiskt beräkna styrkefunktionen i felfritt fall, β(b ). 36 / 45

10 Analytisk härledning av styrkefunktionen: Prediktionsfel forts. Härledning av signifikansnivån: Givet en tröskel J : vilket är ekvivalent med β(b ) = P(T (z) J b = b ) P( T (z) σ 2 v J σ 2 v Men β(b) för b b är det mer besvärligt. Återkommer till hur man gör då. b = b ) Jämföra två teststorheter med hjälp av styrkefunktionen T (z) = (y ŷ) 2 = T 2(z) = UT U σv 2 (ˆb b ) 2 ˆb = U T U UT Y (y b u) 2 β (b) (streckad) och.2 β 2 (b) (heldragen) I figuren är b =. Teststorheten baserad på parameterskattningen är bäst av de två. I det här fallet går det att visa att det inte finns någon teststorhet som är bättre än T 2 (z). (Neyman-Pearson Lemma) 38 / 45 beta theta 37 / 45 När det inte går att härleda analytiskt Brus genom olinjäritet Grundproblemet är att under H hitta fördelningen för en teststorhet T k (z) där T k (z) är en olinjär funktion. I detta sammanhang kanske en minimering av en kvadratisk funktion. Analytisk lösning oftast ej möjlig. Två vägar som finns att tillgå är: Slumpa fram data z och se vad T k (z) får för fördelning 2 Om möjligt, mät upp (mycket) data Titta på histogrammet för T k (z). Problem med sammansatta nollhypoteser. Y = sin(x 2 ) + där X N(, ) Generera 5 oberoende observationer X, beräkna Y och plotta histogram: / 45 4 / 45

11 Härleda styrkefunktionen via simuleringar eller uppmätta data Monte-Carlo simulering Antag en fördelning för brus i data z. 2 Fixera parametern θ för vilken vi ska beräkna β(θ). 3 I en dator, generera en stor mängd dataserier z i, i =,... N 4 För varje dataserie z i, beräkna t i = T (z i ). 5 Samla ihop alla N värdena t i i ett histogram = skattning av f (t θ). 6 Genom att använda en fix tröskel J k, skatta β(θ). 7 Gå tillbaka till steg 2 och fixera ett nytt θ. Stora mängder uppmätta data istället för simulering. Simulera fel på uppmätta felfria data Ett sätt att uppskatta styrkefunktionerna är att mäta upp mycket data. Ofta är det omöjligt (inte alltid) att mäta upp data där man har fel på processen. Ett sätt, som inte alltid är applicerbart är att mäta upp felfria data och addera felen i efterhand. Exempel: ett förstärkningsfel i sensor-signalen (g = är fel-fritt) y simul (t) = g y uppmätt (t) Inte exakt rätt om man har återkopplingar i systemet. 4 / / 45 ROC-kurvor Det finns andra, mer eller mindre likvärdiga, sätt att utvärdera. Exempelvis ROC (Reciever Operating Characteristics)-kurva där P(D) plottas som funktion av P(FA) för olika tröskelval men för en given felstorlek θ. P(D) θ=3 θ=2 θ= Sammanfattning Tröskelsättning svansen på den fördelningen för felfria fallet om fördelningen beror på observationerna, använd normalisering eller adaptiva trösklar Utvärdering av test mha styrkefunktionen kopplar till sannolikheten för falskalarm och missad detektion för att skatta styrkefunktionen krävs fördelning även för felfall. Om dessa inte går att analytiskt beräkna behövs stora mängder data eller Monte-Carlo simuleringar. Nästa föreläsning handlar om olinjär residualgenerering P(FA) 43 / / 45

12 TSFS6 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se / 45

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö Dagens föreläsning SFS6 Diagnos och övervakning Föreläsning 6 - röskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 25-4-2 röskelsättning

Läs mer

Teststorheten är ett modellvalideringsmått Betrakta. Översikt. Modellvalideringsmått, forts. Titta lite noggrannare på testet.

Teststorheten är ett modellvalideringsmått Betrakta. Översikt. Modellvalideringsmått, forts. Titta lite noggrannare på testet. Ämnen för dagen TSFS6 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 27-4-5 En teststorhet är ett

Läs mer

Tentamen med lösningsdiskussion. TSFS06 Diagnos och övervakning 1 juni, 2013, kl

Tentamen med lösningsdiskussion. TSFS06 Diagnos och övervakning 1 juni, 2013, kl Tentamen med lösningsdiskussion TSFS6 Diagnos och övervakning juni, 23, kl. 4.-8. Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik och signalteori

Läs mer

Ämnen för dagen. TSFS06 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter. Beteendemoder och felmodeller.

Ämnen för dagen. TSFS06 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter. Beteendemoder och felmodeller. Ämnen för dagen TSFS6 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet erik.frisk@liu.se 29-4-8 En teststorhet är ett

Läs mer

Tentamen. TSFS06 Diagnos och övervakning 12 januari, 2012, kl

Tentamen. TSFS06 Diagnos och övervakning 12 januari, 2012, kl Tentamen TSFS06 Diagnos och övervakning 12 januari, 2012, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik och signalteori samt

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-08-19 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter

Läs mer

Tentamen. TSFS06 Diagnos och övervakning 4 juni, 2007, kl

Tentamen. TSFS06 Diagnos och övervakning 4 juni, 2007, kl Tentamen TSFS06 Diagnos och övervakning 4 juni, 2007, kl. 08.00-12.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik och signalteori och miniräknare.

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-01-15 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter

Läs mer

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö Dagens föeläsning SFS6 Diagnos och övevakning Föeläsning 6 - öskling och analys av teststohete öskelsättning och beslut i osäke miljö öskelsättning i ett idealiseat fall Eik Fisk Institutionen fö systemteknik

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Lösningsförslag/facit till Tentamen. TSFS06 Diagnos och övervakning 14 januari, 2008, kl

Lösningsförslag/facit till Tentamen. TSFS06 Diagnos och övervakning 14 januari, 2008, kl Lösningsförslag/facit till Tentamen TSFS06 Diagnos och övervakning 14 januari, 2008, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1

Läs mer

Föreläsning 12, FMSF45 Hypotesprövning

Föreläsning 12, FMSF45 Hypotesprövning Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt

Läs mer

Parameterskattning i linjära dynamiska modeller. Kap 12

Parameterskattning i linjära dynamiska modeller. Kap 12 Parameterskattning i linjära dynamiska modeller Kap 12 Grundläggande ansats Antag (samplade) mätdata (y och u)från ett system har insamlats. Givet en modell M(t, θ) och mätdata, hitta det θ som ger en

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se

Läs mer

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl Lösningsförslag till Tentamen TSFS06 Diagnos och övervakning 14 augusti, 007, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik

Läs mer

Översikt. TSFS06 Diagnos och övervakning Föreläsning 8 - Change detection. Change detection. Change detection

Översikt. TSFS06 Diagnos och övervakning Föreläsning 8 - Change detection. Change detection. Change detection Översikt TSFS6 Diagnos och övervakning Föreläsning 8 - Change detection Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 6-5- Change detection Likelihood-funktionen Likelihood-kvot

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Kapitel 10 Hypotesprövning

Kapitel 10 Hypotesprövning Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning p-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/36

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Föreläsning 15: Faktorförsök

Föreläsning 15: Faktorförsök Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-06-01 Sal(3) U6, U7, U10 Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

Tröskling av teststorheter. Översikt. Beslut i brusig och osäker miljö

Tröskling av teststorheter. Översikt. Beslut i brusig och osäker miljö Dagens föeläsning SFS6 Diagnos och övevakning Föeläsning 6 - öskling och analys av teststohete öskelsättning och beslut i osäke miljö öskelsättning i ett idealiseat fall Eik Fisk Institutionen fö systemteknik

Läs mer

Översikt. TSFS06 Diagnos och övervakning Föreläsning 4 - Linjär residualgenerering och detekterbarhet. Linjär residualgenerering

Översikt. TSFS06 Diagnos och övervakning Föreläsning 4 - Linjär residualgenerering och detekterbarhet. Linjär residualgenerering TSFS6 Diagnos och övervakning Föreläsning 4 - och detekterbarhet Erik Frisk Institutionen för systemteknik Linköpings universitet erik.frisk@liu.se 21-4-3 1 2 Definition Ett propert linjärt filter R(p)

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)

Läs mer

Föreläsning 5: Hypotesprövningar

Föreläsning 5: Hypotesprövningar Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar

Läs mer

Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller

Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller Sammanfattning av föreläsning 4 Modellbygge & Simulering, TSRT62 Föreläsning 5. Identifiering av olinjära modeller Reglerteknik, ISY, Linköpings Universitet Linjära parametriserade modeller: ARX, ARMAX,

Läs mer

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012 Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov

Läs mer

Analys av egen tidsserie

Analys av egen tidsserie Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Föreläsning 15, FMSF45 Multipel linjär regression

Föreläsning 15, FMSF45 Multipel linjär regression Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1

Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1 Avd. Matematisk statistik TENTAMEN I SF1920/SF1921 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 11 MARS 2019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Lärare i kursen. TSFS06 Diagnos och övervakning, 6hp Föreläsning 1 - Kursformalia och introduktion. Denna föreläsning - disposition.

Lärare i kursen. TSFS06 Diagnos och övervakning, 6hp Föreläsning 1 - Kursformalia och introduktion. Denna föreläsning - disposition. Lärare i kursen TSFS06 Diagnos och övervakning, 6hp Föreläsning 1 - Kursformalia och introduktion Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se Kursansvarig: Erik Frisk

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Lärare i kursen. TSFS06 Diagnos och övervakning, 6hp Föreläsning 1 - Kursformalia och introduktion. Denna föreläsning - disposition.

Lärare i kursen. TSFS06 Diagnos och övervakning, 6hp Föreläsning 1 - Kursformalia och introduktion. Denna föreläsning - disposition. Lärare i kursen TSFS06 Diagnos och övervakning, 6hp Föreläsning 1 - Kursformalia och introduktion Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se Kursansvarig/lektion:

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Industriell reglerteknik: Föreläsning 6

Industriell reglerteknik: Föreläsning 6 Föreläsningar 1 / 15 Industriell reglerteknik: Föreläsning 6 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna. Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören

Läs mer

Föreläsning 11, FMSF45 Konfidensintervall

Föreläsning 11, FMSF45 Konfidensintervall Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Matematisk statistik TMS064/TMS063 Tentamen

Matematisk statistik TMS064/TMS063 Tentamen Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,

Läs mer

Föreläsning 11, Matematisk statistik Π + E

Föreläsning 11, Matematisk statistik Π + E Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

Reglerteori. Föreläsning 4. Torkel Glad

Reglerteori. Föreläsning 4. Torkel Glad Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014 Föreläsning 2. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 ML-metoden: Standardfördelningar ML-skattning av parametrar i följande standardfördelningar:

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Korrelation och autokorrelation

Korrelation och autokorrelation Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Exempel på tentamensuppgifter

Exempel på tentamensuppgifter STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Hypotestest och fortsättning av skattningar och konfidensintervall

Hypotestest och fortsättning av skattningar och konfidensintervall Hypotestest och fortsättning av skattningar och konfidensintervall Repetition från förra gången Kända fördelningar ger konfidensintervall I klarspråk: Om vi har oberoende observationer x1,...,xn från N(μ,σ2),

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell

1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för punkt- och intervallskattningar.

Läs mer

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger LÖSNINGAR TILL Matematisk statistik Tentamen: 2015 08 18 kl 8 00 13 00 Matematikcentrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Lunds tekniska högskola MASB02 Matematisk statistik för

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av

Läs mer

Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 9 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 30 september 2013 Tillståndsåterkoppling Antag att vi återkopplar ett system med hjälp av u

Läs mer

Lufttorkat trä Ugnstorkat trä

Lufttorkat trä Ugnstorkat trä Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer