Analys av egen tidsserie

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Analys av egen tidsserie"

Transkript

1 Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december Antal solfläckar Månad Inledning Vi har valt att betrakta månatlig data över solfläckar mellan perioden I vår analys av datan använder vi oss av spektralanalys samt undersökning av stationäritet och anpassning av data till GARCH- och ARMAprocess.

2 Innehåll 1 Stationäritet Dekomposition Differentiering Spektralanalys 7 3 Anpassning av data ARMA-process GARCH-process Slutsats 12 2

3 1 Stationäritet 1.1 Dekomposition Genom att studera autokorrelationsfunktionen för vår data, ρ(h), kan vi se en period på 134 månader, ungefär 11 år (se figur 1). Denna period stämmer överens med kurslitteraturen i 2A116 Rymdfysik. Det verkar även finnas en period på 91 år ρ(n+1) Number of weeks Figur 1: Autokorrelationsfunktionen för vår data. I figur 2 ser vi plottar över vår data, dess säsongskomponent och mätdata utan säsongskomponent. Vi undersöker om datan utan säsongskomponent fortfarande innehåller en trendkomponent genom att utnyttja Rank testet P µ p σ p > 1.96 Eftersom statistiska värdet 8.28 är större än det kritiska värdet 1.96 kan vi konstatera att det finns en trend i vår data. Vi finner detta lite konstigt då vi inte ser någon trend enligt plot 1 i figur 2. Vi vill undersöka hur stor trendkomponenten är genom att utnyttja funktionen smoothpf(x, grad). Värdet på grad sätts till 1 för en linjär trend, och 2 för kvadratisk trend. Vi analyserar de två modellerna genom att titta på medelvärdet av de kvadratiska avvikelserna som ger oss värdena E l,ms = E q,ms = l(x) = a + bx, där { a = b =

4 Ozone Figur 2: Figuren överst till vänster visar originaldata. Överst till höger visar data utan säsongskomponent, och nederst till vänster visas data med säsongskomponent. q(x) = a + bx + cx 2 där { a = b = c =.16 Som förväntat är den kvadratiska trenden en bättre anpassning till våra värden. I figur 3 ser vi en plot över residualerna för de två olika fallen. Residualerna representerar bruset efter att vi subtraherat bort både säsongskomponenten och trenden från vår ursprungliga data. 4

5 Figur 3: I övre figuren visas en residualplot med linjär trend, den nedre visar residualplotten med kvadratisk trend. Genom att utnyttja Ljung-Box testet kan vi avgöra om det finns ett beroende i vår brusserie. Vi använder tidssteg h = 4 i formeln för Q LB på sidan 36 i kursboken av Brockwell/Davis. Det kritiska värdet är härlett från χ 2 -fördelningen med signifikansnivå 1%. Eftersom vårt statistiska värde är mycket större än det kritiska värdet, kan vi dra slutsatsen att det finns ett beroende i brusserien. 1.2 Differentiering Istället för att använda klassisk dekomposition använder vi differensoperatorn för att producera en dataserie utan säsongskomponent. Vi differentierar i steg om 134 månader, vår period. Funktionen smoothpf utnyttjas återigen för att anpassa en linjär och kvadratisk trend. Slutligen plottas vår differentierade data samt residualerna i figur 4. Eftersom vi använder en kvadratisk trend räcker det med att differentiera med endast en gång innan vi kan dra slutsatsen att ingen trend återstår. Figur 5 visar den två gånger differentierade datan samt residualen för den kvadratiska trenden. 5

6 Figur 4: Överst visas den differentierade datan. I mitten visas en residualplot med linjär trend, och nederst en residualplot med kvadratisk trend Figur 5: Överst visas den två gånger differentierade datan. Nederst visas residualplotten med kvadratisk trend. 6

7 2 Spektralanalys I denna del så ska vi undersöka hur spektraltätheten ser ut för vår data. Vi börjar med att plotta periodogrammet, det vill säga spektraltätheten plottad emot frekvensen(2πf). Se figur 6. x f Frekvens Figur 6: Periodogram för vår data utan viktning. Vi ser att det finns flera frekvenser som verkar innehålla en större mängd information. Mest information verkar vi ha för ω =.468. Följande samband bestämmer perioden perioden = 1 f = 2π ω = 2π Eftersom spektraltätheten endast är en samplad skattning så försöker vi jämna ut den till en kurva genom att vikta om den. Vikten W = [6, 5, 4, 4, 3, 3, 2, 1] ger oss plotten som ses i figur 7. Viktningen ger oss dock samma period som utan viktning. Vi differentierar därför vår data i steg om 134. Därefter kontrollerar vi spektraltätheten igen, se figur 8. Här har vi en mer utbredd spridning. Vi ser att det kvarstår flertalet perioder som är utmärkande. Det är dock inte så enkelt att ta bort dessa. 7

8 2.5 x f Frekvens Figur 7: Periodogram för vår data med viktning. W = [6, 5, 4, 4, 3, 3, 2, 1] 14 x f Frekvens Figur 8: Periodogram för vår differentierade data utan viktning. 8

9 3 Anpassning av data 3.1 ARMA-process Vi använder oss här av vårt brus vi tidigare erhållit. Med andra ord, vår data utan säsongs- och trendkomponent. Syftet är att använda oss av en maximun-likelihood skattning för att skatta parametrarna till en ARMA(p,q)- process. Vi söker de parametrarna som minimerar medelkvadratfelet av vår skattning. Dock räcker det inte med att se till variansen hos det vita bruset, eftersom skattningen av parametrarna av högre ordning skapar felfektorer. Funktionen mlest ger oss parametrarna samt FPE och AICC. Vi väljer p och q så att FPE och AICC är som lägst, eftersom vi då har som lägst medelkvadratfel. Vi får p = 1 och q = 1 samt följande parametrar F P E = AICC = φ 1 =.326 θ 1 =.752 φ 1 =.326 ± 1.96 V ar(φ 1 ) = ±.67 Den skattade White Noise variansen σ 2 fås till

10 3.2 GARCH-process Vi försöker nu anpassa en GARCH-process till vår data och detta gör vi med funktionen garchpq. Den ger oss koefficienterna α = α 1 =.1975 β 1 =.82 Vi simulerar en process med de parametrar vi får fram i 536 steg, d.v.s 4 perioder, och med seed = 666 (se figur 9). 2 Y t t 2 σ t t Figur 9: Plot av en GARCH(1,1)-process med våra beräknade parametrar samt en plot av processens volatilitet σ t. Om vi antar att våra skattade parametrar beskriver vår datamängd väl så kan vi räkna fram volatiliteten. Vi beräknar volatiliteten på följande sätt σ t = α + α 1 Yt β 1σt 1 2 I figur 1 är datan samt dess skattade volatilitet plottad. Vi är nu intresserade av Value-at-Risk för en 12-månaders period. Vi gör 1 simuleringar med GARCH-processen vi använt ovan i 12 steg. Resultatet av simuleringen ses i figur 11. Slutligen beräknar vi V ar 1%. Vi använder oss av funktionen prctile vilket ger oss z.1 =

11 1 σ t t 2 Y t t Figur 1: En plot över volatiliteten samt vår datamängd Figur 11: En plot över våra simuleringar. 11

12 4 Slutsats Vi har med två olika metoder kommit fram till samma period som vår säsongskomponent består av. Sedan har vi dragit bort denna komponent för att undersöka trenden. Genom att sedan utföra en differentiering så har vi kommit så nära en stationär tidsserie vi kan komma utan att bli av med för mycket information. Det problemet som dock kvarstår är att volatiliteten uppvisar ett periodiskt beteende. Någorlunda bra hanterar GARCH-anpassningen denna egenskap. Att anpassa vår dataserie till en ARMA-process gav oss ingen bra anpassning. Vi fick då att variansen hos det vita bruset var Detta anser vi vara alldeles för högt. 12

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Statistisk modellering av tidsserier

Statistisk modellering av tidsserier Statistisk modellering av tidsserier Inledning Tidsserie: följd av data med deterministiskt eller stokastiskt beroende mellan olika komponenter och mellan olika mättillfällen Tidsserieanalys: att beskriva

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Projekt 3: Diskret fouriertransform

Projekt 3: Diskret fouriertransform Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.

Läs mer

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden!

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! FÅ FRAM INDATA När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! (Falstaff Fakir) Svårigheter att få fram bra information - en liten konversation Ge mig

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

ARIMA del 2. Patrik Zetterberg. 19 december 2012

ARIMA del 2. Patrik Zetterberg. 19 december 2012 Föreläsning 8 ARIMA del 2 Patrik Zetterberg 19 december 2012 1 / 28 Undersöker funktionerna ρ k och ρ kk Hittills har vi bara sett hur autokorrelationen och partiella autokorrelationen ser ut matematiskt

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Mätningar med avancerade metoder

Mätningar med avancerade metoder Svante Granqvist 2008-11-12 13:41 Laboration i DT2420/DT242V Högtalarkonstruktion Mätningar på högtalare med avancerade metoder Med datorerna och signalprocessningens intåg har det utvecklats nya effektivare

Läs mer

Simulering av ekonomiska och finansiella variabler i det svenska pensionssystemet

Simulering av ekonomiska och finansiella variabler i det svenska pensionssystemet Simulering av ekonomiska och finansiella variabler i det svenska pensionssystemet Introduktion Mitt namn: Thomas Ekström Arbetsplats: Andra AP-fonden (55 st medarbetare) Avdelning: Kvantatitativa Strategier

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Labbrapport. Isingmodel

Labbrapport. Isingmodel Labbrapport Auhtor: Mesut Ogur, 842-879 E-mail: salako s@hotmail.com Author: Monica Lundemo, 8524-663 E-mail: m lundemo2@hotmail.com Handledare: Bo Hellsing Göteborgs Universitet Göteborg, Sverige, 27--

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö Dagens föreläsning SFS6 Diagnos och övervakning Föreläsning 6 - röskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 25-4-2 röskelsättning

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 7 Mars 2014 Disposition r Kondensintervall och hypotestest Kondensintervall Statistika Z (eller T) har fördelning F (Z en funktion av ˆθ och θ) q 1 α/2

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

Signalanalys med snabb Fouriertransform

Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Value at Risk på den nordiska elmarknaden

Value at Risk på den nordiska elmarknaden Value at Risk på den nordiska elmarknaden En simulerings- och jämförelsestudie Charlie Lindgren Elias Kayal Student VT 2013 Kandidatuppsats, 15 hp Statistik C, 30 hp Handledare: Anders Lundquist Abstract

Läs mer

Prognostisering av växelkursindexet KIX En jämförande studie. Forecasting the exchange rate index KIX A comparative study

Prognostisering av växelkursindexet KIX En jämförande studie. Forecasting the exchange rate index KIX A comparative study Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2013:14 Prognostisering av växelkursindexet KIX En jämförande studie Forecasting the exchange rate index KIX A comparative

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Utvärdering av Transportstyrelsens flygtrafiksmodeller

Utvärdering av Transportstyrelsens flygtrafiksmodeller Kandidatuppsats i Statistik Utvärdering av Transportstyrelsens flygtrafiksmodeller Arvid Odencrants & Dennis Dahl Abstract The Swedish Transport Agency has for a long time collected data on a monthly

Läs mer

Konjunkturförändringar i åländsk ekonomi

Konjunkturförändringar i åländsk ekonomi Kandidatuppsats i Statistik Konjunkturförändringar i åländsk ekonomi -Val av förklarande variabler för åländska företags omsättning Jesper Gullquist Abstract This paper is made on behalf of Statistics

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information

Läs mer

Test av tidstrender. Anders Grimvall anders.grimvall@havsmiljoinstitutet.se. SLU-workshop, 2011-10-31

Test av tidstrender. Anders Grimvall anders.grimvall@havsmiljoinstitutet.se. SLU-workshop, 2011-10-31 Test av tidstrender Anders Grimvall anders.grimvall@havsmiljoinstitutet.se SLU-workshop, 211-1-31 Två till synes enkla frågor Hur lång tid tar det att (med en given sannolikhet) upptäcka en årlig förändring

Läs mer

5B1574 - Portföljteori och riskvärdering

5B1574 - Portföljteori och riskvärdering 5B1574 - Portföljteori och riskvärdering Laboration 1 Farid Bonawiede - 831219-0195 Alexandre Messo - 831119-7472 1 - Spotränteberäkningar I denna uppgift ska vi beräkna spoträntan för olika löptider.

Läs mer

Antennförstärkare för UHF-bandet

Antennförstärkare för UHF-bandet Antennförstärkare för UHF-bandet Radioprojekt 2004 Elektrovetenskap, LTH Mats Rosborn Henrik Kinzel 27 Februari Referat Den här rapporten beskriver arbetet med konstruktion och utvärdering av en fungerande

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

Phonak TargetTM 3.1. Programmeringsguide komma igång. Förberedelse av hörapparaterna

Phonak TargetTM 3.1. Programmeringsguide komma igång. Förberedelse av hörapparaterna Phonak TargetTM 3.1 Programmeringsguide komma igång Den här guiden ger dig detaljerad introduktion till hörapparatanpassning med Phonak Target. Innehåll 1 Navigation 2 Före anpassning 3 Börja anpassning

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

Tidsserieanalys av dödsfall i trafiken

Tidsserieanalys av dödsfall i trafiken VI notat 30-2005 Utgivningsår NNNN www.vti.se/publikationer idsserieanalys av dödsfall i trafiken Astrid Karlsson Kristian Willerö Förord Detta notat är ett särtryck av en magisteruppsats i statistik

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Filtrering av matningsspänningar för. känsliga analoga tillämpningar

Filtrering av matningsspänningar för. känsliga analoga tillämpningar 1-1 Filtrering av matningsspänningar för -5-6 -7-8 känsliga analoga tillämpningar SP Devices -9 215-2-25-1 1 4 1 5 1 6 1 7 1 8 1 Problemet Ibland behöver man en matningsspänning som har extra lite störningar

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Västma. Undersökta. Vårdval

Västma. Undersökta. Vårdval Tandhälsan Barn och Ungdom Västma anland 2014 Barn och ungdomar Undersökta 2014 Tandvårdsenheten Vårdval Tandhälsoläget för Barn och Ungdom i Västmanland 2014 Bakgrund Sammanställningen av inrapporterade

Läs mer

En analys av variabler som påverkar bostadsrättspriser i Stockholms kommun - En multipel regressionsanalys över tiden

En analys av variabler som påverkar bostadsrättspriser i Stockholms kommun - En multipel regressionsanalys över tiden En analys av variabler som påverkar bostadsrättspriser i Stockholms kommun - En multipel regressionsanalys över tiden Kandidatexamensarbete i Teknisk Fysik Institutionen för Matematisk Statistik Kungliga

Läs mer

Linjär algebra förel. 10 Minsta kvadratmetoden

Linjär algebra förel. 10 Minsta kvadratmetoden Linjär algebra förel. 10 Minsta kvadratmetoden Niels Chr. Overgaard 015-09- c N. Chr. Overgaard Förel. 9 015-09- logoonly 1 / 17 Data från 1 vuxna män vikt (kg) längd (m) 58 1,69 83 1,77 80 1,79 77 1,80

Läs mer

Tidsserier och Prognoser

Tidsserier och Prognoser Tidsserier och Prognoser Mattias Villani Sveriges Riksbank och Stockholms Universitet Stockholm, Oktober 2008 Mattias Villani () Tidsserier och Prognoser Stockholm, Oktober 2008 1 / 16 Översikt Tidsserier,

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

L A B R A P P O R T 1

L A B R A P P O R T 1 L A B R A P P O R T 1 BILDTEKNIK Dan Englesson Emil Brissman 9 september 2011 17:04 1 Camera noise 1.1 Task 1 Ett antal svarta bilder togs genom att fota i totalt mörker för att beräkna kamerans svartnivå.

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Björnstammens storlek i Sverige 2008 länsvisa uppskattningar och trender Rapport 2009 2 från det Skandinaviska björnprojektet

Björnstammens storlek i Sverige 2008 länsvisa uppskattningar och trender Rapport 2009 2 från det Skandinaviska björnprojektet Björnstammens storlek i Sverige 2008 länsvisa uppskattningar och trender Rapport 2009 2 från det Skandinaviska björnprojektet Jonas Kindberg, Jon E. Swenson och Göran Ericsson Introduktion Björnen tillhör

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

GRÖNARE, ENKLARE, SKÖNARE

GRÖNARE, ENKLARE, SKÖNARE GRÖNARE, ENKLARE, SKÖNARE EN LITEN GUIDE ATT TÄNKA PÅ NÄR MAN VÄLJER BELYSNING MondeVerde AB Sommarhemsvägen 7 18 157 Lidingö +46 8 760 80 50 info@mondeverde.com www.mondeverde.se sida "1 Innehåll Bakgrund...

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Christian Aguirre Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:17 Matematisk

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Prognostisering kontrollbesiktningar En rak väg eller en kurvig bana?

Prognostisering kontrollbesiktningar En rak väg eller en kurvig bana? Kandidatuppsats Statistiska Institutionen Bachelor thesis, Department of Statistics Prognostisering kontrollbesiktningar En rak väg eller en kurvig bana? Forecasting vehicle inspections A straight road

Läs mer

Regressionsmodellering inom sjukförsäkring

Regressionsmodellering inom sjukförsäkring Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

Västsvenska paketet Skattning av trafikarbete

Västsvenska paketet Skattning av trafikarbete Västsvenska paketet Skattning av trafikarbete Rapport Dokumenttitel: Skattning av trafikarbete Västsvenska paketet rapport Utförande part: WSP Kontaktperson: Tobias Thorsson Innehåll 1 Introduktion Fel!

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

Bayesianska numeriska metoder I

Bayesianska numeriska metoder I Baesianska numeriska metoder I T. Olofsson Marginalisering En återkommende teknik inom Baesiansk inferens är det som kallas för marginalisering. I grund och botten rör det sig om tillämpning av ett specialfall

Läs mer

Den Moderna Centralbankens Prognosmetod. Statistikfrämjandets årsmöte

Den Moderna Centralbankens Prognosmetod. Statistikfrämjandets årsmöte Den Moderna Centralbankens Prognosmetod Statistikfrämjandets årsmöte Den moderna centralbanken Prognoser Prognosmetoder Prognosutvärderingar Den moderna centralbanken Fast Växelkurs Inflationsmål Flexibelt

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat

Läs mer

Bygga linjära modeller! Didrik Vanhoenacker 2007

Bygga linjära modeller! Didrik Vanhoenacker 2007 Bygga linjära modeller! Didrik Vanhoenacker 2007 1 Bygga enkla modeller Tänk att vi ska försöka förstå vad som styr hur många blommor korsblommiga växter har. T ex hos Lomme och Penningört. Hittills har

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler Introduktion Den första delen av laborationen baserar sig på mätdata som skapades i samband med en medicinsk studie där en ny metod för att mäta ögontryck utvärderas. Den nya metoden som testas, Applanation

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 2:e juni.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 2:e juni. Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 2:e juni. Skriv ned dina svar och lösningar (ej programkod), lägg till eventuella grafer eller illustrationer och spara

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

2010-08-30 Fysikexperiment, 7.5 hp 1

2010-08-30 Fysikexperiment, 7.5 hp 1 Presentation av data Medelvärde av grupperade data Slumptal Gränsvärdesfunktioner Normalfördelningsfunktionen Parameterbestämning Minsta kvadratmetoden 010-08-30 Fysikexperiment, 7.5 hp 1 1 Presentation

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Summakonsistent säsongrensning

Summakonsistent säsongrensning Summakonsistent säsongrensning Presentation av projektarbete på SCB av Suad Elezović Statistiska institutionen,stockholms universitet 14 Oktober 2009 2009-10-14 Suad Elezović PCA/MFFM-S 1 Säsongrensning

Läs mer