En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen

Storlek: px
Starta visningen från sidan:

Download "En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen"

Transkript

1 Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få en effektivare kodning. En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen f (x n x n 1 x n 2... x n N ) Detta är en markovmodell av ordning N. En kontinuerlig markovmodell är komplicerad och är ofta svår att estimera för en given signal. Istället är det enklare att använda en AR-modell för källan, och då får vi en linjär prediktor.

2 Linjär prediktion Idé: Vi gissar (predikterar) signalens värde i tidpunkten n som en linjärkombination av de N senaste värdena. p n = a 1 x n 1 + a 2 x n a N x n N = N = a i x n i i=1 Skillnaden mellan det riktiga värdet och det predikterade värdet, prediktionsfelet, d n = x n p n kvantiseras och skickas till mottagaren. Mottagaren rekonstruerar d n, beräknar p n och kan sen återskapa x n. Detta fungerar inte i praktiken! Problemet är att mottagaren bara kan återskapa en distorderad version ˆd n av prediktionsfelet och därför bara en distorderad version ˆx n av signalen.

3 Linjär prediktion För att den prediktiva kodaren ska fungera, måste kodardelen göra samma beräkningar som avkodardelen kan göra. Prediktionen måste göras från den rekonstruerade signalen ˆx n istället för från originalsignalen. p n = a 1ˆx n 1 + a 2ˆx n a N ˆx n N = N = a i ˆx n i i=1 Prediktionsfelet d n kvantiseras och skickas. Både kodaren och avkodaren återskapar ˆd n och ˆx n = p n + ˆd n.

4 Prediktiv kodare och avkodare x n + d n ˆd n Q + p + n ˆd n + + p n P ˆx n P ˆx n Prediktiv kodare Prediktiv avkodare

5 Optimering av prediktorn Hur ska man välja prediktorkoefficienterna a i? Givet en datatakt R så vill vi minimera distorsionen D = E{(x n ˆx n ) 2 } = E{(d n ˆd n ) 2 } Kvantiseringen gör att det är svårt att beräkna optimala a i exakt. Om vi antar fin kvantisering, dvs att antalet kvantiseringsnivåer är stort, kan vi göra approximationen ˆx n x n dvs vi räknar som om prediktionen gjordes på originalsignalen. Med fin kvantisering får vi även att D c σ 2 d 2 2R där σd 2 är variansen hos prediktionsfelet och c beror av vilken typ av kvantisering vi gör och vilken fördelning d n har. Vi kan alltså minimera distorsionen genom att minimera prediktionsfelets varians.

6 Optimering av prediktorn Prediktionsfelets varians σd 2 = E{(x n p n ) 2 } = N = E{(x n a i ˆx n i ) 2 } E{(x n i=1 N a i x n i ) 2 } Derivera m.a.p. a j och sätt lika med 0, vilket ger oss N ekvationer a j σ 2 d = 2 E{(x n i=1 N a i x n i ) x n j } = 0 i=1

7 Matrisbeskrivning Detta kan skrivas om som matrisekvationen där A = RA = P R xx (0) R xx (1) R xx (N 1) R xx (1) R xx (0) R xx (N 2) R =..... R xx (N 1) R xx (N 2) R xx (0) a 1 R xx (1) a 2 R xx (2). a N, P =. R xx (N) där R xx (k) = E{x n x n+k } är autokorrelationsfunktionen för x n.

8 Matrisbeskrivning Lösningen kan fås som A = R 1 P För den optimala prediktorn A får vi σ 2 d = R xx (0) A t P

9 Prediktionsvinst Vid fin kvantisering ges distorsionen och signal-brusförhållandet approximativt av D p c σ 2 d 2 2R, SNR p = 10 log 10 σ 2 x D p där σ 2 x är originalsignalens varians. Om vi istället kvantiserat originalsignalen direkt hade vi fått D o c σ 2 x 2 2R, SNR o = 10 log 10 σ 2 x D o Skillnaden brukar kallas prediktionsvinst (prediction gain) SNR p SNR o = 10 log 10 D o D p 10 log 10 σ 2 x σ 2 d

10 Skattning av autokorrelationer Givet en lång sekvens x 1, x 2,..., x n av testdata kan man skatta autokorrelationsfunktionen enligt I Matlab kan det skrivas R xx (k) = 1 n k x i x i+k n k i=1 mean(x(1:end-k).*x(k+1:end))

11 Signaler med medelvärde Vad gör man om signalen har ett medelvärde m 0? 1. Om signalens medelvärde är litet i förhållande till variansen kan man använda linjär prediktion som vanligt. 2. Annars kan man skapa en ny signal y n = x n m, konstruera en linjär prediktor för y n och skicka m som sidoinformation. 3. Alternativt kan man konstruera en affin prediktor p n = N a i x n i + a 0 i=1 Bortsett från kvantiseringen så ger detta samma resultat som alternativ 2.

12 Tvådimensionella prediktorer Man kan naturligtvis generalisera prediktorbegreppet till att även fungera för tvådimensionella signaler, t.ex. bilder. Till exempel, om vi har en bildsignal x ij och vi vill göra en prediktion från bildpunkten till vänster om och bildpunkten ovanför den aktuella p ij = a 1 x i,j 1 + a 2 x i 1,j Den optimala prediktorn ges då av lösningen till ekvationssystemet [ E{xi,j 1 2 } E{x ] [ ] [ i,j 1 x i 1,j } a1 E{xi,j x E{x i,j 1 x i 1,j } E{x 2 = i,j 1 } E{x ij x i 1,j } i 1,j } a 2 ] eller, uttryckt med autokorrelationsfunktionen [ ] [ ] Rxx (0, 0) R xx (1, 1) a1 = R xx (1, 1) R xx (0, 0) a 2 [ Rxx (0, 1) R xx (1, 0) ]

13 Exempel, prediktiv kodning av bild bildpunkter, 8 bitar/bildpunkt

14 Lloyd-Max-kvantisering, 8 nivåer Datatakt: R = 3 bitar/bildpunkt Distorsion: D PSNR: db

15 Prediktor Skattad akf R xx (0, 0) = σ R xx (1, 0) σ 2 R xx (0, 1) σ 2 R xx (1, 1) σ 2 R xx (1, 1) σ 2 Prediktor p ij = ˆx i,j ˆx i 1,j ˆx i 1,j 1 En åttanivåers Lloyd-Max-kvantiserare optimeras på prediktionsfelet.

16 Prediktionsfel, 8 nivåer

17 Kvantiserat prediktionsfel, 8 nivåer

18 Avkodad bild, 8 nivåer Datatakt: R = 3 bitar/bildpunkt Distorsion: D 5.62 PSNR: db (Prediktionsvinst db)

19 Lloyd-Max-kvantisering, 2 nivåer Datatakt: R = 1 bit/bildpunkt Distorsion: D PSNR: db

20 Prediktionsfel, 2 nivåer

21 Kvantiserat prediktionsfel, 2 nivåer

22 Avkodad bild, 2 nivåer Datatakt: R = 1 bit/bildpunkt Distorsion: D PSNR: db (Prediktionsvinst 9.39 db)

23 Exempel: hey04.wav Filen hey04.wav från lab 2 kodas med olika ordning på prediktorn. Likformig kvantisering med 256 nivåer. Diagrammet visar SNR som funktion av antalet prediktorkoefficienter

24 Exempel: hey04.wav Filen hey04.wav från lab 2 kodas med olika ordning på prediktorn. Likformig kvantisering med 32 nivåer. Diagrammet visar SNR som funktion av antalet prediktorkoefficienter

25 Exempel: hey04.wav Filen hey04.wav från lab 2 kodas med olika ordning på prediktorn. Likformig kvantisering med 4 nivåer. Diagrammet visar SNR som funktion av antalet prediktorkoefficienter

26 Distorsionsfri kodning Linjär prediktiv kodning kan också användas vid distorsionsfri kodning. Om vi antar att insignalen består av heltal, så måste vi se till att vår prediktor också producerar heltal. Som exempel har vi bland annat lossless JPEG, som kan använda prediktorerna 1. p ij = I i 1,j 2. p ij = I i,j 1 3. p ij = I i 1,j 1 4. p ij = I i,j 1 + I i 1,j I i 1,j 1 5. p ij = I i,j 1 + (I i 1,j I i 1,j 1 )/2 6. p ij = I i 1,j + (I i,j 1 I i 1,j 1 )/2 7. p ij = (I i,j 1 + I i 1,j )/2

27 Distorsionsfri kodning Vi kodar vår papegojbild med prediktorn p ij = I i,j 1 + I i 1,j I i 1,j 1 och huffmankodar sen prediktionsfelet. Datatakten blir då 4.18 bitar/bildpunkt. Om vi istället använder prediktorn p ij = I i,j I i 1,j I i 1,j 1 följt av huffmankodning blir datatakten 3.93 bitar/bildpunkt.

28 Ljudsignalerna i lab 1 Prediktorer av ordning 1 och 2. hey04_8bit.wav p n = x n 1 p n = x n x n 2 nuit04_8bit.wav p n = x n 1 p n = x n x n 2 speech.wav p n = x n 1 p n = x n x n 2

29 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det ger högre kompression. Linjära prediktorer optimeras inom blocket. Det finns även möjlighet att använda fixa prediktorer (jämför med lossless JPEG). Prediktionsfelet kodas med Ricekoder (ungefär samma sak som Golombkoder).

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen

Läs mer

Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga.

Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga. Datakompression fö 4 p1 Skurlängdskodning Ibland har man källor som producerar långa delsekvenser av samma symbol Det kan då vara praktiskt att istället för att beskriva sekvensen som en följd av enstaka

Läs mer

FLAC (Free Lossless Audio Coding)

FLAC (Free Lossless Audio Coding) Datakompression fö 9 p.1 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det

Läs mer

Kodning med distorsion

Kodning med distorsion Kodning med distorsion Vi har en signal x n, n = 1... N som ska kodas. Alfabetet är en delmängd av de reella talen A R. Alfabetet kan vara kontinuerligt. Om vi inte har kravet att den avkodade signalen

Läs mer

Analys/syntes-kodning

Analys/syntes-kodning Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk

Läs mer

Transformkodning Idé: 1. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block

Transformkodning Idé: 1. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block Transformkodning Idé:. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block med en lämplig, reversibel transform till en ny sekvens.

Läs mer

TSBK35 Kompression av ljud och bild

TSBK35 Kompression av ljud och bild TSBK35 Kompression av ljud och bild Övningshäfte 0 februari 013 Innehåll I Problem 1 1 Informationsteori................................ 1 Källkodning................................... 3 3 Kvantisering...................................

Läs mer

Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.

Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den. Psykoakustik Ljudtrycksnivå Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det

Läs mer

Föreläsning 1: Bild- och ljudkodning

Föreläsning 1: Bild- och ljudkodning Föreläsning 1: Bild- och ljudkodning 1. Kursöversikt 2. Introduktion till bild- och ljudkodning - syfte - historik - antal bitar per bildpunkter/sampel 3. Två principiella klasser : distorsionsfri och

Läs mer

Adaptiv aritmetisk kodning

Adaptiv aritmetisk kodning Datakompression fö 8 p.1 Adaptiv aritmetisk kodning Aritmetisk kodning är väldigt enkel att göra adaptiv, eftersom vi bara behöver göra en adaptiv sannolikhetsmodell, medan själva kodaren är fix. Till

Läs mer

Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning)

Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Datakompression fö 6 p.1 Ordbokskodning Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar en ordbok som innehåller 2 b olika sekvenser av symboler

Läs mer

Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts.

Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts. Datakompression fö 6 p.3 Datakompression fö 6 p.4 Ordbokskodning Exempel, minnesfri binär källa Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar

Läs mer

Föreläsning 7: Bild- och videokodning

Föreläsning 7: Bild- och videokodning Föreläsning 7: Bild- och videokodning Inledning - varför bildkodning - tillämpningar - grundprinciper Förlustfri kodning - Variabellängdskodning - Skurländskodning - Huffmankodning Irreversibla kodningsmetoder

Läs mer

Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.

Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts. Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)

Läs mer

Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.

Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or. Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås

Läs mer

4/27/12. Fönstring i MDCT. Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck

4/27/12. Fönstring i MDCT. Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck 2. Hörselsinnet Hörnivåkurvor, hörseltröskel, maskeringseffekter, Barkskalan 3. Ljudkodning

Läs mer

Parameterskattning i linjära dynamiska modeller. Kap 12

Parameterskattning i linjära dynamiska modeller. Kap 12 Parameterskattning i linjära dynamiska modeller Kap 12 Grundläggande ansats Antag (samplade) mätdata (y och u)från ett system har insamlats. Givet en modell M(t, θ) och mätdata, hitta det θ som ger en

Läs mer

Föreläsning 10: Ljudkodning ( Audio Coding )

Föreläsning 10: Ljudkodning ( Audio Coding ) Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck 2. Hörselsinnet Hörnivåkurvor, hörseltröskel, maskeringseffekter, Barkskalan 1. Ljudkodning

Läs mer

Källkodning. Egenskaper hos koder. Några exempel

Källkodning. Egenskaper hos koder. Några exempel Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression TSBK35 fö 1 p.3 TSBK35 fö 1 p.4 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Bildkodning, Linköpings universitet Khalid Sayood,

Läs mer

Kodning av ansiktstextur med oberoende komponenter

Kodning av ansiktstextur med oberoende komponenter Kodning av ansiktstextur med oberoende komponenter Jörgen Ahlberg Report no. LiTH-ISY-R-2297 ISSN 1400-3902 Avdelning, Institution Division, department Datum Date Image Coding Group 2000-10-02 Department

Läs mer

Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12

Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12 Aritmetisk kodning Vi identifierar varje sekvens av källsymboler med ett tal i intervallet [0, 1). Vi gör det med hjälp av fördelningsfunktionen (cumulative distribution function) F. För enkelhets skull

Läs mer

TSBK04 Datakompression. Övningsuppgifter

TSBK04 Datakompression. Övningsuppgifter TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

TSBK04 Datakompression Övningsuppgifter

TSBK04 Datakompression Övningsuppgifter TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings

Läs mer

Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå (loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.

Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå (loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den. Psykoakustik TSBK35 fö 10 p.3 Ljudtrycksnivå TSBK35 fö 10 p.4 Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen

Läs mer

Kompression av ljud och bild

Kompression av ljud och bild Kompression av ljud och bild Harald Nautsch harna@isy.liu.se ISY Informationskodning, Linköpings universitet http://www.icg.isy.liu.se/courses/tsbk35/ Kurslitteratur Rekommenderad bok: Khalid Sayood, Introduction

Läs mer

Shannon-Fano-Elias-kodning

Shannon-Fano-Elias-kodning Datakompression fö 5 p.1 Shannon-Fano-Elias-kodning Antag att vi har en minnesfri källa X i som tar värden i {1, 2,...,L}. Antag att sannolikheterna för alla symboler är strikt positiva: p(i) > 0, i. Fördelningsfunktionen

Läs mer

Människans hörsel är ganska väl studerad och det finns bra modeller för den.

Människans hörsel är ganska väl studerad och det finns bra modeller för den. Psykoakustik Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det ska märkas så

Läs mer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer TSBK35 källkodning p.3/89 TSBK35 källkodning p.4/89 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Informationskodning, Linköpings

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012 Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov

Läs mer

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade) 5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

5B Portföljteori och riskvärdering

5B Portföljteori och riskvärdering B7 - Portföljteori och riskvärdering Laboration Farid Bonawiede - 89-09 Alexandre Messo - 89-77 - Beräkning av den effektiva fronten för en portfölj Uppgiften går ut på att beräkna de portföljer som ger

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

Videosignalen består av en sekvens av bilder, typiskt 24, 25 eller 30 bilder i sekunden.

Videosignalen består av en sekvens av bilder, typiskt 24, 25 eller 30 bilder i sekunden. Videokodning Begrepp och beteckningar Videosignalen består av en sekvens av bilder, typiskt 24, 25 eller 30 bilder i sekunden. Bilderna skickas antingen progressivt (hela bilden på en gång) eller med interlace

Läs mer

F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24

F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24 1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar

Läs mer

Sammanfattning TSBB16

Sammanfattning TSBB16 Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Korrelation och autokorrelation

Korrelation och autokorrelation Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.

Läs mer

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Föreläsning 6, FMSF45 Linjärkombinationer

Föreläsning 6, FMSF45 Linjärkombinationer Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)

Läs mer

Signaler och system, IT3

Signaler och system, IT3 Signaler och system, IT3 Vad är signalbehandling? 1 Detta dokument utgör introduktionsföreläsningen för kursen Signaler och system för IT3 period 2. Kursen utvecklades år 2002 av Mathias Johansson. 1 Vad

Läs mer

Flerdimensionella signaler och system

Flerdimensionella signaler och system Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Lab 3 Kodningsmetoder

Lab 3 Kodningsmetoder Lab 3. Kodningsmetoder 15 Lab 3 Kodningsmetoder Starta Matlab och ladda ner följande filer från kurswebben till er lab-katalog: lab3blocks.mdl okodat.mdl repetitionskod.mdl hammingkod.mdl planet.mat Denna

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Finansiell statistik. Multipel regression. 4 maj 2011

Finansiell statistik. Multipel regression. 4 maj 2011 Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi

Läs mer

Lab 1 Analog modulation

Lab 1 Analog modulation 2 Lab-PM för TSEI67 Telekommunikation Lab 1 Analog modulation Med Simulink kan man som sagt bygga upp ett kommunikationssystem som ett blockschema, och simulera det. Ni ska i denna laboration inledningsvis

Läs mer

Bayesiansk statistik, 732g43, 7.5 hp

Bayesiansk statistik, 732g43, 7.5 hp Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Föreläsning 7. Felrättande koder

Föreläsning 7. Felrättande koder Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER

SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda

Läs mer

Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet

Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

TRE TYPER AV SPATIALA DATA

TRE TYPER AV SPATIALA DATA STATISTISK ANALYS AV KOMPLEXA DATA SPATIALA DATA Mattias Villani Statistik Institutionen för Datavetenskap Linköpings Universitet MATTIAS VILLANI (STATISTIK, LIU) SPATIALA DATA 1 / 21 TRE TYPER AV SPATIALA

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor

Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

LMA522: Statistisk kvalitetsstyrning

LMA522: Statistisk kvalitetsstyrning Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens

Läs mer

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3 1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift

Läs mer

TSBB16 Datorövning A Samplade signaler Faltning

TSBB16 Datorövning A Samplade signaler Faltning Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna

Läs mer

Optimal Signalbehandling Datorövning 1 och 2

Optimal Signalbehandling Datorövning 1 och 2 Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information

Läs mer

Regressionsmodellering inom sjukförsäkring

Regressionsmodellering inom sjukförsäkring Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).

TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar). Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Robust flervariabel reglering

Robust flervariabel reglering Föreläsning 2 Anders Helmersson andersh@isy.liu.se ISY/Reglerteknik Linköpings universitet Vad gör vi i dag Normer Representation av system Lyapunovekvationer Gramianer Balansering Modellreduktion Lågförstärkningssatsen

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F7: Bayesiansk inferens Klassisk vs Bayesiansk Två problem Klassisk statistisk inferens Frekventistisk tolkning av sannolikhet Parametrar fixa (ofta okända) storheter Skattningar och konfidensintervall

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Interpolation Modellfunktioner som satisfierar givna punkter

Interpolation Modellfunktioner som satisfierar givna punkter Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer