En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen
|
|
- Charlotta Berg
- för 7 år sedan
- Visningar:
Transkript
1 Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få en effektivare kodning. En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen f (x n x n 1 x n 2... x n N ) Detta är en markovmodell av ordning N. En kontinuerlig markovmodell är komplicerad och är ofta svår att estimera för en given signal. Istället är det enklare att använda en AR-modell för källan, och då får vi en linjär prediktor.
2 Linjär prediktion Idé: Vi gissar (predikterar) signalens värde i tidpunkten n som en linjärkombination av de N senaste värdena. p n = a 1 x n 1 + a 2 x n a N x n N = N = a i x n i i=1 Skillnaden mellan det riktiga värdet och det predikterade värdet, prediktionsfelet, d n = x n p n kvantiseras och skickas till mottagaren. Mottagaren rekonstruerar d n, beräknar p n och kan sen återskapa x n. Detta fungerar inte i praktiken! Problemet är att mottagaren bara kan återskapa en distorderad version ˆd n av prediktionsfelet och därför bara en distorderad version ˆx n av signalen.
3 Linjär prediktion För att den prediktiva kodaren ska fungera, måste kodardelen göra samma beräkningar som avkodardelen kan göra. Prediktionen måste göras från den rekonstruerade signalen ˆx n istället för från originalsignalen. p n = a 1ˆx n 1 + a 2ˆx n a N ˆx n N = N = a i ˆx n i i=1 Prediktionsfelet d n kvantiseras och skickas. Både kodaren och avkodaren återskapar ˆd n och ˆx n = p n + ˆd n.
4 Prediktiv kodare och avkodare x n + d n ˆd n Q + p + n ˆd n + + p n P ˆx n P ˆx n Prediktiv kodare Prediktiv avkodare
5 Optimering av prediktorn Hur ska man välja prediktorkoefficienterna a i? Givet en datatakt R så vill vi minimera distorsionen D = E{(x n ˆx n ) 2 } = E{(d n ˆd n ) 2 } Kvantiseringen gör att det är svårt att beräkna optimala a i exakt. Om vi antar fin kvantisering, dvs att antalet kvantiseringsnivåer är stort, kan vi göra approximationen ˆx n x n dvs vi räknar som om prediktionen gjordes på originalsignalen. Med fin kvantisering får vi även att D c σ 2 d 2 2R där σd 2 är variansen hos prediktionsfelet och c beror av vilken typ av kvantisering vi gör och vilken fördelning d n har. Vi kan alltså minimera distorsionen genom att minimera prediktionsfelets varians.
6 Optimering av prediktorn Prediktionsfelets varians σd 2 = E{(x n p n ) 2 } = N = E{(x n a i ˆx n i ) 2 } E{(x n i=1 N a i x n i ) 2 } Derivera m.a.p. a j och sätt lika med 0, vilket ger oss N ekvationer a j σ 2 d = 2 E{(x n i=1 N a i x n i ) x n j } = 0 i=1
7 Matrisbeskrivning Detta kan skrivas om som matrisekvationen där A = RA = P R xx (0) R xx (1) R xx (N 1) R xx (1) R xx (0) R xx (N 2) R =..... R xx (N 1) R xx (N 2) R xx (0) a 1 R xx (1) a 2 R xx (2). a N, P =. R xx (N) där R xx (k) = E{x n x n+k } är autokorrelationsfunktionen för x n.
8 Matrisbeskrivning Lösningen kan fås som A = R 1 P För den optimala prediktorn A får vi σ 2 d = R xx (0) A t P
9 Prediktionsvinst Vid fin kvantisering ges distorsionen och signal-brusförhållandet approximativt av D p c σ 2 d 2 2R, SNR p = 10 log 10 σ 2 x D p där σ 2 x är originalsignalens varians. Om vi istället kvantiserat originalsignalen direkt hade vi fått D o c σ 2 x 2 2R, SNR o = 10 log 10 σ 2 x D o Skillnaden brukar kallas prediktionsvinst (prediction gain) SNR p SNR o = 10 log 10 D o D p 10 log 10 σ 2 x σ 2 d
10 Skattning av autokorrelationer Givet en lång sekvens x 1, x 2,..., x n av testdata kan man skatta autokorrelationsfunktionen enligt I Matlab kan det skrivas R xx (k) = 1 n k x i x i+k n k i=1 mean(x(1:end-k).*x(k+1:end))
11 Signaler med medelvärde Vad gör man om signalen har ett medelvärde m 0? 1. Om signalens medelvärde är litet i förhållande till variansen kan man använda linjär prediktion som vanligt. 2. Annars kan man skapa en ny signal y n = x n m, konstruera en linjär prediktor för y n och skicka m som sidoinformation. 3. Alternativt kan man konstruera en affin prediktor p n = N a i x n i + a 0 i=1 Bortsett från kvantiseringen så ger detta samma resultat som alternativ 2.
12 Tvådimensionella prediktorer Man kan naturligtvis generalisera prediktorbegreppet till att även fungera för tvådimensionella signaler, t.ex. bilder. Till exempel, om vi har en bildsignal x ij och vi vill göra en prediktion från bildpunkten till vänster om och bildpunkten ovanför den aktuella p ij = a 1 x i,j 1 + a 2 x i 1,j Den optimala prediktorn ges då av lösningen till ekvationssystemet [ E{xi,j 1 2 } E{x ] [ ] [ i,j 1 x i 1,j } a1 E{xi,j x E{x i,j 1 x i 1,j } E{x 2 = i,j 1 } E{x ij x i 1,j } i 1,j } a 2 ] eller, uttryckt med autokorrelationsfunktionen [ ] [ ] Rxx (0, 0) R xx (1, 1) a1 = R xx (1, 1) R xx (0, 0) a 2 [ Rxx (0, 1) R xx (1, 0) ]
13 Exempel, prediktiv kodning av bild bildpunkter, 8 bitar/bildpunkt
14 Lloyd-Max-kvantisering, 8 nivåer Datatakt: R = 3 bitar/bildpunkt Distorsion: D PSNR: db
15 Prediktor Skattad akf R xx (0, 0) = σ R xx (1, 0) σ 2 R xx (0, 1) σ 2 R xx (1, 1) σ 2 R xx (1, 1) σ 2 Prediktor p ij = ˆx i,j ˆx i 1,j ˆx i 1,j 1 En åttanivåers Lloyd-Max-kvantiserare optimeras på prediktionsfelet.
16 Prediktionsfel, 8 nivåer
17 Kvantiserat prediktionsfel, 8 nivåer
18 Avkodad bild, 8 nivåer Datatakt: R = 3 bitar/bildpunkt Distorsion: D 5.62 PSNR: db (Prediktionsvinst db)
19 Lloyd-Max-kvantisering, 2 nivåer Datatakt: R = 1 bit/bildpunkt Distorsion: D PSNR: db
20 Prediktionsfel, 2 nivåer
21 Kvantiserat prediktionsfel, 2 nivåer
22 Avkodad bild, 2 nivåer Datatakt: R = 1 bit/bildpunkt Distorsion: D PSNR: db (Prediktionsvinst 9.39 db)
23 Exempel: hey04.wav Filen hey04.wav från lab 2 kodas med olika ordning på prediktorn. Likformig kvantisering med 256 nivåer. Diagrammet visar SNR som funktion av antalet prediktorkoefficienter
24 Exempel: hey04.wav Filen hey04.wav från lab 2 kodas med olika ordning på prediktorn. Likformig kvantisering med 32 nivåer. Diagrammet visar SNR som funktion av antalet prediktorkoefficienter
25 Exempel: hey04.wav Filen hey04.wav från lab 2 kodas med olika ordning på prediktorn. Likformig kvantisering med 4 nivåer. Diagrammet visar SNR som funktion av antalet prediktorkoefficienter
26 Distorsionsfri kodning Linjär prediktiv kodning kan också användas vid distorsionsfri kodning. Om vi antar att insignalen består av heltal, så måste vi se till att vår prediktor också producerar heltal. Som exempel har vi bland annat lossless JPEG, som kan använda prediktorerna 1. p ij = I i 1,j 2. p ij = I i,j 1 3. p ij = I i 1,j 1 4. p ij = I i,j 1 + I i 1,j I i 1,j 1 5. p ij = I i,j 1 + (I i 1,j I i 1,j 1 )/2 6. p ij = I i 1,j + (I i,j 1 I i 1,j 1 )/2 7. p ij = (I i,j 1 + I i 1,j )/2
27 Distorsionsfri kodning Vi kodar vår papegojbild med prediktorn p ij = I i,j 1 + I i 1,j I i 1,j 1 och huffmankodar sen prediktionsfelet. Datatakten blir då 4.18 bitar/bildpunkt. Om vi istället använder prediktorn p ij = I i,j I i 1,j I i 1,j 1 följt av huffmankodning blir datatakten 3.93 bitar/bildpunkt.
28 Ljudsignalerna i lab 1 Prediktorer av ordning 1 och 2. hey04_8bit.wav p n = x n 1 p n = x n x n 2 nuit04_8bit.wav p n = x n 1 p n = x n x n 2 speech.wav p n = x n 1 p n = x n x n 2
29 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det ger högre kompression. Linjära prediktorer optimeras inom blocket. Det finns även möjlighet att använda fixa prediktorer (jämför med lossless JPEG). Prediktionsfelet kodas med Ricekoder (ungefär samma sak som Golombkoder).
Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare
Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen
Läs merSkurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga.
Datakompression fö 4 p1 Skurlängdskodning Ibland har man källor som producerar långa delsekvenser av samma symbol Det kan då vara praktiskt att istället för att beskriva sekvensen som en följd av enstaka
Läs merFLAC (Free Lossless Audio Coding)
Datakompression fö 9 p.1 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det
Läs merKodning med distorsion
Kodning med distorsion Vi har en signal x n, n = 1... N som ska kodas. Alfabetet är en delmängd av de reella talen A R. Alfabetet kan vara kontinuerligt. Om vi inte har kravet att den avkodade signalen
Läs merAnalys/syntes-kodning
Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk
Läs merTransformkodning Idé: 1. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block
Transformkodning Idé:. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block med en lämplig, reversibel transform till en ny sekvens.
Läs merTSBK35 Kompression av ljud och bild
TSBK35 Kompression av ljud och bild Övningshäfte 0 februari 013 Innehåll I Problem 1 1 Informationsteori................................ 1 Källkodning................................... 3 3 Kvantisering...................................
Läs merPsykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.
Psykoakustik Ljudtrycksnivå Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det
Läs merFöreläsning 1: Bild- och ljudkodning
Föreläsning 1: Bild- och ljudkodning 1. Kursöversikt 2. Introduktion till bild- och ljudkodning - syfte - historik - antal bitar per bildpunkter/sampel 3. Två principiella klasser : distorsionsfri och
Läs merAdaptiv aritmetisk kodning
Datakompression fö 8 p.1 Adaptiv aritmetisk kodning Aritmetisk kodning är väldigt enkel att göra adaptiv, eftersom vi bara behöver göra en adaptiv sannolikhetsmodell, medan själva kodaren är fix. Till
Läs merOrdbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning)
Datakompression fö 6 p.1 Ordbokskodning Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar en ordbok som innehåller 2 b olika sekvenser av symboler
Läs merExempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts.
Datakompression fö 6 p.3 Datakompression fö 6 p.4 Ordbokskodning Exempel, minnesfri binär källa Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar
Läs merFöreläsning 7: Bild- och videokodning
Föreläsning 7: Bild- och videokodning Inledning - varför bildkodning - tillämpningar - grundprinciper Förlustfri kodning - Variabellängdskodning - Skurländskodning - Huffmankodning Irreversibla kodningsmetoder
Läs merOptimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.
Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)
Läs merOptimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.
Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås
Läs mer4/27/12. Fönstring i MDCT. Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck
Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck 2. Hörselsinnet Hörnivåkurvor, hörseltröskel, maskeringseffekter, Barkskalan 3. Ljudkodning
Läs merParameterskattning i linjära dynamiska modeller. Kap 12
Parameterskattning i linjära dynamiska modeller Kap 12 Grundläggande ansats Antag (samplade) mätdata (y och u)från ett system har insamlats. Givet en modell M(t, θ) och mätdata, hitta det θ som ger en
Läs merFöreläsning 10: Ljudkodning ( Audio Coding )
Föreläsning 10: Ljudkodning ( Audio Coding ) 1. Inledning PCM, standardmetoder, MDCT, psykoakustik, ljudtryck 2. Hörselsinnet Hörnivåkurvor, hörseltröskel, maskeringseffekter, Barkskalan 1. Ljudkodning
Läs merKällkodning. Egenskaper hos koder. Några exempel
Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att
Läs merF13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Läs merKurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression
TSBK35 fö 1 p.3 TSBK35 fö 1 p.4 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Bildkodning, Linköpings universitet Khalid Sayood,
Läs merKodning av ansiktstextur med oberoende komponenter
Kodning av ansiktstextur med oberoende komponenter Jörgen Ahlberg Report no. LiTH-ISY-R-2297 ISSN 1400-3902 Avdelning, Institution Division, department Datum Date Image Coding Group 2000-10-02 Department
Läs merAritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12
Aritmetisk kodning Vi identifierar varje sekvens av källsymboler med ett tal i intervallet [0, 1). Vi gör det med hjälp av fördelningsfunktionen (cumulative distribution function) F. För enkelhets skull
Läs merTSBK04 Datakompression. Övningsuppgifter
TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings
Läs merKorrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Läs merFöreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
Läs merTSBK04 Datakompression Övningsuppgifter
TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings
Läs merPsykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå (loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.
Psykoakustik TSBK35 fö 10 p.3 Ljudtrycksnivå TSBK35 fö 10 p.4 Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen
Läs merKompression av ljud och bild
Kompression av ljud och bild Harald Nautsch harna@isy.liu.se ISY Informationskodning, Linköpings universitet http://www.icg.isy.liu.se/courses/tsbk35/ Kurslitteratur Rekommenderad bok: Khalid Sayood, Introduction
Läs merShannon-Fano-Elias-kodning
Datakompression fö 5 p.1 Shannon-Fano-Elias-kodning Antag att vi har en minnesfri källa X i som tar värden i {1, 2,...,L}. Antag att sannolikheterna för alla symboler är strikt positiva: p(i) > 0, i. Fördelningsfunktionen
Läs merMänniskans hörsel är ganska väl studerad och det finns bra modeller för den.
Psykoakustik Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det ska märkas så
Läs merKurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer
TSBK35 källkodning p.3/89 TSBK35 källkodning p.4/89 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Informationskodning, Linköpings
Läs merFöreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
Läs merFöreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer
Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z
Läs merMatematisk statistik 9 hp Föreläsning 6: Linjärkombinationer
Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av
Läs merAutokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
Läs mera) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)
5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk
Läs merFöreläsning 6, Matematisk statistik Π + E
Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora
Läs mer5B Portföljteori och riskvärdering
B7 - Portföljteori och riskvärdering Laboration Farid Bonawiede - 89-09 Alexandre Messo - 89-77 - Beräkning av den effektiva fronten för en portfölj Uppgiften går ut på att beräkna de portföljer som ger
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Läs merVideosignalen består av en sekvens av bilder, typiskt 24, 25 eller 30 bilder i sekunden.
Videokodning Begrepp och beteckningar Videosignalen består av en sekvens av bilder, typiskt 24, 25 eller 30 bilder i sekunden. Bilderna skickas antingen progressivt (hela bilden på en gång) eller med interlace
Läs merF12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24
1/24 F12 Regression Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/2 2013 2/24 Dagens föreläsning Linjära regressionsmodeller Stokastisk modell Linjeanpassning och skattningar
Läs merSammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Läs merSpektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Läs merDIGITAL KOMMUNIKATION
EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv
Läs merKorrelation och autokorrelation
Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.
Läs merProjekt 1 (P1) Problembeskrivning och uppdragsspecifikation
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare
Läs merMVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Läs merFöreläsning 6, FMSF45 Linjärkombinationer
Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)
Läs merSignaler och system, IT3
Signaler och system, IT3 Vad är signalbehandling? 1 Detta dokument utgör introduktionsföreläsningen för kursen Signaler och system för IT3 period 2. Kursen utvecklades år 2002 av Mathias Johansson. 1 Vad
Läs merFlerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merIntroduktion till statistik för statsvetare
och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag
Läs mer3 Maximum Likelihoodestimering
Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till
Läs merMatematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Läs merLab 3 Kodningsmetoder
Lab 3. Kodningsmetoder 15 Lab 3 Kodningsmetoder Starta Matlab och ladda ner följande filer från kurswebben till er lab-katalog: lab3blocks.mdl okodat.mdl repetitionskod.mdl hammingkod.mdl planet.mat Denna
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Läs merKovarians och kriging
Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)
Läs merKap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Läs merFinansiell statistik. Multipel regression. 4 maj 2011
Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi
Läs merLab 1 Analog modulation
2 Lab-PM för TSEI67 Telekommunikation Lab 1 Analog modulation Med Simulink kan man som sagt bygga upp ett kommunikationssystem som ett blockschema, och simulera det. Ni ska i denna laboration inledningsvis
Läs merBayesiansk statistik, 732g43, 7.5 hp
Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär
Läs merEnkel och multipel linjär regression
TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0
Läs merFöreläsning 7. Felrättande koder
Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Läs merSF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
Läs merRegressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Läs merUlrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merTRE TYPER AV SPATIALA DATA
STATISTISK ANALYS AV KOMPLEXA DATA SPATIALA DATA Mattias Villani Statistik Institutionen för Datavetenskap Linköpings Universitet MATTIAS VILLANI (STATISTIK, LIU) SPATIALA DATA 1 / 21 TRE TYPER AV SPATIALA
Läs merFöreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Läs merUlrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs mer1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Läs merFöreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor
Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta
Läs merLaboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
Läs merTeori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Läs merLMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Läs mer5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3
1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift
Läs merTSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Läs merOptimal Signalbehandling Datorövning 1 och 2
Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information
Läs merRegressionsmodellering inom sjukförsäkring
Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.
Läs merPROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merTENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).
Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs merSpektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merRobust flervariabel reglering
Föreläsning 2 Anders Helmersson andersh@isy.liu.se ISY/Reglerteknik Linköpings universitet Vad gör vi i dag Normer Representation av system Lyapunovekvationer Gramianer Balansering Modellreduktion Lågförstärkningssatsen
Läs merStatistiska metoder för säkerhetsanalys
F7: Bayesiansk inferens Klassisk vs Bayesiansk Två problem Klassisk statistisk inferens Frekventistisk tolkning av sannolikhet Parametrar fixa (ofta okända) storheter Skattningar och konfidensintervall
Läs merMatematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Läs merFöreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Läs merKonvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Läs merPrediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Läs merFöreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merSF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs mer