Förbehandling av kommunalt avloppsvatten genom förfällning i kompaktanläggning

Storlek: px
Starta visningen från sidan:

Download "Förbehandling av kommunalt avloppsvatten genom förfällning i kompaktanläggning"

Transkript

1 Förbehandling av kommunalt avloppsvatten genom förfällning i kompaktanläggning Petter Olsson Vattenförsörjnings- och Avloppsteknik Institutionen för kemiteknik, LTH Examensarbete 2012

2 Förbehandling av kommunalt avloppsvatten genom förfällning i kompaktanläggning av Petter Olsson Examensarbete nummer: Vattenförsörjnings- och Avloppsteknik Institutionen för kemiteknik Lunds Universitet November 2012 Handledare: Professor Jes la Cour Jansen Examinator: Universitetslektor Karin Jönsson Bild på framsida: Pilotanläggningen på plats i Södra Sandby. Foto: Petter Olsson. Postadress Besöksadress Telefon P.O. Box 124 Getingevägen SE Lund, Sweden Webadress Fax

3

4 Förord Detta examensarbete på 30 högskolepoäng har skrivits för Vattenförsörjnings- och Avloppsteknik (VA-teknik) vid institutionen för kemiteknik på Lunds Tekniska Högskola (LTH). De praktiska delarna av arbetet har framförallt utförts vid Södra Sandbys reningsverk, även om provanalyser till största delen gjorts på VA-tekniks laboratorium. Majoriteten av proverna från försöken i maj utfördes av Michael Cimbritz och Lars-Gunnar Alm i Hydrotech AB:s laboratorium i Vellinge. Det praktiska arbetet i samband med examensarbetet utfördes under perioden september 2011 till juni 2012, medan rapporten delvis skrivits under det praktiska arbetets gång, men först avslutats under hösten Undertecknad vill framföra ett stort tack till min handledare Jes la Cour Jansen, professor på VA-teknik vid institutionen för kemiteknik på LTH för värdefulla förslag på olika utvärderingsmetoder samt kommentarer och konstruktiv kritik under arbetets och rapportskrivandets gång. Ett tack också till min examinator Karin Jönsson, universitetslektor, på VA-teknik vid institutionen för kemiteknik vid LTH. Ett stort tack också till Gertrud Persson på VA-labbet som förevisat mig laboratoriet och bistått med hennes kunnande då jag behövt hjälp med mina analyser eller behövt låna utrustning för experiment. Ett stort tack riktas också till Michael Cimbritz och Lars-Gunnar Alm från Hydrotech AB, inte minst för förevisningen av mikrofilterförsöken under hösten, men framförallt för samarbetet vid vårens försök vid Södra Sandby då framförallt Michael var med på plats och körde pilotanläggningen tillsammans med undertecknad. Lars-Gunnar Alm bidrog med nödvändiga praktiska lösningar samt hopkopplingen av trumfiltret med ConPactanläggningen. Dessutom bistod Michael mig med resultat från provanalyserna som utfördes under denna försöksperiod. Även Mats Helander och Lars Gunnarsson från ConPura är värda ett stort tack för all hjälp jag fått med ConPact-anläggningen under försöksperioden. Framförallt för de snabba åtgärder och lösningar som genomfördes då problem uppstod med anläggningen. Bengt Hansen och Anders Pålsson från Kemira förtjänar också ett stort tack för deras hjälp med allt som har med fällningskemikalierna att göra, det vill säga allt från kemikalieval och kemikaliedoseringar till förevisning av Jar tester vid Södra Sandby. Vidare tackas också Tony Olsson, dåvarande driftansvarig på reningsverket i Södra Sandby för hans hjälp med diverse saker under försöksperioden. Också VA SYD förtjänar ett tack för att vi fick använda deras reningsverk under pilotförsöken. Även Marinette Hagman från NSVA ska ha ett tack för hennes kommentarer och deltagande i de möten som genomförts med projektgruppen för utvecklingen av denna pilotanläggning. Lund Petter Olsson Ekosystemteknik

5

6 Summary In many arid countries around the world there is a need to reuse wastewater for irrigationpurposes. To be able to do this it is necessary to treat the wastewater to minimize the risk for degradation of soil-quality and spreading of pathogens. A conventional wastewater treatment plant could be a solution, but such a treatment plant is expensive and also very spaceconsuming. Another potential solution is to construct a comparatively cheap treatment plant built up by different modules which also requires less space. This kind of solution could also be possible to use as a replacement for many of the smaller wastewater treatment plants in Sweden, of which many are old and worn and thus in need of either renovation or replacement. The purpose with this thesis was to evaluate the possibility to treat municipal wastewater by introducing a precipitation-process where a metal-salt is combined with a polymer in ConPura's compact pretreatment-plant for wastewater, ConPact B. This unit contains a rotating screen for mechanical removal of larger material and an aerated grit chamber for grit removal. There is also a grease scarper for removal of grease. The initial trials that were performed at Södra Sandby wastewater treatment plant indicated that it was possible to gain good flocks through the coagulation-process within the ConPactunit. The problem was that the main parts of the flocks were transported out of the unit with the treated water. Due to that the continuation of the trials were focused on different possibilities to separate the flocks. The first solution to be evaluated was the possibility to use a sedimentation process for the separation. Those trials indicated that the required volume for a sedimentation tank would need to be dimensioned for a retention time of minutes, which is the time it took for the majority of the flocks to sediment. During the trials in the autumn of 2011 the water-treatment company Hydrotech AB was involved in the project due to their good knowledge of filter separation. Thus they performed a few tests in lab scale with their filters which gave a promising result. As a result of this a full scale facility was put up in Södra Sandby in the spring 2012 containing the ConPact B-unit and a drum filter from Hydrotech AB. During these trials that were performed in May 2012, the polyaluminium chloride PAX XL-100 was added combined with the cation-polymer Fennopol K5060 into the ConPact-unit where the coagulation-process was performed. The flocks were then transported with the outgoing water into the drum filter with a filter size of 100 µm and a filter area of 1.8 m 2, where the flocks were separated. The random samples that were taken during the trials indicated that a removal of suspended solids of about 90% was possible. The same number for total COD was 65 % whilst the filtrated COD was removed by 30%. Also removal of total Phosphorus and PO 4 -P was evaluated and were both removed by approximately 70%. Even though the initial results indicates that a good treatment capacity can be gained with this module-solution, more comprehensive trials during continued operation is needed to verify the result presented in this report. To replace small wastewater treatment plants in Sweden, it is necessary to complement the pilot-unit with a bio step to be able to fulfill the demands on COD-removal as well as increasing the phosphorus-removal. When it comes to the possibility to use the effluent water from the unit for irrigation purposes, more comprehensive

7 studies is needed to be able to evaluate the impact on the soil and the crop quality. Some kind of hygienisation process would also be necessary to secure that there is no spreading of pathogens.

8 Sammanfattning I många torrare länder runtom i världen finns ett behov av att återanvända avloppsvatten för bevattningsändamål. För att göra detta krävs dock att avloppsvattnet renas för att minimera risken för degradering av jordkvalitéten samt spridning av patogener. Ett konventionellt reningsverk skulle kunna vara en lösning, men ett sådant reningsverk innebär en väldigt hög investeringskostnad samtidigt som det kräver en förhållandevis stor yta. En annan potentiell lösning skulle kunna vara att konstruera ett förhållandevis billigt reningsverk som är uppbyggt i moduler och som därför inte kräver lika stor areal. En sådan lösning skulle också kunna vara aktuell för att ersätta många av de små reningsverken runtom i Sverige som nu börjar bli gamla och slitna och därför är i behov av upprustning. Syftet med detta examensarbete var att utvärdera möjligheten att rena kommunalt avloppsvatten genom att introducera en fällningsprocess där ett metallsalt kombineras med en polymer i ConPuras kompakta förbehandlingsanläggning för avloppsvatten, ConPact B. Denna anläggning innehåller en skruvsil för mekanisk avskiljning av det grövre materialet, samt ett luftat sandfång där även fettavskiljning sker med hjälp av en fettskrapa. De inledande försöken som genomfördes vid Södra Sandbys reningsverk visade att det gick att åstadkomma en god flockningsprocess i ConPact-anläggningen, men att de bildade flockarna följde med det utgående vattnet. I och med detta kom fortsättningen av försöken att inkludera olika möjligheter till avskiljning av dessa flockar. Inledningsvis utvärderades sedimentationsegenskaperna hos de bildade flockarna i det utgående vattnet samtidigt som analyser gjordes för att bedöma reningskapaciteten gällande suspenderade ämnen (SS), COD samt fosfor. Dessa försök visade att ett efterföljande sedimentationssteg skulle behöva vara dimensionerat för åtminstone minuters uppehållstid för att en någorlunda effektiv avskiljning av föroreningarna skall hinna ske. Under höstens försök blev också vattenreningsföretaget Hydrotech AB involverade i projektet då de har mycket erfarenhet av filteravskiljning. Hydrotech AB genomförde därför några korta labförsök där flockavskiljningen utfördes med ett filter. Resultatet från dessa försök var mycket lovande varför en pilotanläggning med ConPact-anläggningen med efterföljande trumfilter från Hydrotech AB ställdes upp i Södra Sandby under våren Under de fällningsförsök som genomfördes under maj 2012 tillsattes polyaluminiumkloriden PAX XL-100 i kombination med katjonpolymeren Fennopol K5060 till ConPact-anläggningen där flockningsprocessen sedan skedde. Det flockade avloppsvattnet leddes därefter in i ett trumfilter med en duk med en filterstorlek på 100 µm och filterarea på 1.8 m 2, där flockarna sedan avskiljdes. De stickprover som togs ut i samband med dessa försök indikerar att en SS-avskiljning på runt 90 % sannolikt går att uppnå. Avskiljningen av ofiltrerat COD låg på ca: 65 % medan samma siffra för den lösta fraktionen av COD låg på 30 %. Även totalfosfor och löst PO 4 -P analyserades och avskiljdes båda till ca: 70 %. Även om de inledande resultaten indikerar att en god reningskapacitet går att uppnå med hjälp av denna modullösning krävs mer omfattande försök under kontinuerlig drift för att verifiera resultatet från stickproverna som presenteras i denna rapport. För att ersätta små reningsverk i Sverige skulle det dessutom krävas att pilotanläggningen kompletteras med ett biosteg för att

9 förbättra COD-avskiljningen och till viss del även fosforavskiljningen. När det gäller möjligheten till att använda det utgående vattnet från anläggningen till bevattningsändamål krävs det ytterligare försök för att kunna bedöma vilken effekt detta vatten skulle ha på jorden och kvalitéten på grödorna. Dessutom skulle detta vatten behöva genomgå någon form av hygienisering innan det används då risken är stor att det utgående vattnet fortfarande innehåller en del patogener.

10 Innehåll Bakgrund... 1 Syfte... 3 Frågeställningar... 3 Genomförande... 3 Avgränsning... 4 Begränsningar Förbehandling av avloppsvatten Bevattning med renat avloppsvatten Föroreningar i avloppsvatten... 6 Fosfor... 6 Kväve... 6 Partiklar Mekanisk rening... 8 Rensgaller... 8 Sandfång Kemisk fällning... 8 Direktfällning... 8 Förfällning Fällningsprocessen... 9 Fällningskemikalier... 9 Polymerer Mixning Koagulering och flockning Sedimentering Diskret sedimentering Flockulent sedimentering Hindrad sedimentering Södra Sandby reningsverk ConPact anläggningen och dess funktion Rensgodsbehandling Sandfång Fettavskiljning Dosering av fällningskemikalier... 20

11 3.5 Utlopp Trumfilter Funktion av Material och metod Pilotförsöksutrustning Inledande fällningsförsök Val av fällningskemikalier Polymerberedning, höst Inställningsparametrar hos ConPact-enheten Försöksvariabler Provtagningspunkter Sedimentationskurvor Sedimentationsprov Utvärderingsparametrar Mikrofilterförsök Flockavskiljning med trumfilter Polymerberedning, vår Spoltider Försöksvariabler Analysmetoder Suspenderat material Bestämning av fosforhalter, LCK 348/ Bestämning av COD-halter LCK 114/ Resultat Försöksinledningen Inledande fällningsförsök 3-4/ Sedimentationsförsök under november Mikrofilterförsök 24/ Fällningsförsök med konstanta försöksparametrar 1/ Fällningsförsök med varierade kemikaliedoseringar 2/ Fällningsförsök med optimerad kemikaliedosering 6/ Fällningsförsök, maj Diskussion Slutsats... 51

12 8. Framtida utveckling Referenser Bilagor Appendix 1 Sammanställning av det praktiska arbetet Appendix 2 Resultat från hösten Appendix 3 - Resultat från Maj Appendix 4 - Produktblad för PAX XL Appendix 5 - Produktblad för Fennopol K Appendix 6 - Produktblad Superflock Appendix 7 Analyssteg för bestämning av P-tot och PO 4 -P Appendix 8 Analyssteg för bestämning av COD-tot och löst COD Pretreatment of municipal wastewater with pre-precipitation in compact-unit... 89

13

14 Bakgrund I de torrare områdena i Europa och då framförallt Medelhavsländerna blir det allt viktigare att ta tillvara på alla befintliga vattenkällor. I många delar av världen har av liknande anledning avloppsvatten av olika kvalitét används till bevattningsändamål. Då reningen av detta vatten ofta har varit bristfällig, har detta lett till degraderad jordkvalitet och risk för spridning av patogener. Med detta som grund har det vuxit fram ett behov för enkla och förhållandevis billiga tekniker för att rena avloppsvatten. De enklaste varianterna består oftast av ett rensgaller där de grövsta föroreningarna tas bort samt någon typ av sedimentation för avskiljning av tyngre partiklar såsom till exempel sand. I många fall finns också ett begränsat utrymme för en sådan typ av reningsanläggning vilket innebär att kompakta lösningar blivit allt mer attraktiva på marknaden. För att rena ett avloppsvatten till den grad att det blir lämpligt för bevattning krävs dock att rensgaller och sandfång kompletteras med ytterligare reningstekniker. En metod för att uppnå detta är att tillsätta fällningsmedel baserade på till exempel aluminium eller järn för att fälla ut kolloider och lösta partiklar och därmed underlätta avskiljningen av dessa. Vattenreningsföretaget ConPura AB utvecklar och tillverkar kompaktenheter för förbehandling av avloppsvatten. Dessa förbehandlingsenheter har varunamnet ConPact och finns i flera olika utförande beroende på deras kapacitet och innehåll. Typiska reningssteg som dessa kompaktenheter innehåller är skruvsil, rensgaller, luftat sandfång samt fettavskiljning. ConPuras vision är att vidareutveckla dessa enheter för att kunna bemöta allt högre krav från kunderna gällande reningskapaciteten. Med detta som bakgrund tog Lars Gunnarsson på ConPura kontakt med Jes la Cour Jansen vid Vattenförsörjning och Avloppsteknik på kemitekniska institutionen på LTH med en önskan att starta upp ett samarbete. Ett förslag gällande vidareutveckling av enheten som kom upp var att införa en fällningsprocess inklusive sedimentation i anläggningen. Vid detta läge kontaktades Bengt Hansen vid Kemira Kemwater med en förhoppning att kunna erhålla nödvändig kompetens gällande fällningsmedel och fällningsprocesser. Efter detta kom även de två vattentjänstbolagen NSVA (Nordvästra Skånes Vatten och Avlopp) och VA SYD att involveras i projektet. Anledningen till detta var att man ville starta upp en pilotstudie för att kunna testa möjligheterna med införandet av en fällningsprocess. För att göra detta behövdes tillgång till ett reningsverk där kompaktenheten skulle kunna kopplas in till inkommande avloppsvatten. Detta ledde till att tillstånd erhölls från VA SYD för att ställa upp en ConPact-anläggning vid Södra Sandbys reningsverk. Parallellt med detta inleddes också fällningsförsök med hjälp av Jar-tester utförda på avloppsvatten hämtat från Södra Sandby. Detta arbete utfördes som två projektkurser utförda av Yiming Yao i LTH:s regi. Resultatet från detta projekt visade att bästa reningsresultatet i labskala erhölls då det aluminiumbaserade metallsaltet PAX XL-100 kombinerades med en anjonpolymer. Utifrån detta införskaffades nödvändiga tillstånd för att kunna starta upp fällningsprocessen vid Södra Sandby reningsverk under hösten

15 Då det under försöken tidigt kunde slås fast att ingen flockavskiljning kunde ske inuti ConPact-enheten blandades ytterligare en part in i samarbetet, nämligen Hydrotech AB som är en del av Veoliakoncernen. Hydrotech AB representerades av Michael Cimbritz och Lars- Gunnar Alm och deras bidrag till reningsprocessen var att komplettera ConPact-enheten med ett trumfilter för att på det sättet kunna avskilja flockarna som bildas inuti ConPacten. Denna försöksuppställning togs i bruk under våren

16 Syfte Syftet med detta arbete är undersöka möjligheten att utöka reningskapaciteten för ConPuras kompaktanläggning ConPact B, som i nuvarande utförande renar vatten med en skruvsil, ett luftat sandfång samt fettavskiljning. Denna utökade reningskapacitet ska i detta projekt erhållas genom en kemisk fällningsprocess där ett metallsalt kombineras med en polymer för att flocka de inkommande föroreningarna. Ett annat syfte med arbetet är att utvärdera potentialen hos den kompakta anläggningen med avseende på möjligheten att ersätta mer platsberoende traditionella reningsprocesser. Frågeställningar Kan en kompakt och kostnadseffektiv förbehandling av avloppsvatten ske genom att introducera en kemisk fällningsprocess till ConPuras kompakta reningsverk ConPact B? Är det möjligt att avskilja de bildade flockarna inuti ConPact-enheten, eller måste den kompletteras med någon typ av filtrering eller sedimentationsprocess? Vilka reningsresultat kan uppnås med denna förhållandevis enkla och billiga teknik? Genomförande I Figur 1 presenteras en översikt av arbetets genomförande. En mer omfattande beskrivning av arbetet finns att läsa i appendix 1. Under inledningen av arbetet genomfördes några jartestförsök för att i labskala studera hur fällningsprocessen fungerar och hur resultatet kan variera beroende på kemikalietillsats. Dessutom erhölls en introduktion till laborationsarbetet. Under denna period inleddes också en litteraturstudie med inriktning på kemisk fällning. Efter inledningsfasen skedde uppstarten av pilotanläggningen i början av oktober. Uppstarten av dessa försök gick dock inte smärtfritt då anläggningen bräddade vid flera tillfällen, dessutom kunde det ganska snabbt konstateras att flockarna inte kunde avskiljas inuti ConPact-enheten. För att komma till rätta med bräddningsproblemet byttes silen i skruvsilsdelen ut mot en något mindre sil, vilken skruvens borstar klarade av att rensa. Detta betydde att fällningsförsöken inte kom igång på riktigt förrän i början av november. På grund av att ingen sedimentation skedde inuti ConPact-enheten erhölls endast en marginell avskiljning av föroreningarna som kom in till ConPact-enheten. Flockbildningen var dock god, varför det beslutades att genomföra sedimentationsförsök av både det inkommande och utgående vattnet i Imhoff-trattar för att studera sedimentationshastigheten. Dessutom togs prover av klarfasen vid olika sedimentationstider för att se vilken reningseffekt som skulle kunna uppnås i ett eventuellt efterkommande sedimentationssteg. Under denna period genomfördes också några korta mikrofilterförsök för att studera möjligheten att använda någon form av filter för att avskilja flockarna i det utgående vattnet. Under slutet av höstens fällningsförsök uppstod nya problem med rensskruven, delvis på grund av kylan men också till följd av att ingen spolning av renset skedde. På grund av detta bräddade anläggningen och försöken avbröts därför inför vintern. Under vintern beslutades det att det under våren skulle genomföras nya fällningsförsök. Denna gång skulle dock ConPact-enheten kompletteras med ett trumfilter från Hydrotech AB. I slutet av april monterades filtret och kopplades ihop med 3 3

17 ConPact-enheten. Detta betydde att fällningsförsöken startades upp i början av maj för att avslutas i slutet av månaden. Arbetets genomförande Studie om förbehandling av avloppsvatten Labintroduktion Fällningsförsök i ConPact-anläggningen Jartestförsök Byte av sil Sep Okt Nov Dec 2011 Rapportskrivning Fällningsförsök: Planering av ConPact med vårens försök Trumfilter Jan Feb Mar Apr Maj 2012 Figur 1: Översikt av genomförandet av arbetet Avgränsning På grund av att den utvärderade kompaktenheten är framtagen till förbehandling av avloppsvatten så är också rapporten avgränsad till att i stort bara behandla förbehandlingsprocesser. Begränsningar Arbetet med fällningsförsöken har under perioden begränsats på grund av upprepade problem med bräddning till följd av att skruvsilen inte fungerat som den ska. Avskiljningsgraden har till viss del varit svårberäknad på grund av svårigheter att ta ett representativt prov på det inkommande vattnet. 4 4

18 1. Förbehandling av avloppsvatten 1.1 Bevattning med renat avloppsvatten Bevattning av jordbrukslandskap, parker och gräsmattor står för en stor andel av den globala vattenförbrukningen. Majoriteten av detta bevattningsvatten leds eller pumpas från floder eller från akvifärer under jord (Pedrero et al., 2010). Då en avsevärd andel av världens befolkning bor i områden där vattentillgången är begränsad, är det viktigt att ta till vara på de vattenresurser som finns att tillgå. Detta har lett till att det under det senaste århundradet i många torrare länder med vattenbrist har vuxit fram en tradition att använda avloppsvatten till bevattningsändamål (Pedrero et al., 2010). I till exempel México bevattnas ha jordbruksmark med mestadels obehandlat utspätt avloppsvatten (Pedrero et al., 2010). Avsaknaden av avlopssvattenrening har dock lett till förhöjda hälsoproblem, framförallt hos bönderna och deras familjer, vilka utsätts för diverse vattenburna virus, parasiter och bakterier (Pedrero et al., 2010). Risken för sjukdomar har också lett till att framförallt de mer utvecklade länderna utarbetat direktioner gällande reningsprocesser och minsta vattenkvalitét som krävs för att det behandlade avloppsvattnet ska få återanvändas för bevattningssyften (Pedrero et al., 2010). Mest effektiva när det gäller återanvändning av avloppsvatten är Israel, där uppemot 20 % av det vatten som används för bevattning är renat avloppsvatten (Pedrero et al., 2010). Kvaliteten på det renade kommunala avloppsvattnet beror framförallt på kvaliteten hos vattenkällan varifrån dricksvattnet tas ifrån, vilka föroreningar som tillförs vattnet vid förbrukningen och naturligtvis den reningsprocess avloppsvattnet genomgår. Normalt mäts vattenreningsresultatet genom att mäta avskiljningsgraden av BOD, COD, SS, fosfor och kväve. När det gäller bevattningsändamål finns dock andra faktorer som också är viktiga, framförallt sådana ämnen som påverkar tillväxten av de planterade grödorna samt permeabiliteten hos jorden, vilka inte alltid mäts hos reningsverken (Pedrero et al., 2010). Rent generellt gäller att ju högre salinitet hos det behandlade avloppsvattnet är, desto större är risken för att problem uppstår med jorden, vattnet eller grödan. Om salthalten är högre än grödans toleransnivå kan det renade avloppsvattnet spädas ut med rent vatten för att motverka problem (Pedrero et al., 2010). Vissa specifika joner kan också ge upphov till skador på eller minskning av skörden då de tas upp och ackumuleras i plantorna, detta gäller framförallt natriumjoner, kloridjoner och borjoner (Pedrero et al., 2010). Vid varma väderförhållanden blir detta problem än större. Natriumjoner i bevattningsvattnet kan också påverka jordstrukturen och leda till lägre infiltrationshastighet samt sämre luftning av jorden. Om infiltrationshastigheten hos vattnet blir för låg finns en risk att plantorna inte kan ta upp tillräckligt med vatten för normal tillväxttakt. När det gäller näringsämnen, och då i första hand kväve och fosfor, kan dessa bidra som gödning. Men de kan också ge upphov till ökande tillväxt av ogräs, försämrad kvalitet hos grödorna samt bidra till en ojämn mognadsprocess (Pedrero et al., 2010). Andra problem som kan uppstå vid bevattning med renat avloppsvatten är att bevattningssystemen kan täppas igen, framförallt vid droppbevattning. Försök har visat att desinfektion där både uv-ljus och klor kombineras ger ett bättre resultat jämfört med en ökad dos av den ena (Pedrero et al., 2010). 5 5

19 1.2 Föroreningar i avloppsvatten Avloppsvatten innehåller stora mängder föroreningar som kan ge upphov till både hälsoproblem och miljöproblem. När det gäller hälsoproblem så är det framförallt olika virus och bakterier som står för det största hotet och som därmed måste avskiljas. När det gäller miljöproblem så har utsläpp av framförallt kväve och fosfor lett till att många sjöar och vattendrag runtom i världen har övergötts. Nedan följer en översikt av de största föroreningarna och hur dessa förekommer i avloppsvatten. Fosfor På grund av att fosfor ofta är en begränsande faktor för algtillväxt i vattendrag, leder utsläpp i många fall till att vattendragen övergöds och växer igen. På grund av detta är det av vikt att en stor andel av den fosfor som avloppsvatten innehåller avskiljs vid reningsverken. Fosforföreningar som förekommer i avloppsvatten delas upp i tre större fraktioner: ortofosfater, polyfosfater och organiskt bundet fosfor vilka tillsammans representerar totalhalten av fosfor (Kemira, 2003). Större delen av orto- och polyfosfaterna förekommer i löst form medan organisk fosfor i huvudsak förekommer bunden i fasta ämnen (Kemira, 2003). Den största delen av de fosforföreningar som finns i avloppsvattnet har sitt ursprung i fekalier, urin och tvättmedel. I princip all fosfor från fekalier och urin förekommer som ortofosfater medan den fosfor som tillförs avloppsvattnet från tvättmedel i regel förekommer som polyfosfater (Kemira, 2003). När polyfosfaterna från tvättmedel blandas ut i avloppsvattnet så startar en hydrolyseringsprocess där polyfosfaterna omvandlas till ortofosfater. Detta innebär också att större delen ca: % av den fosfor som förekommer i avloppsvatten föreligger som löst ortofosfat (Kemira, 2003). Ortofosfat förekommer i två olika former: H 2 PO 4 - och HPO 4 2- vilkas fördelning beror på avloppsvattnets ph-värde. Det vill säga ju lägre ph, desto större andel förekommer som H 2 PO 4 - och vice versa (Kemira, 2003). Den näst största fraktionen av fosfor föreligger som partiklar. Två viktiga komponenter som innehåller fosfor och som förekommer som partiklar är bakterier och virus. Bakterier innehåller dels fosforrika nukleinsyror dels har de ett cellmembran som omges av fosfolipider. Även virusen innehåller fosforrika nukleinsyror som i detta fall är omgivna av proteinskikt (Kemira, 2003). Fosforavskiljning genom flockuleringsprocesser sker på tre olika sätt beroende på vilken form den förekommer i (Aguilar et al., 2002): Fosfater som binds till de fasta partiklarna i lösningen och som därmed avskiljs genom exempelvis sedimentering eller filtrering. Direkt adsorption av fosfatjoner i hydrolysprodukten från metalljonerna i koagulanten. Avskiljning genom utfällning av fosfater med metallsaltet som koagulant. Kväve De olika formerna som kväve förekommer i avloppsvatten kan leda till ökad syreförbrukning, förhöjd algproduktion samt verka toxiskt mot delar av det akvatiska livet i recipienterna (Aguilar et al., 2002). Kvävet i avloppsvatten förekommer endera organiskt bundet eller i 6 6

20 oorganisk form som ammonium, nitrit och nitrat (Kemira, 2003). Av dessa kväveföreningar är de talrikast förekommande i avloppsvatten ammonium och nitrat. Organiskt bundet kväve finns till exempel i proteiner, peptider, nukleinsyror samt urea (Aguilar et al., 2002). Det kväve som förekommer som proteiner kallas även albuminoidkväve och är den del av kvävet som genom flockulering är lättast att avskilja (Aguilar et al., 2002). För att uppnå en högre kväveavskiljning krävs det dock att ett biologiskt reningssteg införs. Vid biologisk kväveavskiljning utnyttjas nitrifikationsprocessen där ammoniumkvävet oxideras till nitrit eller nitrat varpå denitrifikationsprocessen kan ta vid där nitrit och nitrat reduceras till kvävgas som avges till atmosfären (Kemira, 2003). Partiklar Majoriteten av föroreningarna i ett avloppsvatten består av partiklar. Inom uttrycket partiklar ryms till exempel bakterier, insektsägg, virus, avfallsprodukter, lera och sand. Då föroreningarnas partikelstorlek har en viktig inverkan på deras egenskaper delas de upp i fyra olika kategorier beroende på deras diametrar enligt följande (Kemira, 2003): Löst material <0.08 µm Kolloidala partiklar µm Superkolloidala partiklar µm Sedimenterbara partiklar >100 µm De minsta partiklar som visuellt uppfattas som just partiklar har en diameter runt 40 µm. Partiklar med lägre diameter uppfattas istället som grumlighet vars intensitet styrs av partikeldiameterns avvikelse från ljusets våglängd som ligger mellan µm (Kemira, 2003). Ju större avvikelse från detta intervall, desto lägre grumlighet. Då bakterier vanligen med partikeldiameterar mellan µm och virus med en diameter inom intervallet µm kan medföra stora humanitära risker är det viktigt att dessa avskiljs (Kemira, 2003). Vidare är de kolloidala partiklarna så pass små att de inte sedimenterar såvida de inte centrifugeras eller aggregeras, vilket alltså krävs om alla virus ska avskiljas. Dock kan inte alla partiklar aggregeras och därför är de uppdelade i stabila, icke möjliga att aggregera, och de instabila som är möjliga att aggregera (Kemira, 2003). Nästan alla partiklar som förekommer i vatten har en laddning, i de allra flesta fall är denna nettoladdning negativ. Detta medför att de repellerar varandra och därför förblir i finfördelad form i vätskan såvida de inte hittar något att adsorberas till (Kemira, 2003). Partiklarnas yta kan endera vara hydrofil eller hydrofob. De hydrofoba partiklarna har en fet yta som trots att rent fett saknar laddning i regel erhåller en negativ laddning då negativa joner binds till dessa partiklar genom Van der Waalskrafter (Kemira, 2003). Förutom partikelstorleken har även partikelns densitet stor betydelse för framförallt dess sedimenteringsegenskaper. Vid flockning av partiklar så ökar flockstorleken medan flockdensiteten kan förväntas minska till följd av att flockarna blir mer utsträckta och fluffiga (Kemira, 2003). 7 7

21 1.3 Mekanisk rening Rensgaller Den mekaniska reningen sker normalt i två steg, där det första består av ett rensgaller. Storleken på hålen i gallret, d.v.s. dess spaltvidd varierar men ligger i regel mellan 3-20 mm (Kemira, 2003). Rensgallrets huvuduppgift är att ta bort grövre föroreningar så som grenar, trasor, matrester och liknande. Sandfång Det andra steget i den mekaniska reningsprocessen är sandfånget. Här är det framförallt tyngre oorganiska partiklar såsom sten, grus och sand som avskiljs (Finger & Parrick, 1980). Detta sker genom att dessa partiklar har högre densitet jämfört med vattnets, vilka därför sjunker till botten. Därifrån transporteras de till exempel med en transportskruv vidare till en sandtvätt eller container. Förutom avskiljningen av dessa oorganiska partiklar kommer även tyngre organiska partiklar såsom kaffesump och frön att avskiljas i detta steg. Dessa organiska partiklar är lämpliga att avskilja från sanden. Detta kan göras med en sandtvätt där sandens högre densitet jämfört med de organiska partiklarna utnyttjas. En sandtvätt kan liknas vid en cyklon där de lättare organiska partiklarna hamnar i cyklonens övre del, medan de tyngre sandpartiklarna hamnar i den nedre delen där de kan avskiljas. Sandfången är ibland luftade för att underlätta fettborttagning, hålla vattnet syresatt samt för att motverka att lättare partiklar avskiljs tillsammans med sanden (Kemira, 2003). Om sandfånget inte fungerar tillfredsställande kan detta till exempel ge upphov till förhöjt slitage på pumpar samt ansamlingar av partiklar i distributionskanalerna efter sandfånget (Finger & Parrick, 1980). 1.4 Kemisk fällning Då en stor andel av föroreningarna i avloppsvatten förekommer i löst form eller som kolloidala partiklar vilka inte sedimenterar av sig själva, måste dessa aggregeras för att öka avskiljningen. Detta kan göras genom att tillsätta en fällningskemikalie som reducerar partiklarnas negativa laddning. Därmed minskar repulsionen mellan partiklarna så att ytkrafter såsom Van der Waals krafter börjar verka och ge upphov till aggregering. På detta sätt ökar partikelstorleken och därmed underlättas avskiljningen. Direktfällning Direktfällning innebär att reningsprocessen endast innehåller tre steg: rensgaller, sandfång och kemisk fällning (Kemira, 2003). Eftersom detta är den enda reningen vattnet genomgår eftersträvas en god fosfor och partikelreduktion, vilket kan ske genom tillsats av en fällningskemikalie (Hansen, 1997). De mest effektiva fällningskemikalierna för direktfällning är aluminiumbaserade, men även järnklorider kan användas, oftast i kombination med en organisk polymer (Hansen, 1997). Trots att denna process är relativt enkel så erhålls ett gott reningsresultat vilket kan ses i Tabell 1, det är framförallt endast avskiljningen av kväve som är bristfällig (Kemira, 2003). 8 8

22 Då både investeringskostnaden och driftkostnaden är jämförelsevisvis låg i förhållande till det reningsresultat som åstadkoms, är denna process lämplig att introducera i länder där avloppsvattenrening är bristfällig (Hansen, 1997). En nackdel med processen är den ökade slamproduktionen till följd av att fällningskemikalier tillsätts. Detta slam kan dock användas för att generera biogas genom en rötningsprocess (Hansen, 1997). Tabell 1: Reningsresultat med direktfällning (Kemira, 2003) Förorening Reningsresultat Suspenderad substans > 90 % BOD 75 % Total-fosfor > 90 % Total-kväve 25 % Förfällning Förfällning skiljer sig inte nämnvärt från direktfällning, bortsett från att den endast är ett försteg till den efterföljande biologiska reningen (Hansen, 1997). En skillnad mellan förfällning och direktfällning är dock att en lägre kemikaliedos tillsätts vid förfällning. En anledning till detta kan vara att dosera den mängd kemikalier som ger ett förbehandlat vatten med en lämplig kvot mellan BOD 5 /N/P som helst ska ligga runt 100/5/1 innan det förs in i det biologiska reningssteget (Kemira, 2003). Huvudsyftet med att introducera ett förfällningssteg i en reningsprocess är dock att avlasta den biologiska reningen. Detta sker genom avskiljning av partiklar som annars ger upphov till en högre syreförbrukning i det biologiska steget (Hansen, 1997). Även vid förfällning är det framförallt järn och aluminiumbaserade metallsalter som används som fällningsmedel (Hansen, 1997). 1.5 Fällningsprocessen Fällningskemikalier Utmärkande för fällningskemikalier är att de består av ett salt där dess aktiva del, det vill säga metalljonen, är positivt laddad. Anledningen till detta är att de huvudsakligen negativa laddningarna hos föroreningarna i avloppsvatten därmed kan neutraliseras, vilket gör att flockar bildas genom aggregering (Hansen B, 1997A). Det är också därför fällningskemikalier också kallas flockningsmedel. De fällningskemikalier som anses som de mest kostnadseffektiva för fällning av fosfor och suspenderat material är aluminiumsalter, järnsalter och blandningar av dessa. Exempel på fällningskemikalier som finns på marknaden är aluminiumsulfater (ALS), polyaluminiumkloriden (PAX) och järnklorider (PIX) (Kemira, 2003). Både PAX och PIX kan både innehålla sulfater och klorider som motjoner. Rent teoretiskt kan i princip vilken högt positivt laddad jon som helst användas som fällningsmedel (Hansen B, 1997A). Exempelvis skulle både guld och titan fungera alldeles utmärkt, men detta skulle medföra höga kostnader. Neutraliseringsförmågan hos fällningskemikalier ökar med deras positiva laddning. På grund av detta har det tagits fram aluminiumbaserade fällningskemikalier med laddningar på upp till 9 9

23 +7 vilket gör att de kan tillsättas i betydligt lägre koncentrationer än ett metallsalt med laddningen +3 (Hansen B, 1997A). De högladdade aluminiumsalterna är i regel bättre på att fälla ut partiklar och reducera turbiditeten jämfört med de lägre laddade aluminiumsalterna (Hansen B, 1997A). Å andra sidan är de järn- och aluminiumsalter med lägre laddning mer effektiva på att fälla ut löst ortofosfat i jämförelse med de högladdade jonerna (Kemira, 2003). Valet av fällningsmedel påverkas till viss del också av avloppsvattnets ph-värde. Vid phvärden under ph 5 ger generellt järnsalter bäst resultat medan aluminiumsalter är bäst i spannet ph 5-9 (Kemira, 2003). Då ph-värdet ligger över ph 10 kan även kalk vara lämpligt som fällningskemikalie. Ett problem med kalk är dock att slammängden ökar markant jämfört med de andra metallsalterna (Kemira, 2003). När det gäller aluminiumsalter är det också viktigt att ta hänsyn till att majoriteten av dessa är sura. Detta innebär att när ett aluminiumsalt tillsätts till ett avloppsvatten kommer detta att leda till en viss ph-sänkning. Hur stor ph-sänkningen blir beror på aluminiumsaltets basicitet, det vill säga på hur stor molkvoten OH - /Al 3+ är hos aluminiumsaltet (Kemira, 2003). Detta innebär att aluminiumsalter som saknar basicitet kommer att ge upphov till en större alkalinitetsförbrukning hos det behandlade vattnet jämfört med ett polyaluminiumsalt som innehåller hydroxidjoner. Aluminiumsaltets basicitet påverkar också fällningen av ortofosfat, där en högre basicitet ger en sämre utfällning av ortofosfatjoner (Kemira, 2003). Maximal partikelavskiljning uppnås då den relativa basiciteten, dvs. [mol OH - /3 mol Al], ligger runt 65 % (Kemira, 2003). Då högbasiska polyaluminiumsalt används ökar också risken för överdosering till följd av att laddningsneutralisationen sker inom ett smalare doseringsområde. En överdosering leder till att de tidigare negativa föroreningspartiklarna i vattnet istället för att förlora sin laddning och bli neutrala, istället får en positiv laddning och därmed repellerar varandra på grund av detta. Detta leder till minskad aggregering och kallas för restabilisering av partiklar (Kemira, 2003). Polymerer Två typer av organiska polymerer används frekvent inom vattenrening. Dels katjonpolymerer, vilka är repeterade enheter som innehåller positivt laddade grupper, dels anjonpolymerer som istället innehåller negativt laddade grupper (Kemira, 2003). Anjonpolymerer används ofta i kombination med metallsalt för att skapa starkare och tätare flockar. Detta genom att anjonpolymerens negativt laddade grupper binder till flockarnas positivt laddade säten och därmed kopplar samman dem (Kemira, 2003). Detta leder till starkare och tätare flockar med ökad sedimentationshastighet och lägre vatteninnehåll. Ytterligare en fördel som erhålls är att flockningstiden blir kortare då metallsaltet kombineras med en anjonpolymer. Det är dock viktigt att anjonpolymeren tillsätts efter att metallsaltet fått verka i någon sekund. Om anjonpolymeren istället tillsätts samtidigt som metallsaltet är risken stor att den binder direkt till de aktiva metalljonerna som då inte kommer att kunna reagera med föroreningarna i vattnet (Kemira, 2003). Om en låg metallsaltdosering är önskvärd under förutsättningen att avskiljningen av organiskt bundet kol förblir densamma, kan metallsaltet kombineras med en katjonpolymer. Detta innebär också att vattnet kan renas vid högre ph-värden samtidigt som det slam som bildas blir torrare (Kemira, 2003). Ett problem med katjonpolymerer är dock kostnaden som är högre per positiv laddning jämfört med metallsalten

24 Mixning När ett trevärt järn eller aluminiumsalt tillsätts till ett avloppsvatten reagerar Fe 3+ eller Al 3+ jonerna så starkt med vattnet att det spjälkas i vätejoner och hydroxidjoner enligt följande formel (Kemira, 2003): Al 3+ + H 2 O AlOH 2+ +H + Denna reaktion sker mycket snabbt och redan efter en sekund har majoriteten av alla Al 3+ - joner endera reagerat med föroreningarna i vattnet eller med vattenmolekylerna. Då aluminiumjonerna reagerar med vattenmolekylerna sker detta genom följande mycket snabba reaktioner inom ca 1-7 sekunder (Kemira, 2003): AlOH 2+ + H 2 O Al(OH) 2 + +H + Al(OH) H 2 O Al(OH) 3 +H + I ett avloppsvatten finns många fler vattenmolekyler för aluminiumjonerna att reagera med jämfört med vad det finns ortofosfatjoner och andra föroreningar. Detta innebär att risken är stor att aluminiumjonerna reagerar med vattnet och bildar aluminiumhydroxid istället för att aggregera föroreningarna (Kemira, 2003). På grund av att aluminiumjonerna reagerar snabbt, är det viktigt att fällningskemikalien tillsätts i ett skede där turbulensen i vattnet är så hög som möjligt. Anledningen till detta är att chansen då ökar för aluminiumjonerna att träffa på en förorening att reagera med under den sekunden då aluminiumjonerna fortfarande har en positiv laddning (Kemira, 2003). Även hydroxiderna hjälper till viss del till i avskiljningen av både ortofosfat och små partiklar då dessa kan adsorberas till hydroxidflockarna. Försök har dock visat att detta ger en betydligt lägre avskiljning av föroreningar jämfört med det fall där positiva aluminiumjoner reagerar direkt med föroreningen (Kemira, 2003). Koagulering och flockning Då majoriteten av partiklarna i avloppsvatten har en negativ ytladdning repellerar dessa varandra. Detta innebär att attraktionskrafter som verkar på mycket små avstånd, som till exempel Van der Waals krafter inte är starka nog för att aggregera partiklarna i vattnet (Hansen B, 1997A). Genom att tillsätta positivt laddade metallsalt, kan partiklarnas negativa laddning reduceras. Reduceringen av de negativa laddningarna hos partiklarna är det fenomen som benämns som koagulering (Hansen B, 1997A). I Figur 2 visas hur aluminiumjoner neutraliserar den negativa laddningen hos de kolloida partiklarna. Då partiklarnas negativa laddning neutraliserats sker en destabilisering av partiklarna som leder till att de aggregerar och skapar mikroflockar med hjälp av Van der Waals krafter (Hansen B, 1997A). När sedan en anjonpolymer tillsätts till avloppsvattnet aggregeras mikroflockarna till varandra. Detta 11 11

25 leder till att makroflockar bildas som då lättare kan sedimentera (Hansen B, 1997A). Figur 2: Översiktlig illustration som visar hur koagulering och flockning går till då ett metallsalt kombineras med en anjonpolymer för partikelfällning. (Illustrerad av Petter Olsson, ). Ju högre laddning ett metallsalt har, desto bättre är det på att neutralisera de negativa laddningarna på partiklarnas yta. Detta innebär att ju högre laddning den positiva jonen har, desto lägre koncentration krävs för laddningsneutralisationen. Omgivande faktorer som till exempel ph, temperatur och jonstyrka gör dock att det i praktiken krävs högre koncentrationer av de positiva jonerna än vad teorin låter tro (Hansen B, 1997A). Aluminium och polyaluminiumjoner kan även binda oladdade organiska molekyler genom att den organiska molekylens hydrofila sida vänds mot aluminiumföreningarnas yta och dess hydrofoba del mot vattenfasen (Kemira 2003). Detta resulterar i att aluminiumföreningens yta blir hydrofob och därmed kan den även binda och fälla ut partiklar med hydrofob yta. I Figur 3 illustreras hur denna process går till

26 Figur 3: Bilden visar hur en oladdad organisk molekyl binds till en polyaluminiumjon och därmed ge den hydrofoba egenskaper för att den lättare ska kunna fälla ut andra hydrofoba ämnen. Bild illustrerad utefter figur i boken Om konsten att rena vatten s 123 (Kemira, 2003) (Med tillstånd från Kemira). Om målet med fällningen är att erhålla större flockar med högre styrka det viktigt att tänka på att uppfylla följande tre faktorer (Kemira, 2003): Hög dosering av koagulant Koagulering med låga skjuvkrafter Koagulant med hög basicitet Om skjuvkrafterna blir för höga, det vill säga om vattnets rörelser är för snabba resulterar detta i att flockarna slås sönder och minskar i storlek. 1.6 Sedimentering Sedimentationshastigheten hos partiklar beror till största delen på deras densitet och storlek. I Tabell 2 presenteras typiska sedimentationshastigheter för olika partikelstorlekar i stillastående vatten. I en flockningsprocess där flockarna ska avskiljas genom sedimentation sparas mycket tid om den erhållna flockstorleken och dess densitet optimeras för att förbättra dess sedimentationsegenskaper. I normala fall ökar sedimentationshastigheten med ökande flockstorlek trots att en viss minskning av densiteten sker. Det finns dock ett fenomen som beskrivs nedan som kallas hindrad sedimentering som uppkommer då partikeltätheten blir för hög, vilket leder till en minskad sedimentationshastighet trots att flockarna är stora

27 Tabell 2: Sedimentationshastigheten hos olika partikelstorlekar. De angivna tiderna representerar den tid det tar för partiklarna att sjunka en meter i stillastående vatten vid 25 C. Dessa siffror är dock ungefärliga då de bygger på antagandet att partiklarna följer Stokes lag, vilket inte är riktigt sant då alla partiklar inte är sfäriska. (Med tillstånd från Kemira 2003). Partikeldiameter Sedimentationstid (ρ=1.05 g/cm 3 ) Sedimentationstid (ρ=1.10 g/cm 3 ) Sedimentationstid (ρ=2.65 g/cm 3 ) Total partikelyta (ρ=m 2 /cm 3 ) 1 mm 37 s 18 s 1 s mm 1 h 31 min 2 min µm 4 dagar 2 dagar 3 h µm 1 år 0.6 år 13 dagar µm 117 år 58 år 3.5 år 60 Eftersom vattnets viskositet ökar då temperaturen sjunker, medför detta att sedimentationshastigheten sänks. Vid 5 C ökar sedimentationstiden med uppemot 50 % jämfört med de angivna hastigheterna i Tabell 2 (Kemira, 2003). Diskret sedimentering Granulära partiklar, det vill säga de lite större och tyngre partiklarna som till exempel sandkorn sedimenterar i regel var för sig och det med en konstant sedimentationshastighet under lugna förhållanden (WTHa, 1995). Denna typ av sedimentering benämns som diskret sedimentering. Flockulent sedimentering Mindre partiklar som flockas i större eller mindre utsträckning kommer att erhålla olika storlek och därmed kommer deras sedimentationshastighet att variera. Vid lägre partikelkoncentrationer kommer sedimentationshastigheten att öka då flockstorleken ökar till följd av kollisioner med andra partiklar (WTHa, 1995). Detta fenomen kallas flockulent sedimentering. Hindrad sedimentering Då förekomsten av flockar och partiklar är hög måste interpartikulära krafter tas i beaktande. Detta då flockarna och partiklarna riskerar att klumpas ihop till ett lager. Till en början är både flockningen och sedimenteringen bra vid högre partikelkoncentrationer. Men då partikelkoncentrationen blir tillräckligt hög för att börja klumpas ihop till ett lager kommer en gränsyta att skapas mellan den sjunkande partikelmassan och vätskans klarfas (WTHa, 1995). Detta leder till en minskande sedimentationstid och benämns hindrad sedimentering och sker i regel bara då partikelkoncentrationen ligger över 500 mg/l (WTHa, 1995)

28 2. Södra Sandby reningsverk Figur 4: Flygbild över Södra Sandbys reningsverk, Foto: VASYD (Med tillstånd från VASYD, 2011). Reningsverket i Södra Sandby som visas i Figur 4 tar emot och behandlar avloppsvatten från Södra Sandby och Flyingeby och är dimensionerat för 7900 p.e. Transporten av dagvatten och spillvatten sker i separata ledningssystem, där transporten av spillvattnet sker med hjälp av fyra pumpstationer (VA SYD, 2011). I Tabell 3 presenteras vattenflödet in till reningsverket. Tabell 3: Vattenflöde in till Södra Sandbys reningsverk 2010 (VA SYD, 2011). Typ av vatten Flöde (m 3 /år) Spillvatten Dagvatten 0 Tillskottsvatten Total mängd inkommande vatten Precis som alla andra reningsverk i Sverige har Södra Sandby reningsverk utsläppsgränser för några av de föroreningar som finns i avloppsvattnet. Dessa föroreningar presenteras i Tabell 4 tillsammans med gränsvärden och utsläppsmedelvärden för verksamhetsåret 2010 (VA SYD, 2011). Tabell 4: Inkommande och utgående koncentration samt tillåtet gränsvärde för olika föroreningar vid Södra Sandbys reningsverk under 2010 (VA SYD, 2011). Parameter Inkommande halter (medelvärde (mg/l)) Utgående halt (medelvärde (mg/l)) Tillåten koncentration i utgående vatten (mg/l) BOD P-tot NH 4 -N N-tot 17 COD-Cr 31 TOC 7.8 Syremättnadsgrad > 62 % 15 15

29 Vid reningsverket genomförs mekanisk, biologisk och kemisk rening. Den mekaniska reningen består av rensgaller, sandfång och försedimentering. Även förfällning kan appliceras, men denna används i normala fall inte (VA SYD, 2011). Den biologiska reningen består av en aktivslamprocess indelad i fyra zoner som var och en kan drivas luftad eller oluftad. Därefter följer ett mellansedimenteringssteg innan den kemiska reningen tar vid. Den kemiska reningen inleds i en flockningsbassäng där järnklorid tillsätts för fällning av framförallt fosfor (VA SYD, 2011). Därefter leds vattnet vidare till eftersedimenteringsbassängerna där kemslammet avskiljs och förs tillbaks till försedimenteringen där det blandas med bioslam och primärslam (VA SYD, 2011). Det sista steget i reningsverket består av polering i tre seriekopplade dammar med mellanliggande luftningstrappor. Slutligen leds det renade vattnet ut i Sularpsbäcken (VA SYD, 2011). Det blandade slammet från försedimenteringssteget förtjockas gravimetriskt innan det förs in i en rötkammare. Efter rötningen centrifugeras slammet innan det läggs på verkets slamlager i väntan på transport till den externa slamplattan i Värpinge (VA SYD, 2011). Vattnet från förtjockning, rötning och centrifugering förs tillbaka till reningsverkets inlopp (VA SYD, 2011). Efter att slammet förvarats i minst 6 månader för att hygieniseras, blandas det upp med sand och strukturmaterial för att sedan spridas på åkrar där framförallt fodergrödor, energigrödor och spannmålsväxter odlas (VA SYD 2011)

Kemisk fällning av avloppsvatten kan

Kemisk fällning av avloppsvatten kan Grundkurs i Kemisk fällning 3 AVLOPPSVATTENRENING I de föregående två artiklarna har vi i all enkelhet berättat om kemisk fällning och hur den tillämpas för att rena dricksvatten. Nu går vi in på hur avloppsvatten

Läs mer

Välkommen på Utbildningsdag. Processer i avloppsreningsverk

Välkommen på Utbildningsdag. Processer i avloppsreningsverk Välkommen på Utbildningsdag Processer i avloppsreningsverk Program 09:00 11.20 Avloppsvattnets karaktär och sammansättning Transport av avloppsvatten De olika typerna av avloppsreningsverk Mekanisk rening

Läs mer

Kombinera skivfilter med kemisk fällning. Pille Kängsepp

Kombinera skivfilter med kemisk fällning. Pille Kängsepp Kombinera skivfilter med kemisk fällning Pille Kängsepp Hydrotech filtreringslösningar Skivfilter 1996 Trumfilter 1990 Beskrivning: Diameter (m): Sålda filter: Upp till 24 skivor Max 134.4 m 2 filterarea

Läs mer

VAD ÄR AVLOPPSVATTEN? VARFÖR BEHÖVS AVLOPPSVATTENRENING? AVLOPPSRENINGSVERKETS DELAR

VAD ÄR AVLOPPSVATTEN? VARFÖR BEHÖVS AVLOPPSVATTENRENING? AVLOPPSRENINGSVERKETS DELAR VAD ÄR AVLOPPSVATTEN? VARFÖR BEHÖVS AVLOPPSVATTENRENING? AVLOPPSRENINGSVERKETS DELAR VAD ÄR AVLOPPSVATTEN VAD ÄR AVLOPPSVATTEN SPILLVATTEN Förorenat vatten från hushåll, industrier, serviceanläggningar

Läs mer

Optimering av kemikaliedosering i Rosviks avloppsverk

Optimering av kemikaliedosering i Rosviks avloppsverk EXAMENSARBETE 2004:323 CIV Optimering av kemikaliedosering i Rosviks avloppsverk FREDRIK BLADFORS CIVILINGENJÖRSPROGRAMMET Luleå tekniska universitet Institutionen för Samhällsbyggnad Avdelningen för VA-teknik

Läs mer

6220 Nynashamn Sida 3. Nynäshamns avloppsreningsverk

6220 Nynashamn Sida 3. Nynäshamns avloppsreningsverk 6220 Nynashamn 03-02-13 17.01 Sida 3 Nynäshamns avloppsreningsverk 6220 Nynashamn 03-02-13 17.01 Sida 4 I början av 1900-talet släpptes avloppsvattnet rakt ut i naturen. I takt med städernas snabba tillväxt

Läs mer

Informationsmöte på Margretelunds reningsverk. Mikael Algvere AOVA chef

Informationsmöte på Margretelunds reningsverk. Mikael Algvere AOVA chef Informationsmöte på Margretelunds reningsverk. 20140910 Mikael Algvere AOVA chef Vad är ett reningsverk? Reningsverk är en biokemisk processindustri, som renar vårt spillvatten från biologiskt material,

Läs mer

Hur reningsverket fungerar

Hur reningsverket fungerar Kommunalt avlopp Det vatten du använder hemma, exempelvis när du duschar eller spolar på toaletten, släpps ut i ett gemensamt avloppssystem där det sen leds vidare till reningsverket. Hit leds även processvatten

Läs mer

Tillfällig magasinering av flödestoppar i kombination med direktfällning minskar utsläppen. Maria Mases processingenjör VA SYD

Tillfällig magasinering av flödestoppar i kombination med direktfällning minskar utsläppen. Maria Mases processingenjör VA SYD Tillfällig magasinering av flödestoppar i kombination med direktfällning minskar utsläppen Maria Mases processingenjör VA SYD Upplägg Sjölunda avloppsreningsverk Bakgrund Arbetsprocess för att hitta lösning

Läs mer

Årsrapport för mindre avloppsreningsverk

Årsrapport för mindre avloppsreningsverk Årsrapport för mindre avloppsreningsverk 2013 Haga Huddunge Runhällen Årsrapport för mindre avloppsreningsverk i Heby kommun I Heby Kommun finns fyra stycken mindre avloppsreningsverk (Haga, Huddunge,

Läs mer

Kemisk och mekanisk rening av bräddvatten

Kemisk och mekanisk rening av bräddvatten Avdelningen för Vattenförsörjnings- och Avloppsteknik Kemisk och mekanisk rening av bräddvatten Examensarbete av: Lovisa Larsson Oktober 2004 Avdelningen för Vattenförsörjnings- och Avloppsteknik Lunds

Läs mer

Actiflo. - för bibehållen sjövattenmiljö

Actiflo. - för bibehållen sjövattenmiljö Actiflo - för bibehållen sjövattenmiljö BRÄDDVATTENRENING I Karlskoga utgörs hela 20 procent av spillvattennätet av kombinerade ledningar. Det vill säga att spillvatten (avlopp) och dagvatten (regnvatten

Läs mer

Vatten och avlopp i Uppsala. Av: Adrian, Johan och Lukas

Vatten och avlopp i Uppsala. Av: Adrian, Johan och Lukas Vatten och avlopp i Uppsala Av: Adrian, Johan och Lukas Hela världens kretslopp Alla jordens hav, sjöar eller vattendrag är ett slags vatten förråd som förvarar vattnet om det inte är i någon annan form.

Läs mer

Ytvattenrening

Ytvattenrening Ytvattenrening 2010-09-14 1 2010-09-14 2 2010-09-14 2010-09-14 4 Mikrosil Ofta används en mikrosil på inkommande vatten för att avskilja grövre partiklar så som alger, kvistar samt fisk. 2010-09-14 Läsanvisning:

Läs mer

KARLSKOGA AVLOPPSRENINGSVERK

KARLSKOGA AVLOPPSRENINGSVERK KARLSKOGA AVLOPPSRENINGSVERK Välkommen till Karlskoga avloppsreningsverk. Ett reningsverk som ingår i Karlskoga Miljö AB. Grunderna till dagens reningsverk lades vid bygget av det första reningsverket

Läs mer

Metallinnehåll i vattenverksslam

Metallinnehåll i vattenverksslam R nr 25, okt 1997 Metallinnehåll i vattenverksslam Johanna Blomberg, Stockholm Vatten AB Metallinnehåll i vattenverksslam Johanna Blomberg, Stockholm Vatten AB Rapport Nr 25, oktober 1997 1 INLEDNING Om

Läs mer

ÅSEDA AVLOPPSRENINGSVERK

ÅSEDA AVLOPPSRENINGSVERK ÅSEDA AVLOPPSRENINGSVERK Uppvidinge kommun Samrådsredogörelse Treatcon AB Kalmar den 11:e mars 2011 Uppdrag: Åseda avloppsreningsverk Samrådsredogörelse Datum: 2011-03-11 Uppdragsgivare: Uppvidinge kommun

Läs mer

Inledning. Humusavskiljning med sandfilter. Humusavskiljning med sandfilter. -Focus på kontinuerliga kontaktfilter för bättre COD-reduktion

Inledning. Humusavskiljning med sandfilter. Humusavskiljning med sandfilter. -Focus på kontinuerliga kontaktfilter för bättre COD-reduktion Humusavskiljning med sandfilter Mattias Feldthusen Tel: +46 (0) 31 748 54 14 Mobile: +46 (0)70 420 21 56 mfeldthusen@nordicwater.com Nordic Water Products AB Sisjö Kullegata 6 421 32 Västra Frölunda Sverige

Läs mer

Utsläppsvillkor och funktionellt krav på reningsverket och ledningsnätet.

Utsläppsvillkor och funktionellt krav på reningsverket och ledningsnätet. Bakgrund Hornasjöns Samfällighetsförening planerar för 37 fastigheter anslutna med ledningsnät till ett gemensamt reningsverk. Utsläppsvillkor och funktionellt krav på reningsverket och ledningsnätet.

Läs mer

Kemisk fosforrening på Ryaverket en utvärdering med hjälp av faktorförsök på två nivåer

Kemisk fosforrening på Ryaverket en utvärdering med hjälp av faktorförsök på två nivåer Kemisk fosforrening på Ryaverket en utvärdering med hjälp av faktorförsök på två nivåer Examensarbete inom civilingenjörsprogammet Väg- och vattenbyggnad lisa ahlström magnus persson Institutionen för

Läs mer

RENT VATTEN KRÄVER MYCKET RENA LÖSNINGAR. Water Treatment Chemicals

RENT VATTEN KRÄVER MYCKET RENA LÖSNINGAR. Water Treatment Chemicals RENT VATTEN KRÄVER MYCKET RENA LÖSNINGAR Water Treatment Chemicals Rent vatten kräver mycket rena lösningar Även avloppsvatten måste uppfylla stränga normer. På Grönland känner man till minst tio olika

Läs mer

SÄTTERSVIKENS AVLOPPSRENINGSVERK. Hammarö kommun

SÄTTERSVIKENS AVLOPPSRENINGSVERK. Hammarö kommun Hammarö kommun Processbeskrivning Sättersvikens ARV 2006-10-15 I SÄTTERSVIKENS AVLOPPSRENINGSVERK Hammarö kommun Process Beskrivning Life projektet LOCAL RECYCLING Hammarö kommun Processbeskrivning Sättersvikens

Läs mer

KÄLLBY AVLOPPSRENINGSVERK

KÄLLBY AVLOPPSRENINGSVERK KÄLLBY AVLOPPSRENINGSVERK 1 Avloppsnätet Avloppsnätet i Lund är till största delen, 90 %, byggt som duplikatsystem. Det betyder att spillvatten och dagvatten avleds i skilda ledningar. De återstående tio

Läs mer

Miljörapport. Kvicksund 2014.

Miljörapport. Kvicksund 2014. Miljörapport. Kvicksund 2014. Innehåll 1 Grunddel Flintavik... 2 2 Verksamhetsbeskrivning Flintavik... 3 2.1 Organisation... 3 2.2 Verksamhetsområde... 3 2.3 Avloppsvattenrening... 3 2.4 Kemikaliehantering...

Läs mer

Utvärdering av reningsfunktionen hos Uponor Clean Easy

Utvärdering av reningsfunktionen hos Uponor Clean Easy Utvärdering av reningsfunktionen hos Uponor Clean Easy Ett projekt utfört på uppdrag av Uponor Infrastruktur Ola Palm 2009-06-04 2009 Uppdragsgivaren har rätt att fritt förfoga över materialet. 2009 Uppdragsgivaren

Läs mer

Uponor minireningsverk för enskilt avlopp: 5pe, 10pe och 15pe.

Uponor minireningsverk för enskilt avlopp: 5pe, 10pe och 15pe. U P O N O R I N F R A S T R U K T U R U P O N O R M I N I R E N I N G S V E R K P R O D U K T FA K TA 1-0 6 Uponor minireningsverk för enskilt avlopp: 5pe, 10pe och 15pe. Enskilda avlopp - problem och

Läs mer

Entreprenadlösningar i större projekt

Entreprenadlösningar i större projekt Entreprenadlösningar i större projekt Johan Magnusson NCC Teknik NCC Construction Sverige AB 12-01 1 Länsvattenrening och annan vattenrening Etablerad teknik finns för: Dricksvatten Avloppsvatten Lakvatten

Läs mer

- Green Rock AquaStone - sten med fällningskemikalie (Patentsökt)

- Green Rock AquaStone - sten med fällningskemikalie (Patentsökt) - Green Rock AquaStone - sten med fällningskemikalie (Patentsökt) Genom mekaniska och biologiska reningsmetoder kan bara en liten del av näringsämnena i löst form, (varav fosforn är störst) avskiljas ur

Läs mer

Vatten och luft. Åk

Vatten och luft. Åk Vatten och luft Åk 4 2016 Olika sorters vatten Saltvatten Det finns mest saltvatten på vår jord. Saltvatten finns i våra stora hav. Sötvatten Sötvatten finns i sjöar, åar, bäckar och myrar. Vi dricker

Läs mer

Läkemedel i avloppsvatten. Marinette Hagman, NSVA, Sweden Water Research och Michael Cimbritz, LTH

Läkemedel i avloppsvatten. Marinette Hagman, NSVA, Sweden Water Research och Michael Cimbritz, LTH Läkemedel i avloppsvatten Marinette Hagman, NSVA, Sweden Water Research och Michael Cimbritz, LTH Rester av läkemedel i avloppsvatten Svårnedbrytbara Oftast vattenlösliga Kan vara biologiskt aktiva Kan

Läs mer

Årsrapport för mindre avloppsreningsverk

Årsrapport för mindre avloppsreningsverk Årsrapport för mindre avloppsreningsverk 2014 Haga Huddunge Morgongåva Runhällen Årsrapport för mindre avloppsreningsverk i Heby kommun I Heby Kommun finns fyra stycken mindre avloppsreningsverk (Haga,

Läs mer

Bengt Hansen & Henrik Olsson. Högflödesrening som en åtgärd att möta strängare krav?

Bengt Hansen & Henrik Olsson. Högflödesrening som en åtgärd att möta strängare krav? Bengt Hansen & Henrik Olsson Högflödesrening som en åtgärd att möta strängare krav? Upplägg Vad menas med högflödesvatten EU s direktiv och regler som påverkar högflödesrening Högflödesrening Bengt Hansen

Läs mer

Avloppsvattenbehandling för Klövsjö, Katrina och Storhognaområdet

Avloppsvattenbehandling för Klövsjö, Katrina och Storhognaområdet Avloppsvattenbehandling för Klövsjö, Katrina och Storhognaområdet Avloppsreningsanläggning Avloppsreningsanläggningen består av processanläggningen i Utanbergsvallarna samt infiltrationsanläggningen i

Läs mer

1. LIA Mjölby Kommun. Adam Eriksson Vatten- och miljöteknik Hallsberg VM13H

1. LIA Mjölby Kommun. Adam Eriksson Vatten- och miljöteknik Hallsberg VM13H 1. LIA Mjölby Kommun Adam Eriksson Vatten- och miljöteknik Hallsberg VM13H Innehållsförteckning LIA Mjölby Kommun... 1 1.Bakgrund... 3 1.1.Syfte... 3 2.Reningsverkets process... 3 3.Arbetsuppgifter...

Läs mer

VA-forskning och VA-utbildning i södra Sverige

VA-forskning och VA-utbildning i södra Sverige VA-forskning och VA-utbildning i södra Sverige Jes la Cour Jansen Överblick Va-forskning inom VA-teknik bedrivs på flera institutioner på Lunds Tekniska Högskola och på flera andra högskolor och universitet

Läs mer

Och vad händer sedan?

Och vad händer sedan? Och vad händer sedan? I STORT SETT ALLA MÄNNISKOR I SVERIGE SOM BOR i en tätort är anslutna till ett vatten- och avloppsledningsnät. Men så har det inte alltid varit. Visserligen fanns vattenledningar

Läs mer

Chemimix VRU, framtidens mobila reningsanläggning levererad av Chemical Equipment AB för olika typer av förorenade vatten.

Chemimix VRU, framtidens mobila reningsanläggning levererad av Chemical Equipment AB för olika typer av förorenade vatten. Chemimix VRU, framtidens mobila reningsanläggning levererad av Chemical Equipment AB för olika typer av förorenade vatten. Allmänt Chemical Equipment levererar alla typer av reningsutrustningar och hela

Läs mer

Berg avloppsreningsverk Årsrapport 2012

Berg avloppsreningsverk Årsrapport 2012 Berg avloppsreningsverk Tekniska förvaltningen, VA-avdelningen 0780-50-021 Innehållsförteckning 1. Verksamhetsbeskrivning... 3 1.1 Lokalisering och recipient... 3 1.2 Verksamhetens organisation och ansvarsfördelning...

Läs mer

KILENE AVLOPPSRENINGSVERK. Hammarö kommun

KILENE AVLOPPSRENINGSVERK. Hammarö kommun Hammarö kommun Processbeskrivning KILENE AVLOPPSRENINGSVERK Hammarö kommun Process Beskrivning Life projektet LOCAL RECYCLING Hammarö kommun Processbeskrivning Sättersvikens ARV 2007-01-15 I Innehållsförteckning

Läs mer

PROCESS EL ENTREPRENAD INSTALLATION - AUTOMATION. Ytvattenrening

PROCESS EL ENTREPRENAD INSTALLATION - AUTOMATION. Ytvattenrening Ytvattenrening 1 2 Förbehandling Ofta används en förbehandling på inkommande vatten för att avskilja grövre partiklar så som alger, kvistar samt fisk. En teknisk lösning på detta är grovgaller samt silar.

Läs mer

Lärande i arbete

Lärande i arbete Lärande i arbete 20140303-20140509 En rapport av Karl-Henrik Karlsson 2 Innehållsförteckning s4... Sammanfattning s5...skebäcksverket s6...skebäcksverket - Örebros reningsverk s6... Avloppets väg s7...

Läs mer

Pilotförsök Linje 1 MembranBioReaktor

Pilotförsök Linje 1 MembranBioReaktor Pilotförsök Linje 1 MembranBioReaktor Hammarby Sjöstadsverk Stockholms framtida avloppsrening Projektrapport Maj 2014 Bakgrund Stockholms framtida avloppsrening Stockholm växer med cirka 1,5 procent per

Läs mer

Magnus Arnell, RISE Erik Lindblom, Stockholm Vatten och Avfall

Magnus Arnell, RISE Erik Lindblom, Stockholm Vatten och Avfall Da rfo r anva nder vi processmodeller praktisk anva ndning och exempel pa resultat Magnus Arnell, RISE Erik Lindblom, Stockholm Vatten och Avfall Linköpings avloppsreningsverk COD / N / P GHG Hälsa Resursanv.

Läs mer

Små avloppsanläggningar

Små avloppsanläggningar Information från Miljö- och byggenheten Små avloppsanläggningar Slamavskiljare Enligt miljöbalken får inte avloppsvatten som kommer från hushåll och som inte genomgått längre gående rening än slamavskiljning

Läs mer

Statens naturvårdsverks författningssamling

Statens naturvårdsverks författningssamling Statens naturvårdsverks författningssamling Miljöskydd ISSN 0347-5301 Kungörelse med föreskrifter om rening av avloppsvatten från tätbebyggelse; beslutad den 30 maj 1994. SNFS 1994:7 MS:75 Utkom från trycket

Läs mer

KONSTEN ATT RENA VATTEN ELLEN LINDMAN, 12TEC

KONSTEN ATT RENA VATTEN ELLEN LINDMAN, 12TEC FÖRSÄTTSBLAD KONSTEN ATT RENA VATTEN 17/10-12 ELLEN LINDMAN, 12TEC Innehållsförteckning KONSTEN ATT RENA VATTEN MÅL/SYFTE HUR DET GÅR TILL HISTORIA & FRAMTID VATTENRENING & MILJÖ METOD GENOMFÖRANDE REFERENSER

Läs mer

Utvärdering av flotationsanläggningen vid Sjölunda avloppsreningsverk i Malmö

Utvärdering av flotationsanläggningen vid Sjölunda avloppsreningsverk i Malmö Utvärdering av flotationsanläggningen vid Sjölunda avloppsreningsverk i Malmö Evaluation of the Dissolved Air Flotation unit at Sjölunda waste water tretment plant in Malmö Av Therese Johansson Vattenförsörjning-

Läs mer

Rena fakta om Gryaab och ditt avloppsvatten.

Rena fakta om Gryaab och ditt avloppsvatten. Rena fakta om Gryaab och ditt avloppsvatten. Foto: Bert Leandersson Ryaverket är ett av Nordens största reningsverk. Här renas cirka 4 000 liter vatten per sekund. Illustration: Anders Lyon Du spolar,

Läs mer

Förord Joakim Säll

Förord Joakim Säll Förord Min LIA har jag tillbringat på Hässleholms reningsverk. Tiden här har varit mycket trevlig och lärorik. Jag har blivit väldigt bra mottagen och fått stort förtroende av arbetskamrater och chefer.

Läs mer

Vattenreningsteknik 3p (5p)

Vattenreningsteknik 3p (5p) Välkomna till kursen Vattenreningsteknik 3p (5p) Bengt Carlsson 1 Mekanisk behandling Sand Galler fång Sed. 4 2 Biologisk rening Aktivslamprocess Sed. Slambehandling Avvattning Slam 3 Kemisk rening Fällningskemikalier

Läs mer

Skandinavisk Ecotech. Carl-Johan Larm carl-johan.larm@ecot.se vvd Produktchef 070-255 87 64

Skandinavisk Ecotech. Carl-Johan Larm carl-johan.larm@ecot.se vvd Produktchef 070-255 87 64 Skandinavisk Ecotech Carl-Johan Larm carl-johan.larm@ecot.se vvd Produktchef 070-255 87 64 Om Ecotech Systemutvecklare med över 20 års erfarenhet Ansvarar för hela produktkedjan - Utveckling - Produktion

Läs mer

CHECKLISTA - Fordonstvättar

CHECKLISTA - Fordonstvättar BILAGA 2 CHECKLISTA - Fordonstvättar 1. ALLMÄNNA UPPGIFTER Företagets/anläggningens namn Org nr Postadress Post nr, ort Besöksadress Fastighetsbeteckning Kontaktperson Tel nr Fax nr Kommun Besöksdatum

Läs mer

BDT-vatten Bad-, Disk- och Tvättvatten från hushåll, även kallat gråvatten och BDT-avlopp.

BDT-vatten Bad-, Disk- och Tvättvatten från hushåll, även kallat gråvatten och BDT-avlopp. Ordlista avlopp Aktivt slam Biologiskt slam för rening av avloppsvatten bestående av bakterier och andra mikroorganismer som bryter ned avloppsvattnets innehåll av organiskt material vid tillgång på syre.

Läs mer

Minireningsverk. från. För ett grönare tänkande

Minireningsverk. från. För ett grönare tänkande Minireningsverk från För ett grönare tänkande Robust konstruktion inga rörliga delar, inga mekaniska pumpar, ingen elektronik nere i själva tanken. Minska miljöbelastningen med egen slamtömning. Finansiering

Läs mer

Examensarbete Näs avloppsreningsverk

Examensarbete Näs avloppsreningsverk Examensarbete Näs avloppsreningsverk Hydraulisk belastning, kemikaliedosering och flödestrend. Linda Wanhatalo Vatten- och Miljöteknik, Yrkeshögskolan Hallsberg Handledare Ulrika Carlsson, MittSverige

Läs mer

16-710 00 Sammanställning vatten År 2014 Bilaga 1a Alberga reningsverk Parameter Resultat enhet Dimensionerat för Antal anslutna Antal pe ekv.(bod7) Producerad volym renvatten Debiterad volym vatten

Läs mer

Sammanställning vatten År 2015 Bilaga 1a Alberga reningsverk Parameter Resultat enhet Dimensionerat för Antal anslutna Antal pe ekv.(bod7) Producerad volym renvatten Debiterad volym vatten 800 pe ekv.

Läs mer

Reningsverk BioPlus SORTIMENT ÖVERSIKT

Reningsverk BioPlus SORTIMENT ÖVERSIKT SORTIMENT ÖVERSIKT Reningsverk för små hus, villor och flerbostadsområden. För permanent och fritidsboende Parametrar Modellbeteckning BioPlus-5 BioPlus-9 BioPlus-15 Befolkningsekvivalent (PE) PE 5 9

Läs mer

Ett rent hav vår framtid

Ett rent hav vår framtid Ett rent hav vår framtid Marint affald - trusler, udfordringer og løsninger Midtvejskonference Ren Kustlinje Frederikshavn 12-13 september 2017 Højdepunkter i resultaterne fra det igangværende projekt

Läs mer

KEMISK RENING EGENKONTROLL PROVTAGNINGSMETODIK

KEMISK RENING EGENKONTROLL PROVTAGNINGSMETODIK KEMISK RENING EGENKONTROLL PROVTAGNINGSMETODIK Förfällning Utfällt material avskiljs i försedimenteringen. Ger stora mängder organiskt material till rötning Kan ge näringsbrist i biosteget Simultanfällning

Läs mer

4,3 6,4 9,5 11,9 13,3 12,8 9,2 8,9 4,8 5,8 8,3 5,2 7,5 10,0 12,4 15,0 14,9 9,8 9,1 5,2 7,5 8,1 4,6 6,6 9,9 11,8 13,4 13,4 9,3 8,1 4,8 6,3 8,4 7,1 9,2

4,3 6,4 9,5 11,9 13,3 12,8 9,2 8,9 4,8 5,8 8,3 5,2 7,5 10,0 12,4 15,0 14,9 9,8 9,1 5,2 7,5 8,1 4,6 6,6 9,9 11,8 13,4 13,4 9,3 8,1 4,8 6,3 8,4 7,1 9,2 Temperatur ( C) En låg temperatur är i de flesta fall det bästa för livet i ett vattendrag. I ett kallt vatten blir det mer syre. Beskuggning av vattendraget är det viktigaste för att hålla nere temperaturen.

Läs mer

Avancerade reningskomponenter för dagvattensystem innovativ dagvattenhantering

Avancerade reningskomponenter för dagvattensystem innovativ dagvattenhantering Föroreningsplym från utsläpp av orenat dagvatten Avancerade reningskomponenter för dagvattensystem innovativ dagvattenhantering Reaktiva filtermaterial, membranfiltrering, kemisk fällning och sedimenteringsraster

Läs mer

Entreprenörsfredag Borås 2015-03-20

Entreprenörsfredag Borås 2015-03-20 Vad händer i ett Avloppsreningsverk med aktivt slam? Agenda: När skall man välja ett minireningsverk Vem köper avloppsreningsverk Hur fungerar en aktiv slamanläggning Vad kan hända i driften När är det

Läs mer

BIO P PÅ KÄLLBY ARV. Elin Ossiansson Processingenjör

BIO P PÅ KÄLLBY ARV. Elin Ossiansson Processingenjör BIO P PÅ KÄLLBY ARV Elin Ossiansson Processingenjör KÄLLBY ARV TOTALFOSFOR,3 mg/l enl tillstånd Tidigare problem p.g.a. dammar Håller ca,25 mg/l ut till dammarna Styr FeCl3 dosering i efterfällning med

Läs mer

Varför byggde vi skivfilter och MBBR?

Varför byggde vi skivfilter och MBBR? Varför byggde vi skivfilter och MBBR? Disc filters Secondary settlers MBBR Upplägg 35 kompakta år på Ryaverket Vad hade vi för alternativ? Varför valde vi MBBR och skivfilter? Kompakt byggande 1972-2010

Läs mer

Exempel på olika avloppsanordningar

Exempel på olika avloppsanordningar Exempel på olika avloppsanordningar De tekniska lösningar som beskrivs nedan ska kombineras för att fullgod rening ska uppnås. På vilket sätt som de kan kombineras anges i texten. Det går även bra att

Läs mer

KÄLLBY AVLOPPSRENINGSVERK

KÄLLBY AVLOPPSRENINGSVERK KÄLLBY AVLOPPSRENINGSVERK 1 Välkommen till Källby avloppsreningsverk! Ett stort reningsverk Källby avloppsreningsverk ligger i södra Lund och tar emot vatten motsvarande 110 fulla badkar per minut (350

Läs mer

Bio P nätverket Var kom det ifrån och vart är vi på väg?

Bio P nätverket Var kom det ifrån och vart är vi på väg? Bio P nätverket Var kom det ifrån och vart är vi på väg? Bio P var kom det ifrån? Lite historik om Bio P i full skala Första publikation om Bio P i full skala 1967: Phosphate Removal through Municipal

Läs mer

Reningsverk BioPlus SORTIMENT ÖVERSIKT

Reningsverk BioPlus SORTIMENT ÖVERSIKT SORTIMENT ÖVERSIKT Reningsverk för små hus, villor och flerbostadsområden. För permanent och fritidsboende Parametrar Modellbeteckning BioPlus-5 BioPlus-9 BioPlus-15 Befolkningsekvivalent (PE) PE 5 9

Läs mer

Lösningar för att möta nya krav på reningsverk ÄR MBR teknik lösningen på de ny kraven?

Lösningar för att möta nya krav på reningsverk ÄR MBR teknik lösningen på de ny kraven? Lösningar för att möta nya krav på reningsverk ÄR MBR teknik lösningen på de ny kraven? Jonas Grundestam Teknikansvarig Process Stockholms Framtida Avloppsrening Marie Berg Processingenjör Himmerfjärdsverket,

Läs mer

FERMAWAY vattenreningssystem - i korthet -

FERMAWAY vattenreningssystem - i korthet - FERMAWAY 1 2 FERMAWAY vattenreningssystem - i korthet - Renar vatten miljövänligt, utan tillsatta kemikalier, genom en kombination av: Intensivluftning Kemisk oxidation med naturligt syre Biologisk oxidation

Läs mer

Avlopp och Kretslopp. Driftavtal för att säkerställa funktionen hos små reningsverk. Hanna Karlsen Topas Vatten, Peter Johansson Topas Vatten

Avlopp och Kretslopp. Driftavtal för att säkerställa funktionen hos små reningsverk. Hanna Karlsen Topas Vatten, Peter Johansson Topas Vatten Avlopp och Kretslopp Driftavtal för att säkerställa funktionen hos små reningsverk Hanna Karlsen Topas Vatten, Peter Johansson Topas Vatten Antal sidor : 13 Revision 2: 2010 HK Copyright Topas Vatten AB

Läs mer

Lärarhandledning för arbetet med avlopp, för elever i år 4 6. Avloppsvatten

Lärarhandledning för arbetet med avlopp, för elever i år 4 6. Avloppsvatten Lärarhandledning för arbetet med avlopp, för elever i år 4 6 Avloppsvatten Varför gör vi ett material om vatten? Vatten- och avloppsavdelningen i Enköpings kommun arbetar för att vattnet som vi använder

Läs mer

Miljöpåverkan från avloppsrening

Miljöpåverkan från avloppsrening Miljöpåverkan från avloppsrening Erik Levlin Kgl. Tekniska Högskolan, Inst. Mark och Vattenteknik, Stockholm, Sverige Miljöpåverkan från avloppsrening Övergödning från utsläpp av näringsämnena Kväve och

Läs mer

drift av små, privata avloppsreningverk

drift av små, privata avloppsreningverk drift av små, privata avloppsreningverk Agenda: Vad kan hända i en aktivslamanläggning Verksamhetsmodell för driftavtal Driftavtal Vs. Serviceavtal Driftavtal verksamhetsmodell Felavhjälpning 2:a linjens

Läs mer

KEMISK FÄLLNING AV DAGVATTEN

KEMISK FÄLLNING AV DAGVATTEN KEMISK FÄLLNING AV DAGVATTEN Rening med hög verkningsgrad #NAM19 Sundsvall, 7 februari Fredrik Nyström fredrik.nystrom@ltu.se FÖRORENINGAR, PARTIKLAR OCH RENING Partiklar viktiga transportörer av föroreningar

Läs mer

Långtgående reningskrav vid återanvändning av renat avloppsvatten till dricksvatten. Barriärtänkande kring organiska substanser

Långtgående reningskrav vid återanvändning av renat avloppsvatten till dricksvatten. Barriärtänkande kring organiska substanser Långtgående reningskrav vid återanvändning av renat avloppsvatten till dricksvatten. Barriärtänkande kring organiska substanser Lena Flyborg Teknisk vattenresurslära, LTH Oplanerad återanvändning av renat

Läs mer

Välkommen till Torekovs reningsverk

Välkommen till Torekovs reningsverk Torekovsverket Välkommen till Torekovs reningsverk Torekovs avloppsreningsverk ligger i södra delen av Torekovs tätort och togs i drift på 1960-talet. Det byggdes senast ut 2001. Verket tar idag hand om

Läs mer

Kompletterande VA-utredning till MKB Åviken 1:1 Askersund

Kompletterande VA-utredning till MKB Åviken 1:1 Askersund Kompletterande VA-utredning till MKB Åviken 1:1 Askersund Bakgrund Denna VA utredning kompletterar den MKB som är framtagen för Detaljplan Åviken 1:1. Nedan beskrivna utredningar/förslag för dricksvatten

Läs mer

Exempel på olika avloppsanordningar

Exempel på olika avloppsanordningar Exempel på olika avloppsanordningar Avloppsanordningarna beskrivna nedan är några som har använts länge och några som är nya, dessa kan kombineras för att uppnå de krav som ställs av miljönämnden. Att

Läs mer

minireningsverk BioCleaner Ett robust och pålitligt reningsverk med fler än 25 000 installationer.

minireningsverk BioCleaner Ett robust och pålitligt reningsverk med fler än 25 000 installationer. minireningsverk BioCleaner Ett robust och pålitligt reningsverk med fler än 25 000 installationer. 10% av Sveriges befolkning saknar anslutning till ett kommunalt reningsverk. Dessa 10% bidrar till lika

Läs mer

2 ANLÄGGNINGENS UTFORMING

2 ANLÄGGNINGENS UTFORMING 2 Innehållsförteckning 1 SAMMANFATTNING... 3 2 ANLÄGGNINGENS UTFORMING... 3 2.1 Befintlig anläggning... 3 2.2 Ny anläggning... 4 2.3 Recipient... 6 3 TEKNISK FÖRSÖRJNING... 7 4 GEOLOGISKA FÖRHÅLLANDEN...

Läs mer

inom avloppsrening - 2 - Rensskärare Centrifugalpump Roterande sil Rensskärare i pumpstation Excenterskruvpump Lobrotorpump

inom avloppsrening - 2 - Rensskärare Centrifugalpump Roterande sil Rensskärare i pumpstation Excenterskruvpump Lobrotorpump Vi håller dina processer igång Inom avloppsrening inom avloppsrening Till samtliga steg i avloppsreningsprocessen, från filtrering till finfördelning, pumpning och dosering, erbjuder AxFlow bland annat

Läs mer

Upplägg. Vad begränsar biogasproduktion vid reningsverk? Hur kan FoU bidra till att reducera dessa begränsningar?

Upplägg. Vad begränsar biogasproduktion vid reningsverk? Hur kan FoU bidra till att reducera dessa begränsningar? Upplägg Utgångspunkt Vad begränsar biogasproduktion vid reningsverk? Hur kan FoU bidra till att reducera dessa begränsningar? Vad satsar vi på inom VA-teknik Södra Vad begränsar biogasproduktionen vid

Läs mer

Lyft produktionen med rätt vattenrening

Lyft produktionen med rätt vattenrening Lyft produktionen med rätt vattenrening ~ 1 ~ Kraven på rening av industriellt avloppsvatten Reningsverken är byggda för att ta emot hushållsspillvatten, som är biologiskt nedbrytbart samt reduktion av

Läs mer

Satellitbild Lite korta fakta Ett unikt reningsverk 1 2 Processavloppsvattnet från läkemedelstillverkningen i Snäckviken pumpas i en 6,5 km lång ledning. Den är upphängd i en avloppstunnel som leder till

Läs mer

NSVA - Nordvästra Skånes Vatten och Avlopp AB

NSVA - Nordvästra Skånes Vatten och Avlopp AB NSVA - Nordvästra Skånes Vatten och Avlopp AB Kommunalt VA-bolag Bildades 2009 Sex ägarkommuner 230 000 invånare 160 medarbetare Därför bildades NSVA Säkrar VA-kompetens i regionen Optimal utveckling av

Läs mer

Vilka utmaningar ser vi framöver? Vad har gjorts för att möta dem? KARIN JÖNSSON

Vilka utmaningar ser vi framöver? Vad har gjorts för att möta dem? KARIN JÖNSSON Vilka utmaningar ser vi framöver? Vad har gjorts för att möta dem? KARIN JÖNSSON Utmaning - Något som kräver ansenlig ansträngning, men som ändå attraherar KARIN JÖNSSON Innehåll Olika typer av krav (när

Läs mer

En låg temperatur är i de flesta fall det bästa för livet i ett vattendrag. I ett kallt vatten blir det mer syre.

En låg temperatur är i de flesta fall det bästa för livet i ett vattendrag. I ett kallt vatten blir det mer syre. Temperatur ( C) En låg temperatur är i de flesta fall det bästa för livet i ett vattendrag. I ett kallt vatten blir det mer syre. Beskuggning av vattendraget är det viktigaste för att hålla nere temperaturen.

Läs mer

Välkommen till Lundåkraverket

Välkommen till Lundåkraverket Lundåkraverket Välkommen till Lundåkraverket Lundåkraverket ligger i södra Landskrona och är det näst största reningsverket inom NSVA. Det togs i drift redan 1962, men har sedan dess byggts ut och förändrats

Läs mer

Rapport av elektrokemisk vattenreningsanläggning. Britta Lindholm- Sethson, Kenichi Shimizu, Torgny Mossing.

Rapport av elektrokemisk vattenreningsanläggning. Britta Lindholm- Sethson, Kenichi Shimizu, Torgny Mossing. Rapport av elektrokemisk vattenreningsanläggning Britta Lindholm- Sethson, Kenichi Shimizu, Torgny Mossing. 1) Bakgrund Det finns ett stort behov av små kostnadseffektiva reningssystem * för borttagning

Läs mer

Läkemedelsrester i avloppsvatten och slam

Läkemedelsrester i avloppsvatten och slam Läkemedelsrester i avloppsvatten och slam Förekomst och negativa effekter av läkemedel i sjöar och vattendrag är ett ämne som rönt stor uppmärksamhet de senaste åren. Det finns också farhågor att läkemedelsrester

Läs mer

Hur gör man världens renaste vatten av avloppsvatten? Helsingforsregionens miljötjänster

Hur gör man världens renaste vatten av avloppsvatten? Helsingforsregionens miljötjänster Hur gör man världens renaste vatten av avloppsvatten? Helsingforsregionens miljötjänster 2 3 Samkommunen Helsingforsregionens miljötjänster renar avloppsvattnet för de 1,2 miljoner invånarna i Helsingforsregionen

Läs mer

Energieffektiv avloppsrening med biogasproduktion samt kemikalieåtervinning från pappersoch massabruk. Karin Granström

Energieffektiv avloppsrening med biogasproduktion samt kemikalieåtervinning från pappersoch massabruk. Karin Granström Energieffektiv avloppsrening med biogasproduktion samt kemikalieåtervinning från pappersoch massabruk Karin Granström Avloppsrening vid pappers- och massabruk Luft Vatten Avlopps- vatten Biologisk rening

Läs mer

markbädd på burk BIOROCK Certifierad avloppsvattenrening på burk utan el.

markbädd på burk BIOROCK Certifierad avloppsvattenrening på burk utan el. markbädd på burk BIOROCK Certifierad avloppsvattenrening på burk utan el. 4evergreen markbädd på burk kräver varken grävning av provgropar, stor markyta eller el för att hjälpa dig rena ditt avloppsvatten.

Läs mer

Energieffektiv vattenrening

Energieffektiv vattenrening Energieffektiv vattenrening Gustaf Olsson Lunds Tekniska Högskola Världsvattendagen Stockholm 21 mars 2014 Energi i vattenoperationer 1-3 % av den globala el-energin används för att producera, behandla

Läs mer

ENSKILDA AVLOPP I TANUMS KOMMUN. Miljöavdelningen Tanums kommun 457 81 Tanumshede. mbn.diarium@tanum.se 0525-18000

ENSKILDA AVLOPP I TANUMS KOMMUN. Miljöavdelningen Tanums kommun 457 81 Tanumshede. mbn.diarium@tanum.se 0525-18000 ENSKILDA AVLOPP I TANUMS KOMMUN Miljöavdelningen Tanums kommun 457 81 Tanumshede mbn.diarium@tanum.se 0525-18000 Den här broschyren vänder sig till dig som planerar att anlägga en enskild avloppsanläggning.

Läs mer

Information om fordonstvätt

Information om fordonstvätt Information om fordonstvätt Spillvatten från fordonstvättar innehåller bl a mineralolja (opolära alifatiska kolväten), metaller och andra organiska och oorganiska ämnen och behöver behandlas (renas) innan

Läs mer

Länsvatten tre utförda projekt

Länsvatten tre utförda projekt Länsvatten tre utförda projekt Rening av länsvatten vid schaktning i finkornigt material, 2007 Geotuber för slamavvattning i anläggningsarbeten, 2011 Hantering av länsvatten i anläggningsprojekt, 2013

Läs mer

FLÖDESDESIGN VID AVLOPPSRENINGSVERK

FLÖDESDESIGN VID AVLOPPSRENINGSVERK VATTEN Journal of Water Management and Research 68:69 74. Lund 2012 FLÖDESDESIGN VID AVLOPPSRENINGSVERK Flow design at wastewater treatment plants av HANS CARLSSON, Tyréns AB, Isbergs gata 15, 205 19 Malmö,

Läs mer