Teknisk beräkningsvetenskap I 5DV154
|
|
- Isak Sandberg
- för 8 år sedan
- Visningar:
Transkript
1 Institutionen för datavetenskap Umeå universitet 18 december 15 Teknisk beräkningsvetenskap I 5DV154 Deltentamen inkusive svar Tid: Hjälpmedel: Matlab. Maximalt antal poäng: 1 5 poäng är tillräckligt för godkänt på detta delprov 1. (a) Nämn en fördel och en nackdel med att använda Newtons metod istället för fixpunktsiteration för att lösa ickelinjära ekvationer. (b) Förklara vad som menas med nogrannhetsordning. (c) Vad menas med ett styvt system när man pratar om ordinära differentialekvationer? (d) Implicita numeriska metoder för lösning av begynnelsevärdesproblem har oftast ett mycket större stabilitetsområde än explicita metoder, vilket innebär att man som regel kan välja tidssteg enbart utifrån den noggrannhet man behöver utan att ta hänsyn till stabilitetsbegränsningar. Varför använder man då inte alltid implicita metoder? [p] [3p] [p] [3p]. (a) Studera följande linjära ekvationssystem { x1 + x = 4 x 1 x = 3 Sätt upp systemet på formen Ax = b. Antag nu att vi har en störning i högerledet och istället löser A ˆx = b + δ, med A och b som tidigare, och störningen δ uppfyller δ Ge en övre begränsning (beräkna denna numeriskt) av ˆx x 1, där x och ˆx är lösningarna till Ax = b respektive A ˆx = b + δ. (b) Newtons metod för att hitta nollställen till en funktion f kräver vanligtvis att man känner till funktionens derivata. Här ska vi undersöka en version som använder sig av en alternativ stegberäkning; istället för derivatan använder sig denna version av sekantapproximationen f (x k ) f (x k) f (x k 1 ) x k x k 1. (i) Skriv ner denna metod i pseudokod (du behöver alltså inte implementera metoden). Förutom att ändra stegberäkningen i Newtons metod så att den använder sig av högerledet i approximationen ovan istället för av den exakta derivatan, vilken eller vilka ändringar behövs för att metoden ska fungera? (ii) Implementera metoden och använd den för att beräkna tredjeroten ur 5 genom att lösa ekvationen f (x) = där f (x) = x 3 5. Uppskatta numeriskt metodens konvergensordning i ett fall där metoden genererar en talföljd som konvergerar mot x = 5 1/3. [1p] [3p] [1p]
2 3. (a) Antag att vi vill interpolera n punkter, (x i, y i ), där x i+1 > x i för i = 1,...,n 1, med en styckvis kvadratisk interpolant. Vilket är det största värdet på n för vilket man kan garantera att interpolanten blir (i) globalt kontinuerligt deriverbar (C 1 ; d.v.s. interpolanten såväl som dess derivata är kontinuerlig); (ii) globalt två gånger kontinurligt deriverbar (C ; d.v.s. interpolanten, dess derivata och dess andraderivata är kontinuerlig)? (b) Antag att funktionen f (x) är oändligt deriverbar och att vi vill beräkna I = 1 f (x)dx (i) Visa att den sammansatta mittpunktsformeln har noggrannhetsordning. (ii) Implementera den sammansatta mittpunktsformeln för att numeriskt beräkna 1 f (x)dx. Verifiera numeriskt att din metod har noggrannhetsordning vid beräkning av 1 ex dx. (Vi vet att I = e 1). Funktionen ska följa specifikationen i följande funktionshuvud function I = midpoint(fun,n) %MIDPOINT evaluate integral by the composite midpoint formula % % I = MIDPOINT(FUN,N) numerically approximates the integral % of the scalar-valued function FUN over the interval (,1) % by using the composite midpoint quadrature rule on N sub- % intervals. Input argument FUN is a function handle and N % is a positive integer. Function Y=FUN(X) should accept a % vector argument X, and return a vector Y, the integrand % evaluated at each element of X. 4. (a) Man vill numeriskt lösa begynnelsevärdesproblemet för differentialekvationen y = f (t, y) med ett schema baserat på mittpunktsformeln för integration. Följande två scheman är föreslagna: ( y k+1 = y k + t f t k + t, y ) k+1 + y k och y k+1 = y k + t f ( t k + t, y k + t ) f (t k, y k ) Bestäm villkoret för stabilitet för ovanstående scheman när de tillämpas på problemet y = λy. Ange speciellt tidsstegsbegränsningen då λ är reellt och uppfyller λ <. (b) Vi är intresserade av att bestämma avståndet y i illustrationen till höger. Newton s andra lag ger att det mekaniska systemet uppfyller m(y g ) + d y + k y =, där m är massan av klossen, k en fjäderkonstant och d en dämpningskonstant. Vid tiden t = är positionen och hastigheten för klossen kända, y() = 1 och y () =. (i) Skriv detta begynnelsevärdesproblem på standardform. (ii) Implementera en ode-lösare baserad på ett av de två föreslagna schemana från uppgift 4a och använd denna för att lösa begynnelsevärdesproblemet ovan från tiden till tiden T = 5 med m = k = 1, d = 1/5 och g = 9.8 (iii) Lös detta problem från tiden till tiden T = 5 med med Matlabs inbyggda ode-lösare ode45 samt plotta lösningen y som funktion av t. k m d y [1p] [13p] [1p] [1p]
3 Svar 1. (a) En fördel med att använda Newtons metod är att vi då får en snabb (kvadratisk) lokal konvergens. (b) Nogrannhetsordning anger hur felet beror på steglängden h (eller x) för en viss metod. Om en metod har noggrannhetsordning p så är felet O(h p ). (c) Ett styvt system innehåller vitt skilda tidsskalor, i fallet med ett linjärt ODE system u = Au så betyder detta att egenvärdena av matrisen A är vitt skilda i storlek. (d) Vid varje tidsteg krävs det många fler flyttalsberäkningar för en implicit metod jämfört med motsvarande explicita metod. Den explicita metod kommer därför att vara effektivare än den implicita metoden utom i de fall då den explicita metodens stabilitetsvillkor är så restriktivt att de stabila tidsstegen är avsevärt mycket mindre än vad som är motiverat ur noggrannhetssynpunkt.
4 Svar. (a) Ekvationsssytemet kan skrivas som Ax = b där [ ] 1 1 A =, x = 1 [ x1 x ] [ ] 4 och b = 3 (b) En begränsning av det relativa felet i högerledet ges av Vilket ger oss att x ˆx 1 x 1 κ 1 (A) b ˆb 1 = κ 1 (A) δ 1 κ 1 (A) 1 8 x ˆx 1 x 1 κ 1 (A) 1 8 Vi använder oss av matlab för att beräkna högerledet ovan enligt >> A = [1 1; 1 -]; >> b = [4; -3]; >> x = A\b; >> bound = norm(x,1)*cond(a,1)*1^-8/norm(b,1) bound = e-8 Vilket ger oss begränsningen x ˆx (i) För att använda oss av sekantapproximation behöver vi känna till de två första punkterna x och x 1. I varje steg sätter vi sedan x k+1 = x k + s där s löser f (x k ) + s f (x k) f (x k 1 ) x k x k 1 = (ii) En kod som implementerar metoden ovan är function xk = snewton(fun,x,x1) %solves nonlinear equation f(x)= by using the secant method % % FUN is a function handle to a function that given a point X returns % the value Y = FUN(X), the function evaluated at X. % % NOTE that this function returns the full sequence of numbers XK %note that this function is far from optimized for performance... xk(1)= x; xk() = x1; fold = fun(xk(1)); f = fun(xk()); tol = 1e-8; k = ; while norm(f)>tol dfdx_secant = (f-fold)/(xk(k)-xk(k-1)); s = -f/dfdx_secant; xk(k+1) = xk(k) + s; fold = f; f = fun(xk(k+1)); k = k+1; end Tredjeroten ur 5 ligger i intervallet [1,]. Körning av metoden ovan med x = 1 och x 1 = ger
5 >> fun x.^3-5; >> xk = snewton(fun,1,) xk = Columns 1 through Columns 7 through Om konvergensordningen är p har vi för tillräckligt stora k att x k+1 x C x k x p. Genom att logaritmera ovanstående uttryck har vi att log x k x logc + p log x k+1 x eller log x k+1 x /log x k x C/log x k x +p. Eftersom x k x då k kommer C/log x k x, så p log x k+1 x /log x k x. Vi beräknar ovanstående för några värden på k med hjälp av matlab >> lerror = log(abs(xk-5^(1/3))) lerror = Columns 1 through Columns 7 through >> lerror(6)/lerror(5) ans = >> lerror(7)/lerror(6) ans = >> lerror(8)/lerror(7) ans = Vilket antyder att konvergensordningen är ungefär 1.6.
6 Svar 3. (a) (i) Om funktionen ska vara globalt kontinuerligt deriverbar kan n vara godtyckligt stort. Induktionsbevis: Det finns oändligt många kvadratiska funktioner som interpolerar (x 1, y 1 ) och (x, x ). Antag nu att vi har ett styckvis polynom som interpolerar (x 1, y 1 ), (x, y ),... (x j, y j ) och vi vill lägga till punkten (x j +1, y j +1 ), dvs vi vill hitta ett kvadratiskt polynom i intervallet (x j, x j +1 ), med specificerat värde i ändpunkterna och med derivatan specifierad i x j, detta ger oss ett ekvationssystem med tre ekvationer för våra tre obekanta (koefficienterna för polynombiten vi lägger till). (ii) Om funktionen ska vara två gånger kontinuerligt deriverbar och samtidigt på varje intervall vara ett andragradspolynom så kommer funktionen att vara ett andragradspolynom. Det största antalet punkter som man garanterat kan interpolera med ett andragradspolynom är 3. (b) (i) Låt x i = (i 1/) x för i = 1,,..., N. Den numeriska approximationen av 1 f (x)dx beräknad med den sammansatta mittpunktsregeln med steglängd x är I x M [f ] = x f (x n ). Genom att bryta upp integralen i N delar och Taylorutveckla varje del för sig får vi 1 f (x)dx = = = xn + x/ x n x/ xn + x/ x n x/ f (x)dx (f (x n ) + f (x n )(x x n ) + f (ξ n (x)) (x x n) ] [ x f (x n ) + f (ξ n ) ( x/)3 = I x x3 M [f ] f (ξ n ) ) dx där ξ n (x) är ett tal mellan x n och x och ξ n är ett tal i intervallet [x n x/, x n + x/]. Den sista summan innehåller N funktionsvärden och är lika med N gånger medelvärdet av dessa funtionsvärden. Då funtionen är kontinuerlig så finns ett tal ξ [,1] så att f (ξ) är just detta medelvärde. Alltså har vi 1 f (x)dx = I x x3 M [f ] + där den sista likheten följer av att xn = 1. 4 N f (ξ) = I x M [f ] + x 4 f (ξ), (ii) En implemention av mittpunktsmetoden ges av function I = midpoint(fun,n) %MIDPOINT evaluate integral by the composite midpoint formula % [...] xx = linspace(,1,n+1); xmid = (xx(1:end-1)+xx(:end))/; I = fun(xmid)*ones(n,1)/n; %note that deltax = 1/N Genom att numeriskt beräkna integralen 1 för några olika intervallstorlekar (halvera x varje steg) och jämföra felen får vi att >> E1 = abs(midpoint(@exp,1)-(exp(1)-1)); >> E = abs(midpoint(@exp,)-(exp(1)-1)); >> E4 = abs(midpoint(@exp,4)-(exp(1)-1)); >> E8 = abs(midpoint(@exp,8)-(exp(1)-1)); >> E1/E ans = >> E/E4 ans = >> E4/E8 ans = Så felet minskar med ungefär en faktor 4 när x halveras, vilket antyder att noggrannhetsordningen är.
7 Svar 4. (a) För det första schemat får vi för y = λy (b) Vilket efter omskrivning blir (om λ t ) y k+1 = y k + tλ y k+1 + y k y k+1 = 1 + λ t 1 λ t y k Metoden säges vara stabil om y k+1 y k, vilket i detta fall gäller om 1 + λ t 1 λ t 1 Vilket är sant om 1 + x 1 x, där x = tλ/, vilket i sin tur är sant för alla x som uppfyller Re{x}. För λ < är alltså schemat stabilt för alla tidssteg t >. Det andra schemat blir för y = λy: ( y k+1 = y k + tλ y k + t ) λy k = y k + tλy k + t λ Metoden säges vara stabil om y k+1 y k, vilket i detta fall gäller om (1 + tλ) 1. ( 1 y k = + 1 ) (1 + tλ) y k För λ reellt ger villkoret ovan att (1 + tλ) 1, vilket medför tλ. I fallet där λ < får vi villkoret att t / λ måste vara uppfyllt för att metoden ska vara stabil. (i) Låt u 1 = y och u = y, begynnelsevärdesproblemet kan då skrivas ( ) ( ) ( ) ( ) u1 u u1 () 1 =, = (mg du ku 1 )/m u () u (ii) Den andra metoden kan implementeras som function [t,y] = expmidpoint(f,tspan,y,deltat) %assume that the time interval tspan(1) to tspan() can be divided into an %integer number of subintervals of length deltat t = tspan(1):deltat:tspan(); y = zeros(length(y),length(t)); y(:,1) = y(:); for k = 1:length(t)-1 kappa = f(t(k), y(:,k)); y(:,k+1) = y(:,k) + deltat*f((t(k)+t(k+1))/,y(:,k) + deltat*kappa/); end y = transpose(y); Högerledet f (t, y) med m = k = 1, d = 1/5 och g = 9.8 ovan kan skrivas som >> m=1; k=1; d=1/5; g=9.8; >> f [u(); (m*g-d*u()-k*u(1))/m]; Vi får en numerisk lösning till systemet och plottar denna genom att skriva >> [t,y] = expmidpoint(f,[ 5],[1 ],.1); >> plot(t,y) (iii) För att istället använda ode45 och plotta lösningen kan vi skriva >> [t,y] = ode45(f,[ 5],[1 ]); >> plot(t,y) där f är definierad som ovan.
Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem
Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del
Läs merTeorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Läs merSammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Läs merOrdinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Läs merTentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Läs merSekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Läs merTentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merFÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merTentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Läs merLösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Läs merTentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Läs merFallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Läs mer0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Läs merLösningsförslag till tentamensskrivningen i Numerisk analys
Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
Läs merKurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
Läs merLABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
Läs merKonvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Läs merIcke-linjära ekvationer
stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar
Läs merTentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merTENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Läs merLABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Läs merFixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).
Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot
Läs merTentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs mer= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Läs merMatematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Läs merLinjär Algebra och Numerisk Analys TMA 671, Extraexempel
Ivar Gustavsson / Jan Södersten Matematiska vetenskaper Göteborg 6 november 9 Linjär Algebra och Numerisk Analys TMA 67, Extraexempel (M) efter uppgiftsnumret anger att MATLAB lämpligen används för att
Läs merNumerisk Analys, MMG410. Lecture 10. 1/17
Numerisk Analys, MMG410. Lecture 10. 1/17 Ickelinjära ekvationer (Konvergensordning) Hur skall vi karakterisera de olika konvergenshastigheterna för halvering, sekant och Newton? Om f(x x k+1 x ) = 0 och
Läs merR AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002
RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions
Läs merTeknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
Läs merLösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
Läs merKort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merLösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Läs merOrdinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
Läs merFöreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Läs merLösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs merLAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Läs merSammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga
Läs merFMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs mer1.5 Lösningar till kapitel 7
2011 39 1.5 Lösningar till kapitel 7 1: Nej, det säger bara att q(t) = p(t)r(t) där r är ett polynom. Nej, det säger att q(t) = p(t)α där α är ett reellt tal. Ja, ty nu gäller det att p(r k ) q(r k ) =
Läs merLaboration 2 Ordinära differentialekvationer
Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =
Läs mer2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 08 21, f Telefon: Jonatan Vasilis, 0762 721861 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50 poäng.
Läs merKTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Läs merNumerisk Analys, MMG410. Lecture 13. 1/58
Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Läs merLaboration 1, M0039M, VT16
Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Läs merKTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merTentamen i Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.
Läs merInterpolation. 8 december 2014 Sida 1 / 20
TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.
Läs merAkademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Läs merTMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER
TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER Beskrivning och mål. Den här laborationen syftar till att ge en grundläggande förståelse
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Läs merf(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Läs merLösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Läs merBEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2010-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Läs merTentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Läs merLösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:
Läs merFÖRSÄTTSBLAD TILL TENTAMEN
Institutionen för informationsteknologi INSTRUKTIONER Kontrollera att du fått rätt tentamensuppgifter! Detta blad skall alltid inlämnas ifyllt även om ingen uppgift behandlats. Varje uppgiftslösning skall
Läs merALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14...
ALA-a 2005 Innehåll 1 Lite teori 3 RÄKNEÖVNING VECKA 7 1.1 Kapitel 7....................................... 3 1.2 Kapitel 12....................................... 3 1.3 Kapitel 13.......................................
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Läs merInstitutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merLösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];
Läs merTENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Läs merFör teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 01 17, f V Telefon: Christoffer Cromvik, 0762 721860 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50
Läs mer1.6 Lösningar till kapitel 8
214 45 1.6 Lösningar till kapitel 8 1: function I = int_quad(t, C) % Compute the integral (over [t(1), t(end)), of the piecewise % quadratic polynomial defined by t and C. I = sum(c(1, :).* (t(2:end).^3
Läs merTentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs mer