Interpolation. 8 december 2014 Sida 1 / 20

Storlek: px
Starta visningen från sidan:

Download "Interpolation. 8 december 2014 Sida 1 / 20"

Transkript

1 TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor. Feluppskattning. Exempel. 8 december 2014 Sida 1 / 20

2 Interpolation Antag att vi har en tabell x x 1 x 2... x n+1 f(x) f 1 f 2... f n+1 Hur skall vi uppskatta f(x) för x 1 x x n+1? Definition Ett polynom p(x) interpolerar en funktion f(x) i punkterna x 1, x 2,..., x n+1, om p(x i ) = f(x i ), i = 1, 2,...,n+1. Frågor Polynomets gradtal? Hur skall polynomet beräknas? Feluppskattning? 8 december 2014 Sida 2 / 20

3 Linjär Interpolation f(x) f 1 f 2 p 1 (x) x 1 x 2 Sats Det förstagrads polynom p 1 (x) som interpolerar två punkter (x 1, f 1 ) och (x 1, f 2 ) ges av p 1 (x) = f 1 + x x 1 x 2 x 1 (f 2 f 1 ). 8 december 2014 Sida 3 / 20

4 Felanalys vid Linjär Interpolation Lemma Antag att felen i använda funktionsvärden f 1 och f 2 uppfyller f i ε. Det resulterande felet då linjär interpolation används kan uppskattas R XF ε. Sats Antag att p 1 (x) är det linjära polynom som interpolerar en funktion f(x) i punkterna x 1 och x 2. Då gäller R T = f(x) p 1 (x) = f (ξ) 2 (x x 1)(x x 2 ), där x 1 < ξ < x 2. eller R T Ch 2, där h = x 2 x 1. 8 december 2014 Sida 4 / 20

5 Polynom Interpolation Sats Antag att vi har n+1 punkter (x i, f i ). Vi kan då bestämma ett unikt polynom p n (x) av grad n som interpolerar de givna punkterna, dvs p n (x i ) = f i, i = 1, 2,..., n+1. Sats Låt p n (x) vara det polynom av gran n som interpolerar f(x) i punkterna x 1, x 2,...,x n+1. Då gäller f(x) p n (x) = f(n+1) (ξ(x)) (x x (n+1)! 1 ) (x x n+1 ). Funktionen f(x) måste ha tillräckligt många kontinuerliga derivator. Hur skall räkningarna organiseras? 8 december 2014 Sida 5 / 20

6 Newtons Interpolationsformel Hitta ett polynom p n (x) som interpolerar värdena i tabellen Vi gör ansatsen x x 1 x 2... x n+1 f(x) f 1 f 2... f n+1 p n (x)=c 0 +c 1 (x x 1 )+c 2 (x x 1 )(x x 2 )+...+c n (x x 1 ) (x x n ). Interpolationsvillkoren ger då och p n (x 1 ) = c 0 = f 1, p n (x 2 ) = c 0 + c 1 (x 2 x 1 ) = f 2,= c 1 = (f 2 c 0 )/(x 2 x 1 ). Varje nytt villkor p n (x i ) = f i ger en koefficient c i. Enkla räkningar! 8 december 2014 Sida 6 / 20

7 Feluppskattning I praktiken känner vi inte f (ξ). Istället väljer vi en extra punkt (x n+2, f n+2 ) och beräknar ett nytt interpolerande polynom p n+1 (x). Vi gör feluppskattningen R T P n+1 (x) P n (x). Detta kan ses som att vi approximerar f (n+1) (ξ(x)) P (n+1) n+1 (ξ(x)) = c n+1. Kommentar Används Newtons interpolationsformel är det lätt att genomföra räkningarna. 8 december 2014 Sida 7 / 20

8 Exempel Låt f(x) = e x/2 cos(x/7)+(x 0.1) 2 /2, och antag att vi har följande tabell över funktionsvärden. x f(x) Använd dessa tabellvärden för att uppskatta f(x) för x = 0.35 genom linjär interpolation. Gör även en feluppskattning. Hur skall vi lösa uppgiften i MATLAB? Vad händer om vi vill använda kvadratisk interpolation? 8 december 2014 Sida 8 / 20

9 I MATLAB skriver vi >> x=[ ];, y=[ ]; >> p1 = polyfit( x(1:2), y(1:2), 1 ); >> p2 = polyfit( x(1:3), y(1:3), 2 ); Vi beräknar polynomen genom exempelvis >> xx=-0.1:0.01:0.8; y1=polyval(p1,xx); Vänster: Polynomen p 1 (x) och p 2 (x) samt f(x). Höger: Felet f(x) p 1 (x) och feluppskattningen R T p 2 (x) p 1 (x). Här är R T december 2014 Sida 9 / 20

10 För kvadratisk interpolation behövs 3 punkter för p 2 (x) och en ytterligare punkt för att uppskatta R T x Vänster: Polynomen p 2 (x) och p 3 (x) samt f(x). Höger: Felet f(x) p 2 (x) och feluppskattningen R T p 3 (x) p 2 (x). Här är R T Vad händer om vi ökar polynomets gradtal ytterligare? 8 december 2014 Sida 10 / 20

11 Runges fenomen Polynom av gradtal n = 4, 6, och 10 som interpolerar f(x) = 1/(1+x 2 ). Felet växer då polynomets gradtal ökar. Använd endast interpolerande polynom av lågt gradtal! 8 december 2014 Sida 11 / 20

12 Tillämpning - Upplösning på bildskärmar En LED display har ett fixt antal bildpunkter ordnade i ett rutnät av storlek M N. Allt som visas på skärmen måste ha precis denna upplösning. Höger: Bildpunkter. Vi söker värdet i punkt P. Mitten: Använd punkter Q 11, Q 12, Q 21, och Q 22 och bilinjär interpolation. Vänster: Bikubisk interpolation kräver 16 interpolationspunkter. Färre artefakter! 8 december 2014 Sida 12 / 20

13 Spline Interpolation Problem En funktion f(x) är känd i ett antal noder x 1, x 2,...,x n. Vi vill hitta en approximation s(x) f(x) på [x 1, x n ]. Hur skall vi göra? Lösning Använd linjär interpolation på varje delintervall [x i, x i+1 ]. f 2 f(x) f f 3 f 5 1 s(x) f 4 x 1 x 2 x 3 x 4 x 5 Teorin för linjär interpolation gäller! 8 december 2014 Sida 13 / 20

14 Linjära splinefunktioner Definition En funktion s(x) är en interpolerande linjär spline med noder x 1,...,x n om 1. s(x) är kontinuerlig på [x 1, x n ]. 2. s(x) är en rät linje på varje delintervall [x i, x i+1 ]. 3. s(x) interpolerar f(x) i noderna, dvs s(x i ) = f(x i ). Sats För en interpolerande linjär spline gäller f(x) s(x) M 8 h2, där f (x) M och h = max x i+1 x i. 8 december 2014 Sida 14 / 20

15 Kubiska Splinefunktioner f 2 f f 3 f 5 1 s 1 s 2 f 4 s 3 s 4 x 1 x 2 x 3 x 4 x 5 Definition En funktion s(x) är en interpolerande kubisk spline med noder x 1,...,x n om 1. s(x), s (x), och s (x) är kontinuerliga på [x 1, x n ]. 2. s(x) ges av ett tredjegrads polynom på varje delintervall [x i, x i+1 ]. 3. s(x) interpolerar f(x) i noderna, dvs s(x i ) = f(x i ). 8 december 2014 Sida 15 / 20

16 Exempel Bestäm en kubisk spline s(x) som interpolerar tabellen x f(x) med ändpunktsvillkor f (0) = 1 och f (2) = 1. Lösning Hitta polynom s 1 (x) och s 2 (x). f 2 f 3 f 1 s 1 s 2 x 1 x 2 x 3 Översätt kraven på s 1 och s 2 till ett linjärt ekvationssystem! 8 december 2014 Sida 16 / 20

17 Vår spline funktion blir { s1 (x)= (x 0)+1.75(x 0) s(x)= (x 0) 3, 0 x 1, s 1 (x)= (x 1) 2.00(x 1) (x 1) 3, 1 x 2, s 1 (x) s 2 (x) Två kontinuerliga derivtor och rätt lutning i ändpunkterna! 8 december 2014 Sida 17 / 20

18 Ändpunktsvillkor Sats En kubisk spline funktion s(x), som interpolerar f(x) i noderna x 1,...,x n, blir unikt bestämd om vi ger två ändpunktsvillkor. Detta bevisas genom att jämföra antalet obekanta (4 koefficienter/intervall) med antalet villkor. Vi kan välja mellan Naturliga randvillkor: s (x 1 )=s (x n )=0. Rätta randvillkor: s (x 1 )=f (x 1 ) och s (x n )=f (x n ). Periodiska randvillkor: s (x 1 )=s (x n ). 8 december 2014 Sida 18 / 20

19 Feluppskattning Sats Då rätta randvillkor används gäller att s(x) f(x) Mh4, där h = max x i+1 x i och M = max f (4) (x). Exempel Vi vill approximera f(x) = 1/(1+x 2 ), på intervallet [ 5, 5], med en kubisk spline funktion. Vi använder rätta ändpunktsvillkor. Hur beror felet på antalet punkter? N h 1/4 1/8 1/16 Felet Vi ser att felet beter sig som Ch 4. 8 december 2014 Sida 19 / 20

20 I MATLAB används csape för att beräkna en interpolerande kubisk spline. >> pp = csape( x, y, complete, [ d1, d2 ] ); där d 1 och d 2 är numeriska värden på derivatorna f (x 1 ) och f (x n ). Beräkna splinefunktionens värden med ppval Vi plottar funktionen f(x) = 1/(1+x 2 ) och kubiska spline funktioner s(x) då N = 5, 9, och 17 punkter används. 8 december 2014 Sida 20 / 20

Interpolation Modellfunktioner som satisfierar givna punkter

Interpolation Modellfunktioner som satisfierar givna punkter Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation

Läs mer

TANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

TANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Kubiska splines Approximerande Splines s s s s 4 B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. x x x x 4 x 5 Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor.

Läs mer

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

Föreläsning 5. Approximationsteori

Föreläsning 5. Approximationsteori Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning

Läs mer

TANA19 NUMERISKA METODER

TANA19 NUMERISKA METODER HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 3. Interpolation Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur

Läs mer

OH till Föreläsning 5, Numme K2, Läsa mellan raderna. Allmän polynom-interpolation, S Ch 3.1.0

OH till Föreläsning 5, Numme K2, Läsa mellan raderna. Allmän polynom-interpolation, S Ch 3.1.0 OH till Föreläsning 5, Numme K2, 181119 S Ch 3-34, GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 3822 1910 3982 1920 4281 1930 4302 1940 4042 1950 3922 1960 3921 1970 3940 1980 3960 1990 3980

Läs mer

OH till Föreläsning 5, Numme K2, GNM Kap 4-4.4A / GKN Kap 4.1A,(D),E Interpolation. Läsa mellan raderna. Allmän polynom-interpolation

OH till Föreläsning 5, Numme K2, GNM Kap 4-4.4A / GKN Kap 4.1A,(D),E Interpolation. Läsa mellan raderna. Allmän polynom-interpolation OH till Föreläsning 5, Numme K, 14101 GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 8 1910 98 190 481 190 40 1940 404 1950 9 1960 91 1970 940 1980 960 1990 980 Läsa mellan raderna 1900 190 1940

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära

Läs mer

Numerisk Analys, MMG410. Lecture 13. 1/58

Numerisk Analys, MMG410. Lecture 13. 1/58 Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.

Läs mer

Polynomanpassning i MATLAB

Polynomanpassning i MATLAB Polynomanpassning i MATLAB Funktionsanropet c=polyfit(x,y,n) ger koefficiemterna i ett n:e-gradspolynom som anpassar sig till y-värdena för x-värdena med lämplig metod. I tredje föreläsningens exempel

Läs mer

Numerisk Analys, MMG410. Lecture 12. 1/24

Numerisk Analys, MMG410. Lecture 12. 1/24 Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.

Läs mer

Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen

Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

Sammanfattning (Nummedelen)

Sammanfattning (Nummedelen) DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,

Läs mer

Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation.

Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation. TAIU07 Föreläsning 6 Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation. 22 februari 2016 Sida 1 / 28 Interpolation i

Läs mer

0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(

0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )( Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)

Läs mer

Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018

Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),

Läs mer

3.6 De klassiska polynomens ortogonalitetsegenskaper.

3.6 De klassiska polynomens ortogonalitetsegenskaper. Vetenskapliga beräkningar III 34 3.6 De klassiska polynomens ortogonalitetsegenskaper. I nedanstående tabell anges egenskaperna för några av de vanligaste ortogonala polynomen. Polynomen är normerade så,

Läs mer

Linjär Algebra och Numerisk Analys TMA 671, Extraexempel

Linjär Algebra och Numerisk Analys TMA 671, Extraexempel Ivar Gustavsson / Jan Södersten Matematiska vetenskaper Göteborg 6 november 9 Linjär Algebra och Numerisk Analys TMA 67, Extraexempel (M) efter uppgiftsnumret anger att MATLAB lämpligen används för att

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2

DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via

Läs mer

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar

Läs mer

Envariabelanalys 5B1147 MATLAB-laboration Derivator

Envariabelanalys 5B1147 MATLAB-laboration Derivator Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan

Läs mer

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet Numeriska metoder Kompendiet Lektor: Yury Shestopalov e-mail: youri.shestopalov@kau.se Tel. 054-7001856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 1 Innehåll 1 Grundbegrepp av numeriska

Läs mer

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100 8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.

Läs mer

Tentamen, del 2 DN1240 Numeriska metoder gk II för F

Tentamen, del 2 DN1240 Numeriska metoder gk II för F Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Fö4: Kondition och approximation. Andrea Alessandro Ruggiu

Fö4: Kondition och approximation. Andrea Alessandro Ruggiu TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

OH till Föreläsning 15, Numme K2, God programmeringsteknik

OH till Föreläsning 15, Numme K2, God programmeringsteknik OH till Föreläsning 15, Numme K2, 180227 Hela boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet (VAD skall göras?) - Bestäm algoritm (och lagrings-struktur) - Dela upp

Läs mer

Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer

Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik

Läs mer

Varning!!! Varning!!!

Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

TAYLORS FORMEL VECKA 4

TAYLORS FORMEL VECKA 4 TAYLORS FORMEL VECKA 4 David Heintz, 20 november 2002 Innehåll 1 1 2 Uppgift 29.7 3 3 Uppgift 31.9 4 1 Av de elementära funktionerna är det polynomen som har den enklaste strukturen. Om f är ett givet

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

HANDLEDNING TILL LABORATION I GEOMETRI

HANDLEDNING TILL LABORATION I GEOMETRI HANDLEDNING TILL LABORATION I GEOMETRI NIELS CHR. OVERGAARD 1. Inledning Denna laboration består av två delar, en om interpolationstekniker och en annan om bézierritning (som man kan kalla en designteknik).

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

F 4 Ch.4.2-3 Numerisk integration, forts.; Ch.4 Numerisk derivering.

F 4 Ch.4.2-3 Numerisk integration, forts.; Ch.4 Numerisk derivering. 050301 p 1 (10) F 4 Ch.4.2-3 Numerisk integration, forts.; Ch.4 Numerisk derivering. 1. Styckevis polynom: linjär och spline-interpolation; En funktion f representerad i en tabell (x i,f i ), i = 0,...,n,

Läs mer

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3 1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

TATA42: Föreläsning 3 Restterm på Lagranges form

TATA42: Föreläsning 3 Restterm på Lagranges form TATA4: Föreläsning 3 Restterm på Lagranges form Johan Thim 9 mars 9 Lagranges form för resttermen Vi har tidigare använt resttermen på ordo-form med goda resultat. Oftast i samband med gränsvärden, extrempunktsundersökningar

Läs mer

Rapportexempel, Datorer och datoranvändning

Rapportexempel, Datorer och datoranvändning LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Labb 3: Ekvationslösning med Matlab (v2)

Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys Labb 3: Ekvationslösning 1/13 Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys 2007-03-05 Björn Andersson (IT-06), bjoa@kth.se Johannes Nordkvist (IT-06), nordkv@kth.se Det finns

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

med tillgång till värden på f: vi anser att vi kan evaluera f för alla x i (a,b) och använder kvadraturformler av typen n

med tillgång till värden på f: vi anser att vi kan evaluera f för alla x i (a,b) och använder kvadraturformler av typen n F HT BE & Page of 6 PP C 5 pp 7 ff Integraler Uppgiften är att beräkna b I f ( ) d a med tillgång till värden på f: vi anser att vi kan evaluera f för alla i (a,b) o använder kvadraturformler av typen

Läs mer

Handledning till laboration i geometri

Handledning till laboration i geometri Handledning till laboration i geometri Anna Torstensson Matematikcentrum, Lund Email: annat@maths.lth.se 1 Inledning Denna laboration består av två delar, en om interpolationstekniker och en annan om bézierritning

Läs mer

OH till Föreläsning 14, Numme I2, God programmeringsteknik

OH till Föreläsning 14, Numme I2, God programmeringsteknik OH till Föreläsning 4, Numme I2, 722 Hela boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet (VAD skall göras? - Bestäm algoritm (och lagrings-struktur - Dela upp i små

Läs mer

TMA226 datorlaboration

TMA226 datorlaboration TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,

Läs mer

Uppgift 1 R-S. Uppgift 2 R-M. Namn:...

Uppgift 1 R-S. Uppgift 2 R-M. Namn:... 2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag 26-3-27 Obs! Muntliga delen redovisas vid ett miniseminarium. Notera!

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

Teori- och räkneuppgifter

Teori- och räkneuppgifter Teori- och räkneuppgifter Version December 7 014 1 Fel- och störningsanalys 11 Värdet på x är uppmätt till 0956 med ett absolutfel på högst 00005 Ge en öre gräns för absolutfelet i y exp(x + x Motiera

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem

TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.

Läs mer

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8

Läs mer

f(x + h) f(x) h f(x) f(x h) h

f(x + h) f(x) h f(x) f(x h) h NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!

Läs mer

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design 1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall

Läs mer

Teknisk beräkningsvetenskap I 5DV154

Teknisk beräkningsvetenskap I 5DV154 Institutionen för datavetenskap Umeå universitet 18 december 15 Teknisk beräkningsvetenskap I 5DV154 Deltentamen inkusive svar Tid: 9. 13. Hjälpmedel: Matlab. Maximalt antal poäng: 1 5 poäng är tillräckligt

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

15 februari 2016 Sida 1 / 32

15 februari 2016 Sida 1 / 32 TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Projekt 3. Beskrivning av geometri med Beziérkurvor 1 Introduktion Inom design har man behov av effektiva sätt att beskriva kurvor och ytor med matematiska funktioner

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

f(a + h) = f(a) + f (a)h + f (θ) 2 h2, θ [a, a + h]. = f(a+h) f(a)

f(a + h) = f(a) + f (a)h + f (θ) 2 h2, θ [a, a + h]. = f(a+h) f(a) Vi skall nu se, hur man kan beräkna numeriska derivator. Antag att vi vill beräkna derivatan av f(x) i en punkt x = a, och att dess Taylor utveckling kring denna punkt är f(a + h) = f(a) + f (a)h + f (θ)

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:

Läs mer

Lösningar tentamen i kurs 2D1210,

Lösningar tentamen i kurs 2D1210, Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet

Läs mer

Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden

Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Michael Hanke October 19, 2006 1 Beskrivning och mål Matematiska modeller i vetenskap och ingenjörsvetenskap

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Anteckningar Numeriska Metoder

Anteckningar Numeriska Metoder Anteckningar Numeriska Metoder Freddie Agestam 13 januari 015 Innehåll 1 Frl 1 6 1.1 Praktisk information......................... 6 1. Varför numeriska metoder?..................... 6 1.3 Felanalys...............................

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

2D1250 Tillämpade numeriska metoder II

2D1250 Tillämpade numeriska metoder II 1 lof Runborg NADA 2 april 2002 2D1250 Tillämpade numeriska metoder II A LABRATIN 5 rdinära differentialekvationer I den här laborationen ska ni experimentera med olika numeriska metoder för ordinära differentialekvationer.

Läs mer

Kapitel 7. Numerisk derivering och integration

Kapitel 7. Numerisk derivering och integration Kapitel 7. Numerisk derivering och integration Numerisk beräkning av bestämda integraler har gamla anor inom matematiken, och härleder sig ofta från rent praktiska ytbestämningsproblem. Problemet med cirkelns

Läs mer

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x). Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. 11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

OH till Föreläsning 12, NumMet O1, God programmeringsteknik

OH till Föreläsning 12, NumMet O1, God programmeringsteknik OH till Föreläsning 2, NumMet O, 40303 Hela GKN-boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet VAD skall göras? -Bestäm algoritm och lagrings-struktur - Dela upp i

Läs mer

Euler-Mac Laurins summationsformel och Bernoulliska polynom

Euler-Mac Laurins summationsformel och Bernoulliska polynom 46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan

Läs mer

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2011

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2011 Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2011 Kurschef: Niels Chr. Overgaard (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar: NCO On 8 10 E:C läsvecka 1, 2,

Läs mer

Icke-linjära ekvationer

Icke-linjära ekvationer stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar

Läs mer