Normer och approximation

Storlek: px
Starta visningen från sidan:

Download "Normer och approximation"

Transkript

1 1 Normer och approximation 1.1 Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden av begrepp, satser och metoder krävs en hel del arbete med konkreta exempel. Huvudsakligen får man arbeta med papper och penna, men i en hel del fall kan matematikprogram som Maple och Matlab öka förståelsen. Vid användning av funktionalanalytiska metoder på praktiska problem är man också förr eller senare tvungen att gripa till numeriska beräkningar. Använd Matlab för att lösa nedanstående uppgifter. Om du ser ett Matlabkommando som du inte känner igen så använd den inbyggda hjälpen (help kommando). Jag har genomgående försökt använda formelkursiv, t ex f, i analytiska formler och skrivmaskinsstil, alltså f, för motsvarande Matlabuttryck. De färdiga Matlabskript som används nedan finns att hämta på kursens vävsida: Känn dig inte bunden till förslagen nedan utan använd din fantasi för fler experiment. 1.2 Normer Avsikten med detta avsnitt är att ge ett intuitivt begrepp om normerna p, främst p = 1, 2 och, med hjälp av Matlab. För enkelhetens skull arbetar vi främst på 1

2 2 Datorövningar i funktionalanalys intervallet I = [,1]. Normerna definieras då av f 1 = f (x) dx, ( 1 f 2 = f (x) dx) 2 2, ( 1 f p = f (x) dx) p p, (1 p < ) f = max x 1 f (x). I Matlab representerar vi funktionerna f med vektorer, erhållna genom sampling. Kommandot x=:steg:1 ger x värdet av en vektor med ekvidistanta element[ steg 2*steg... 1] om steg är definierat innan (den sista 1-an är i regel en approximation). Funktionen f (x) = sin(x), x 1 representeras då av vektorn f=sin(x). Hur väl funktionen f av en kontinuerlig variabel kan representeras av den diskreta vektorn f behandlar vi på ett annat ställe, men ibland måste man tänka för att tolka Matlabfigurerna på rätt sätt. L p -normerna av funktioner är definierade med hjälp av integraler. Diskret motsvaras dessa av summor,varvid man måste ta hänsyn till steglängden vid samplingen. Om antalet element i vektorn f är n så sätter vi normk(x,1) = sum(abs(x))/n normk(x,2) = (sum(abs(x).^2)/n).^(1/2) normk(x,p) = (sum(abs(x).^p)/n).^(1/p) normk(x,inf) = max(abs(x)) Det bifogade Matlabskriptet normk.m utför dessa beräkningar (i något allmännare form). Det finns ett inbyggt Matlabkommando norm, men det skiljer sig på en skalfaktor (ej delat med n) från normk. Uppgift 1.1 I skriptet initnorm.m finns några lämpliga variabler och funktioner definierade. Kör det (med Matlabkommandot initnorm) och se efter vilka variabler du har (med whos). Rita upp funktionen f med plot(x,f). Uppgift 1.2 Läs skriptet normk.m (med type normk) och tag reda på vad det gör, så bra att du kan förklara det för någon annan. Vi skall nu först se på maximumnormen. Uppgift 1.3 Olikheten f g ε kan också skrivas ε f (x) g(x) ε för alla x eller ekvivalent f (x) ε g(x) f (x) + ε för alla x.

3 5 oktober Tolka denna olikhet geometriskt och rita upp motsvarande figur med kommandot plot(x,f,x,f+epsilon,x,f-epsilon) för något lämpligt valt epsilon. (Obs! Matlabs eps är fixerat och kan ej ändras: help eps.) Vi skall nu se hur funktioner som bara skiljer sig lite i olika normer kan se ut. Uppgift 1.4 Bilda (i Matlab) en»liten» regelbunden och analytiskt definierad funktion h, t ex h(x) =.1cos(5x). Sätt g = f + h. Rita upp f och g i samma figur med plot(x,f,x,g). Rita sedan även upp gränser i maximumnormen, med plot(x,f,x,g,x,f+normk(f-g,inf),x,f-normk(f-g,inf)) Tag sedan en mera oregelbunden funktion med Matlabkommandot (randn bildar normalfördelade slumptal) h=.1*randn(size(x)). Gör om figurerna med detta h. Vi skall nu se lite på L p -normer. Uppgift 1.5 Definiera funktioner genom ha = ones(size(x)) hb = (x>.1)-(x>.11) hc = cos(3*x) hd = randn(size(x)) Rita upp dem. Jämför deras 1-, 2- och -normer genom att beräkna kvoterna h 1 h 2, h 1 h och h 2 h På vilka funktioner märks det mest att normerna inte är ekvivalenta? Uppgift 1.6 Normering av en funktion f innebär att den ersätts med f / f. Normera funktionerna i föregående uppgift med avseende på -normen och rita upp dem i samma figur: plot(x,ha/normk(ha,inf),...,x,hd(normk(hd,inf)) Gör sedan om samma sak med L 2 och L 1 -normerna. Lägg märke till hur olika det ser ut. Olika normer tar fasta på olika egenskaper hos funktionerna. Uppgift 1.7 Beteckningen kanske förbryllar någon. Vi skall nu motivera den experimentellt. Beräkna för funktionerna h=ha,hb,hc,hd ovan normk(h,p) med större och större p och jämför med normk(h,inf). (Tar man alltför stora p så blir det dock problem med flyttalen.) Gissa vad gränsvärdet kan vara! (För kontinuerliga f finns det en allmän formel. Om intervallängden inte är 1 så måste man dock kompensera för denna på ett lämpligt ställe.)

4 4 Datorövningar i funktionalanalys Uppgift 1.8 Det Matlab arbetar med är ju följder (element i R n ), och där vet vi att alla normer är ekvivalenta, speciellt även 1-, 2- och -normerna. Hur går detta ihop med att funktionsnormerna inte är ekvivalenta? Ledning: En sak att tänka på är vad som händer med konstanterna i olikheterna t ex a f 1 f b då n blir stort. Vilka vektorer f maximerar respektive minimerar kvoten i olikheten? Grovt talat kan man säga att den praktiska gränsen mellan ändligt och oändligt är ganska flytande och beror bland annat på den precision man räknar med.

5 2 Kontraherande avbildningar 2.1 Kontraktion och Lipschitzkonstanter Om f är en funktion på M så definieras Lipschitzkonstanten för f genom f (x) f (y) Lip( f ) = sup x y M x y Om detta supremum är ändligt så sägs f vara Lipschitzkontinuerlig. Om Lip( f ) < 1 så sägs f vara kontraherande. Detta är samma sak som att f (x) f (y) r x y, r < 1 för alla x M (och Lipschitzkonstanten är det minsta r som duger i olikheten). Vi skall nu undersöka differenskvoter med hjälp av Matlab. Sätt q f (x,y) = f (x) f (y). x y För att få fram en sådan differenskvotsfunktion i Matlab (och allmännare funktioner av två variabler (x,y)) krävs ett knep. Detta återfinns i skriptet xxyy.m. Variablerna x och y representeras med matriser xx resp yy som varierar längs rader respektive kolonner. Uppgift 2.1 Sätt steg=.2 och kör xxyy. Titta på de bildade variablerna xx och yy, dels direkt och dels genom plottning, surf(xx) resp surf(yy). Det senare ritar upp ytorna z = x resp z = y. Sätt nu steg=.1 och kör åter xxyy. 5

6 6 Datorövningar i funktionalanalys Uppgift 2.2 Plotta ytorna z = x 2 + y 2 och z = sin(xy). Bilda först z=xx.^2+yy.^2 och visa sedan upp den med surf(z). Gör sedan samma med z=sin(xx.*yy). Uppgift 2.3 Skriv ett skript diffkvot.m som givet en funktionsvektor f beräknar den diskreta motsvarigheten till differenskvoten q f. Gör beräkningen genom ettor = ones(x); fxx = ettor'*f; fyy = f'*ettor; diffkvot=(fxx-fyy)./(xx-yy); Använd det på funktionerna sin(2 x) och e x. Beräkna också Lipschitzkonstanten för dessa funktioner (i intervallet x 1, genom att bestämma maximum och minimum av differenskvoterna. (Gör du på rätt sätt så stör inte de odefinierade diagonalelementen.) Jämför med de Lipschitzkonstanter som du beräknar analytiskt. 2.2 Fixpunkter för skalära funktioner Om funktionen f är kontraherande på ett intervall I, så konvergerar iterationen x n+1 = f (x n ) mot den entydigt bestämda fixpunkten. Uppgift 2.4 Funktionen f (x) =.5 cos(x) är säkert kontraherande på hela R. Använd Matlab för att lösa ekvationen x =.5 cos(x). En treraders lösning, med illustration av konvergensen, är x=; u=; for k=1:1, u(k)=x; x=cos(x)/2; end plot(u) Uppgift 2.5 Funktionen f (x) = cos x är inte kontraherande på R (varför ej?) men iterationen konvergerar i alla fall för alla begynnelsevärden. Rita upp f (x) och förklara varför. Beräkna lösningen till f (x) = cos x. Uppgift 2.6 Försök samma sak med f (x) = λcos(x), med λ = 1.2 och λ = 1.4. Genom att rita upp funktionerna cos(x) och x/λ i samma diagram övertygar man sig lätt om att i bägge fallen finns bara en fixpunkt. Vilken är skillnaden? 2.3 Lineära avbildningar Vi skall nu se på lineära avbildningar i R n. Här finns tre olika normer värda att nämna, 1, 2 och. Som bekant definieras 1-operatornormen av en matris genom A 1 = max x Ax 1 x 1

7 5 oktober och är alltså det minsta talet med egenskapen Ax 1 x 1 för alla x i R n och motsvarande för de andra normerna.om f (x) = Ax + b där b är en fix vektor, så är ju f (x) f (y) = A(x y) och operatornormen är precis Lipschitzkonstanten för f. I Matlab finns en funktion norm som beräknar 1-, 2- och inf-normerna för matriser. Se matristeorin för exakta formler i dessa fall. Uppgift 2.7 Låt [.1.7 A =.1.8 ] Beräkna de tre operatornormerna för A. Kan du hitta någon vektor med Ax = A x i de tre fallen? Uppgift 2.8 Låt A vara matrisen i föregående uppgift och sätt f (x) = Ax + b med b = [1 2] T. Är f kontraherande i någon av dess normer? Vilken slutsats kan dras om konvergens av iterationen x n+1 = f (x n )? Testa iterationen numeriskt i Matlab. Uppgift 2.9 Ersätt A i föregående uppgifter med [ ].1.1 A =.7.8 och gör samma räkningar. 2.4 Fixpunkter för operatorer Fixpunktsiteration i en variabel är förhållandevis enkel att analysera. I R n blir det svårare, om man har olineära ekvationer. För exempel på detta hänvisas till Olineära dynamiska system. Här går vi direkt på ett ännu svårare fall, nämligen fixpunktsiteration i funktionsrum (fast Matlab tvingar oss att approximera med R n, med n 1 till 2. Vi skall syssla med olineära differentialekvationsproblem. Randvärdesproblemet d2 u dx 2 = F(u), u() = = u(1) uppträder i olika praktiska sammanhang. Ett besläktat lineärt problem d2 u dx 2 = f (x), u() = = u(1)

8 8 Datorövningar i funktionalanalys löses som bekant av integraloperatorn u(x) = k(x,y) f (y)dy där k är Greens funktion för problemet, { x(1 y), x y k(x,y) = = min(x(1 y),y(1 x)) y(1 x), y x 1 där det senare uttrycket kan vara praktiskt vid programmering. Den olineära ekvationen u = F(u) kan alltså överföras i den olineära integralekvationen u(x) = k(x, y)f(u(y)) dy. Detta är en form som kan lämpa sig för numerisk iteration. Vi ser nu först på det lineära problemet. Uppgift 2.1 Skriv ett Matlabskript som beräknar en approximation till integraloperatorn T f (x) = k(x,y) f (y)dy. Representera funktioner med (kolonn)vektorer som tidigare och k(x, y) med en matris K, som med tidigare beteckningar erhålls i Matlab med K = min(xx.*(-yy+1),yy.*(-xx+1))/n där n är antalet element i vektorerna (och 1/n svarar mot dy i integralen). Beräkna K*f, där f svarar mot den konstanta funktionen 1, och jämför med den exakta lösningen till u = 1, u() = = u(1). Uppgift 2.11 Beräkna de tre operatornormerna för K (vilka är numeriska approximationer till operatornormerna för operatorn T ). För vilka värden på λ är operatorn F(u) = λtu kontraherande, enligt dessa beräkningar? (Svar: λ < k ). Jag avbryter nu Matlab med lite teori. Vi kan nu försöka lösa randvärdesproblemet på följande sätt. Skriv om den som u = λu + f (x), u() = u(1) = u = T (λu) + T f = λtu + T f

9 5 oktober och iterera. Detta fungerar garanterat om operatorn är kontraherande. Då har ekvationen en entydig lösning, som kan erhållas med iteration. Ett specialfall är intressant. Att randvärdesproblemet u = λu, u() = u(1) = har lösning u är ju detsamma som att motsvarande differentialoperator har ett egenvärde λ. Vi ser alltså att det minsta egenvärdet är 1/ T. Men just för detta problem är ju minsta egenvärdet = π 2. Vilken numerisk olikhet för π 2 ger våra räkningar? Uppgift 2.12 Lös ekvationen u = λu + 1, u() = = u(1) med t ex λ = ±.2 numeriskt genom att iterera utgående från en godtycklig startfunktion. Jämför gärna med motsvarande exakta lösning. Vi skall nu se på ett riktigt olineärt problem. Låt F(u) = λsin(u) och se på ekvationen u = λsin(u), Den kan överföras till integralekvationen u(x) = λ u() = = u(1). k(x, y) sin(u(y)) dy. Eftersom sin(u) sin(v) u v för alla u och v så är integraloperatorn på höger sida kontraherande om λ k < 1. Vi vet t ex att k 1 = 1/8. Uppgift 2.13 Försök att lösa integralekvationen u(x) = λ k(x, y) sin(u(y)) dy. genom iteration med något begynnelsevärde. Försök med olika värden på λ från till 1. Rita upp iterationerna. Vad händer? Jämför med det lineära fallet. Att öka värdet av λ är betyder i den mekaniska tolkningen att öka trycket, och lösningarna u betyder möjliga jämviktslägen. I det lineära fallet har integralekvationen u(x) = λ k(x, y)u(y) dy bara lösningen u = för λ < π 2, medan det för λ = π 2 finns oändligt många lösningar, storleken på utböjningen är obestämd. För λ > π 2 (och < 4π 2 ) finns återigen bara en lösning. Detta är ju mekaniskt ganska orimligt. Den olineära modellen ger här vettigare resultat. För λ > π 2 (men inte alltför stort) finns det tre jämviktslösningar. En av dessa är naturligtvis u =. Den är instabil. De två andra är utböjda och spegelbilder till varandra.

10 1 Datorövningar i funktionalanalys Uppgift 2.14 Sätt λ = 1 och iterera med begynnelsevärde u = 1 (till exempel). Rita upp varje iteration. Vad sker? Uppgift 2.15 Automatisera iterationerna. Använd till exempel följande skript: f=ett; for k=1:1 end u=lambda*green*sin(f); f=u; plot(x,f) drawnow Det går också bra att skriva in detta på en kommandorad. Testa vad som händer för olika λ-värden över och under π 2. Nära gränsen λ = π 2 blir konvergensen mycket långsam (ty kontraktionsfaktorn är nära 1). Öka då antalet iterationer från 1. Vill man få en överblick över vad som händer för olika λ kan det vara tydligare att bara spara t ex maximum av jämviktsutböjningen (eller någon annan norm), och rita upp den som funktion av λ. Uppgift 2.16 Följande skript ritar upp maximumvärdet av den stabila jämviktslösningen som funktion av λ: lambdaintervall=6:1:15; r=1; for lambda=lambdaintervall f = ett for k=1:1 end u=lambda*green*sin(f)/1; f=u; normer(r)=normk(u,inf); r=r+1; end plot(lambdaintervall,normer) Kör det och titta på resultatet. Var verkar instabiliteten av nollösningen uppträda? Uppgift 2.17 Ändra λ-intervallet i skriptet till ett kortare med tätare delningspunkter för att få bättre uppfattning om stabilitetsgränsen. Öka sedan antalet iterationer, om du har en tillräckligt snabb dator. Hur skiljer sig utseendet? Vad kan det bero på? Som överkurs kan man sedan följa de stabila utböjda lösningarna för allt större λ-värden. Här inträder ett nytt fenomen.

11 5 oktober Uppgift 2.18 Tag λ ungefär = 25. Kör ett antal iterationer för hand och titta på funktionerna. Vad sker? Det som händer är följande. Det finns för detta λ-värde inte längre någon stabil jämviktslösning. I stället konvergerar iterationerna mot en stabil 2-cykel, vilket innebär att vi har två funktioner u 1 och u 2 sådana att u 2 = T (u 1 ) och u 1 = T (u 2 ), och iterationerna växlar mellan dessa två. Hitta på ett lämpligt sätt att illustrera detta fenomen i ett diagram liknande det du gjort i de två föregående uppgifterna.

Datorövningar i funktionalanalys och harmonisk analys

Datorövningar i funktionalanalys och harmonisk analys Datorövningar i funktionalanalys och harmonisk analys Sven Spanne 28 september 21 1 Normer och approximation Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden av begrepp,

Läs mer

Datorövning(ar) i funktionalanalys och harmonisk analys

Datorövning(ar) i funktionalanalys och harmonisk analys Datorövning(ar) i funktionalanalys och harmonisk analys Sven Spanne & Anders Holst 5 september 26 1 Normer och approximation Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden

Läs mer

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x). Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration 10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Existens och entydighet för ordinära differentialekvationer

Existens och entydighet för ordinära differentialekvationer Existens och entydighet för ordinära differentialekvationer Michael Björklund, f-mib@f.kth.se Grundläggande begrepp Definition 1 Ett begynnelsevärdesproblem för ordinära differentialekvationer har följande

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

TMV225 Inledande Matematik M

TMV225 Inledande Matematik M MATEMATIK Hjälpmedel: Inga, inte ens räknedosa Chalmers tekniska högskola Datum: 201-08-28 kl. 8.0 12.0 Tentamen Telefonvakt: Anders Martinsson Telefon: 070 088 04 TMV225 Inledande Matematik M Tentan rättas

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Lineära system av differentialekvationer

Lineära system av differentialekvationer Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems

Läs mer

Tentamen, del 2 DN1240 Numeriska metoder gk II för F

Tentamen, del 2 DN1240 Numeriska metoder gk II för F Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Existens och entydighet

Existens och entydighet Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration

Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med

Läs mer

1 Analysens grunder. Ordlista för Funktionalanalys 1. avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion.

1 Analysens grunder. Ordlista för Funktionalanalys 1. avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista för Funktionalanalys 1 (28 augusti 2002) 1 Analysens grunder avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t), Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan

Läs mer

Föreläsning 5. Approximationsteori

Föreläsning 5. Approximationsteori Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:

Läs mer

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Komplexa vektorrum U och underrum V U. Linjära höljet: V = span(v 1, v 2,..., v N

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).

Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling). Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Projekt Finit Element-lösare

Projekt Finit Element-lösare Projekt Finit Element-lösare Emil Johansson, Simon Pedersen, Janni Sundén 29 september 2 Chalmers Tekniska Högskola Institutionen för Matematik TMA682 Tillämpad Matematik Inledning Många naturliga fenomen

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

Numerisk lösning till den tidsberoende Schrödingerekvationen.

Numerisk lösning till den tidsberoende Schrödingerekvationen. Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

2D1240 Numeriska metoder gk II för T2, VT Störningsanalys

2D1240 Numeriska metoder gk II för T2, VT Störningsanalys Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Intervallhalveringsmetoden, GKN sid 73. Sekantmetoden, GKN sid 79

Intervallhalveringsmetoden, GKN sid 73. Sekantmetoden, GKN sid 79 e x sin(x) = 2 Intervallhalveringsmetoden, GKN sid 73 f(x) = 0 = Roten finns x f(x) i intervallet Skrivs Intervallangd ----------------------------------------------------------------------------- 1.0-0.1232

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra TATA/TEN) 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1. MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

Kursens Kortfrågor med Svar SF1602 Di. Int.

Kursens Kortfrågor med Svar SF1602 Di. Int. Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

f(x + h) f(x) h f(x) f(x h) h

f(x + h) f(x) h f(x) f(x h) h NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp

Läs mer

Laboration 1. Ekvationslösning

Laboration 1. Ekvationslösning Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen

Läs mer

Numerisk Analys, MMG410. Lecture 10. 1/17

Numerisk Analys, MMG410. Lecture 10. 1/17 Numerisk Analys, MMG410. Lecture 10. 1/17 Ickelinjära ekvationer (Konvergensordning) Hur skall vi karakterisera de olika konvergenshastigheterna för halvering, sekant och Newton? Om f(x x k+1 x ) = 0 och

Läs mer

Laboration 6. Ordinära differentialekvationer och glesa system

Laboration 6. Ordinära differentialekvationer och glesa system 1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Euler-Mac Laurins summationsformel och Bernoulliska polynom

Euler-Mac Laurins summationsformel och Bernoulliska polynom 46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan

Läs mer

Linjärisering och Newtons metod

Linjärisering och Newtons metod CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.

Läs mer

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer